Rendered from XML to PDF by XEP - [www.Render X.com] XSL to PDF and XSL to Postscript for matter
WG
XML Path Language (XPath)

Version 1.0

W3C Recommendation 16 November 1999

Thisversion:

http://www.w3.0rg/TR/1999/REC-xpath-19991114
Available formats: XML,

Latest version:

http://www.w3.org/TR/xpath
Previous versions:

http://www.w3.0rg/TR/1999/PR-xpath-19991004

ttp://www.w3.0ra/1999/08/WD-xpath-1999081
ttp://www.w3.0rg/1999/07/WD-xpath-19990709

ttp://www.w3.0rg/TR/1999/WD-xslt-1999042

Authors and Contributors:

James Clark <[lc@iclark.con}>
Steve DeRose (Inso Corp. and Brown University) <|Steven DeRose@Brown.edy>

© 1999 [W3d® (M1}, [NRIA, Keid), All Rights Reserved.
Wa3C [iability, frademar}, focument usd, and Eoftware licensind rules apply.

Abstract

XPath is a language for addressing parts of an XML document, designed to be used by both XSLT and
XPointer.

Status of thisdocument

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director asaW3C Recommendatior]. It is a stable document and may be used as reference material
or cited as a normative reference from other documents. W3C's role in making the Recommendation isto

http://www.renderx.com
http://www.w3.org/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116.xml
http://www.w3.org/TR/1999/REC-xpath-19991116.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/1999/PR-xpath-19991008
http://www.w3.org/1999/08/WD-xpath-19990813
http://www.w3.org/1999/07/WD-xpath-19990709
http://www.w3.org/TR/1999/WD-xslt-19990421
mailto:jjc@jclark.com
mailto:Steven_DeRose@Brown.edu
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Process/#RecsW3C

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

draw attention to the specification and to promote its widespread deployment. This enhances the function-
ality and interoperability of the Web.

The list of known errors in this specification is available at http://www.w3.0rg/1999/11/REC-xpathq
[19991116-erratg.

Comments on this specification may be sent to www-xpath-comments@wa3.ord; prchives of the comments
are available.

The English version of this specification is the only normative version. However, for trangations of this
document, see http://www.w3.org/Style/X SL /trang ations.html).

A list of current W3C Recommendations and other technica documents can be found at
http://www.w3.org/TR.

This specification isjoint work of the XSL Working Group and the XML Linking Working Group and so
is part of the W3C Style activity] and of the \W3C XML activity.

http://www.w3.org/1999/11/REC-xpath-19991116-errata
http://www.w3.org/1999/11/REC-xpath-19991116-errata
mailto:www-xpath-comments@w3.org
http://lists.w3.org/Archives/Public/www-xpath-comments
http://www.w3.org/Style/XSL/translations.html
http://www.w3.org/TR
http://www.w3.org/Style/Activity
http://www.w3.org/XML/Activity
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Table of Contents

L ENEEOGUCLIOM ..ot s e s sene s en e en s 1
2. L0CAEION PAINGecvveecveticectetseeie ettt s et sttt as bbb s st s sn st es st et s s antesnnnes 2
p A I IO o A e : OO 4
2.2, JAXEG .ttt ettt et ettt ettt e et b e At et beRe st et et eRe s et ebese et et ebese e et et ebese s et atetean e et 5
2.3 NOTETESIGoeveveceecectctee ettt sttt st s s s s s s s s st essenses s st st s sn s st st e 6
28, PLEAICAIEGoovvvcveieeeeveete sttt ss s bsss sttt sttt s et s ettt 7
2.5. ADDIEVIAEEA SYNEAXY ..v.vveverererereierereseseseieseietetesetetesesesesess st tesns 7
I 0TS0 SRS 9
BLL BASICT ettt ettt ettt ettt ettt et s e et et en sttt senan et et enanaean 9
A T e AN L 11 SO 9
BB INOUESELG ...ttt 9
B4, BOOIEANG ...ttt a s s s e s s st st sttt et et en bt bttt tnes 10
T NTU o OO 12
G T 1170 PSSR 13
3.7 LEXICAl SITUCTUIE ..ot ee e eeee e et et e et eeeees e et eeseseeeeeeeeasesreereesennesneeeeeaseanesneeeneseeareeeenneneen 13
4. 1CON€ FUNCLION LIDIAIY cvvvecveveceeteececteteee ettt ettt bt ae st s s st snaesenans 14
4.1. INOGE SEE FUNCLIONG ...v.vvverereretetetetetete et tete et tebe bbbttt bebe e bebebebebebebebebebebebebesesesesesetesesesesenas 14
4.2, BITNG FUNCHIONG ... v.vvvevevetetetetetetetetetetetetetetesesesesesesetesasesesesasanas 15
4.3, BO0IEAN FUNCHIONG ...c.veeveeeeeeee et et et et e et e et et e ee e e eeeeeeeeeeasesreseeeeseaneeneeesesseeneeneenseseeereennenrennennees 18
4.4, NUMDEN FUNCHIONG ..ottt s s s s s s st s s s s s nnanas 18
B DAIAIMOGE]oovonerieceeeeeee ettt s sttt 19
S ST ToTH N e e = SO 20
5.2 ETEMENTINOGEGooceveveceeceeeeetee et tee ettt sttt sttt saensenae 20
B2 1 JUNIGUETDS - .ot en s s sn s enesneenens 21
5.3 [ARIDUIE NOTESoocvvveveceeciecec et se s s st st bt b s s bbbttt st 21
5.4. NAMESPACE NOUEFvcvevererererereteteiete ettt ettt ettt ettt bbb bbb bbb bbbt ebebesesenenas 22
5.5. Processing INStrUCtioN NOGESc.cucuereueieieieieieieteieseiesesetesetesesesesesssesesesesesesesesssesesssssesesesesesesens 22
5.6. JCOMMEINE INOUEG ..ottt ee et et e e et et e et e et et e e eeeeeeeeneeaseeseneeeeeaseareeeeeenease et neenneareeneeanennes 23
A Lo = OO PO 23
B. [CONTOIMENCEcvveeeeece ettt sess ettt s s sanseas 23
Appendices
ALREIETENCE ...ttt ns e 23
N I NS N oo e PP 23

http://www.renderx.com

Rendered from XML to PDF by XEP - jwww.Render X.com] XSL to PDF and XSL to Postscript for matter

A.2. Other Referenced

B. XML Information Set Mapping (NON-NOFMEEIVEYveveveeeeeeeeeeeeeeeeeeseeesreseseeseeeseseseeseseseens

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

1. Introduction

XPathistheresult of an effort to provide acommon syntax and semanticsfor functionality shared between
XSL Transformations [[XSLT]] and X Pointer [[XPointef]. The primary purpose of X Path isto address parts
of an XML [XML] document. In support of this primary purpose, it also provides basic facilities for
manipulation of strings, numbers and booleans. X Path uses a compact, non-XML syntax to facilitate use
of XPath within URIs and XML attribute values. XPath operates on the abstract, logical structure of an
XML document, rather than its surface syntax. X Path gets its name from its use of a path notation asin
URLsfor navigating through the hierarchical structure of an XML document.

In addition to its use for addressing, X Path is also designed so that it has a natural subset that can be used
for matching (testing whether or not a node matches a pattern); this use of X Path is described in XSLT].

XPath modelsan XML document as atree of nodes. There are different types of nodes, including element
nodes, attribute nodes and text nodes. X Path defines away to compute aftring-valugd for each type of node.
Some types of nodes also have names. X Path fully supports XML Namespaces [KML Nameg]. Thus, the
name of anode is modeled as a pair consisting of alocal part and a possibly null namespace URI; thisis
called an pxpanded-namd. The datamodel is described in detail in E 5 — Data Mode] on page 19.

The primary syntactic construct in X Path is the expression. An expression matches the production Expt].
An expression is evaluated to yield an object, which has one of the following four basic types:

node-set (an unordered collection of nodes without duplicates)
boolean (true or false)

number (a floating-point number)

- string (asequence of UCS characters)

Expression evaluation occurs with respect to a context. XSLT and XPointer specify how the context is
determined for XPath expressions used in XSLT and XPointer respectively. The context consists of:

- anode (the context node)

- apair of non-zero positive integers (the context position and the context size)
- aset of variable bindings

- afunction library

- the set of namespace declarations in scope for the expression

The context position is always less than or equal to the context size.

The variable bindings consist of amapping from variable namesto variable values. Thevalue of avariable
isan object, which can be of any of the types that are possible for the value of an expression, and may aso
be of additional types not specified here.

The function library consists of a mapping from function names to functions. Each function takes zero or
more arguments and returns a single result. This document defines a core function library that all XPath
implementations must support (see g 4 — Core Function Library on page 14). For a function in the core
function library, arguments and result are of the four basic types. Both XSLT and X Pointer extend XPath
by defining additional functions, some of these functions operate on the four basic types, others operate
on additional datatypes defined by XSLT and XPointer.

The namespace declarations consist of a mapping from prefixes to namespace URIs.

The variable bindings, function library and namespace declarations used to evaluate a subexpression are
always the same as those used to evaluate the containing expression. The context node, context position,
and context size used to eval uate a subexpression are sometimes different from those used to eval uate the
containing expression. Several kinds of expressions change the context node; only predicates change the

Page 1 of 26

http://www.w3.org/TR/WD-xslt#patterns
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

context position and context size (see g 2.4 — Predicateg on page 7). When the evaluation of a kind of
expressionisdescribed, it will alwaysbe explicitly stated if the context node, context position, and context
size changefor the evaluation of subexpressions; if nothing is said about the context node, context position,
and context size, they remain unchanged for the evaluation of subexpressions of that kind of expression.

XPath expressions often occur in XML attributes. The grammar specified in this section applies to the
attribute value after XML 1.0 normalization. So, for example, if the grammar uses the character <, this
must not appear in the XML source as < but must be quoted according to XML 1.0 rules by, for example,
enteringitas&l t ; . Within expressions, literal strings are delimited by single or double quotation marks,
which area so used to delimit XML attributes. To avoid aquotation mark in an expression being interpreted
by the XML processor as terminating the attribute value the quotation mark can be entered as a character
reference (&guot ; or '). Alternatively, the expression can use single quotation marksif the XML
attribute is delimited with double quotation marks or vice-versa.

One important kind of expression is alocation path. A location path selects a set of nodes relative to the
context node. The result of evaluating an expression that is alocation path is the node-set containing the
nodes selected by the location path. Location paths can recursively contain expressions that are used to
filter sets of nodes. A location path matches the production [_ocationPatH.

In the following grammar, the non-terminals DNamd and NCNaméd are defined in [XML Named], and [§
isdefined in [XML]]. The grammar usesthe same EBNF notation as[[X ML (except that grammar symbols
always haveinitia capital |etters).

Expressions are parsed by first dividing the character string to be parsed into tokens and then parsing the
resulting sequence of tokens. Whitespace can be freely used between tokens. The tokenization processis
described in g 3.7 — Lexical Structurg on page 13.

2. Location Paths

Although location paths are not the most general grammatical construct in the language (a
isaspecial case of an [Expi]), they are the most important construct and will therefore be described first.

Every location path can be expressed using a straightforward but rather verbose syntax. There are also a
number of syntactic abbreviations that allow common cases to be expressed concisely. This section will
explain the semantics of location paths using the unabbreviated syntax. The abbreviated syntax will then
be explained by showing how it expands into the unabbreviated syntax (see g 2.5 — Abbreviated Syntay

on page 7).
Here are some examples of location paths using the unabbreviated syntax:

e chil d:: par a selectsthe par a element children of the context node

* child::* selectsall element children of the context node

e child::text() seectsall text node children of the context node

e child::node() selectsall the children of the context node, whatever their node type
« attribute:: nane selectsthe nane attribute of the context node

o attribute::* selectsal the attributes of the context node

e descendant : : par a selectsthe par a element descendants of the context node

« ancestor::div sdectsal di v ancestors of the context node

Page 2 of 26 L ocation Paths

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/REC-xml#NT-S
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

ancestor-or-sel f::div selectsthedi v ancestors of the context node and, if the context node
isadi v element, the context node as well

descendant - or - sel f : : par a selectsthe par a element descendants of the context node and, if
the context nodeisapar a element, the context node as well

sel f: : par a selectsthe context nodeif it isapar a element, and otherwise selects nothing

chil d:: chapt er/ descendant : : par a selectsthepar a element descendants of thechapt er
element children of the context node

child::*/child:: para sdectsal par a grandchildren of the context node
| selects the document root (which is aways the parent of the document element)
/ descendant : : par a selects all the par a elementsin the same document as the context node

/ descendant::olist/child::itemseectsaltheitemeementsthat haveanol i st parent
and that are in the same document as the context node

chil d: : para[posi tion()=1] selectsthefirst par a child of the context node
chil d::para[position()=last()] seectsthelast par a child of the context node
chil d:: para[position()=last()-1] seectsthelast but onepar a child of the context node

chil d: : para[posi tion()>1] selectsall the par a children of the context node other than the
first par a child of the context node

foll owi ng-sibling::chapter[position()=1] selectsthe next chapt er sbling of the
context node

precedi ng-si bling::chapter[position()=1] seectsthe previous chapt er sibling of
the context node

/ descendant : : figure[position()=42] selects the forty-second fi gur e element in the
document

/child::doc/child::chapter[position()=5]/child::section[position()=2]
selectsthe second sect i on of thefifth chapt er of the doc document element

child::para[attribute::type="warning"] selectsall par a children of the context node
that have at ype attribute with valuewar ni ng

child::para[attribute::type="warning'][position()=5] seects the fifth para
child of the context node that hasat ype attribute with valuewar ni ng

child::para[position()=5][attribute::type="warning"] seects the fifth para
child of the context node if that child hasat ype attribute with valuewar ni ng

child::chapter[child::title="Introduction'] selectsthechapter children of the
context node that have one or moret i t | e children with Eiring-valud equal to | nt r oduct i on

child::chapter[child::title] selectsthechapt er children of the context node that have
oneor moreti t| e children

child::*[self::chapter or self::appendi x] selectsthe chapt er and appendi x
children of the context node

child::*[self::chapter or self::appendix][position()=last()] seectsthe
last chapt er or appendi x child of the context node

Page 3 of 26

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

There are two kinds of location path: relative location paths and absolute location paths.

A relative location path consists of a sequence of one or more |ocation steps separated by / . The stepsin
arelative location path are composed together from left to right. Each step in turn selects a set of nodes
relativeto acontext node. Aninitial sequence of stepsis composed together with afollowing step asfollows.
Theinitial sequence of steps selects a set of nodes relative to a context node. Each nodein that set is used
as a context node for the following step. The sets of nodes identified by that step are unioned together.
The set of nodes identified by the composition of the steps is this union. For example,
chil d::div/child:: para selects the par a element children of the di v element children of the
context node, or, in other words, the par a element grandchildren that have di v parents.

An absolutelocation path consistsof / optionally followed by arelativelocation path. A/ by itself selects
the root node of the document containing the context node. If it is followed by a relative location path,
then the location path selects the set of nodes that would be selected by the relative location path relative
to the root node of the document containing the context node.

[1] LocationPath ::= [Relativel ocationPath

| Absolutel ocationPatH
[15] Absolutel ocationPath ::= /' Relativel ocationPatH?

| Abbr eviated Absolutel ocationPath
[31] Relativel ocationPath = [Bted

Relativel ocationPatH '/ [Steg
Abbr eviatedRelativel ocationPatH

2.1. Location Steps
A location step has three parts:

» an axis, which specifies the tree relationship between the nodes selected by the location step and the
context node,

« anode test, which specifies the node type and of the nodes selected by the location
step, and

» zero or more predicates, which use arbitrary expressions to further refine the set of nodes selected by
the location step.

The syntax for alocation step is the axis name and node test separated by a double colon, followed by zero
or more expressions each in square brackets. For example,inchi | d: : par a[posi ti on()=1],child
isthe name of the axis, par a isthe nodetest and [posi ti on() =1] isapredicate.

The node-set selected by the location step is the node-set that results from generating an initial node-set
from the axis and node-test, and then filtering that node-set by each of the predicatesin turn.

Theinitial node-set consists of the nodes having the relationship to the context node specified by the axis,
and having the node type and specified by the node test. For example, a location step
descendant : : par a selectsthe par a el ement descendants of the context node: descendant specifies
that each node in the initial node-set must be a descendant of the context; par a specifies that each node
in the initial node-set must be an element named par a. The available axes are described in
on page 5. The available node tests are described in g 2.3 — Node Testg on page 6. The meaning of some
node tests is dependent on the axis.

Page 4 of 26 L ocation Paths

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Theinitial node-set isfiltered by the first predicate to generate a new node-set; this new node-set is then
filtered using the second predicate, and so on. The final node-set is the node-set selected by the location
step. The axis affects how the expression in each predicate is eval uated and so the semantics of apredicate
is defined with respect to an axis. See g 2.4 — Predicates on page 7.

[53] Step = [AxisSpecifier] NodeT esl| Predicatg*

| Abbr eviatedSteq

[74] AxisSpecifier = [AxisNamg":'
| Abbr eviated AxisSpecifier|
2.2. AXes

The following axes are available:

the chi | d axis contains the children of the context node

thedescendant axiscontains the descendants of the context node; adescendant isachild or achild
of achild and so on; thus the descendant axis never contains attribute or namespace nodes

the par ent axis contains the of the context node, if thereis one

theancest or axiscontainsthe ancestors of the context node; the ancestors of the context node consist
of the of context node and the parent's parent and so on; thus, the ancestor axis will always
include the root node, unless the context node is the root node

thef ol | owi ng- si bl i ng axiscontainsall the following siblings of the context node; if the context
node is an attribute node or namespace node, thef ol | owi ng- si bl i ng axisis empty

thepr ecedi ng- si bl i ng axiscontains all the preceding siblings of the context node; if the context
node is an attribute node or namespace node, the pr ecedi ng- si bl i ng axisis empty

thef ol | owi ng axis contains all nodes in the same document as the context node that are after the
context nodein document order, excluding any descendants and excluding attribute nodes and namespace
nodes

the pr ecedi ng axis contains all nodes in the same document as the context node that are before the
context node in document order, excluding any ancestors and excluding attribute nodes and namespace
nodes

theat t ri but e axis contains the attributes of the context node; the axis will be empty unless the
context node is an element

thenamespace axis contains the namespace nodes of the context node; the axiswill be empty unless
the context node is an element

thesel f axiscontainsjust the context node itself
thedescendant - or - sel f axis contains the context node and the descendants of the context node

theancest or - or - sel f axis contains the context node and the ancestors of the context node; thus,
the ancestor axis will always include the root node

|:| The ancest or, descendant, fol | owi ng, precedi ng and sel f axes partition a document (ignoring

attribute and namespace nodes): they do not overlap and together they contain all the nodesin the document.

AXxes Page 5 of 26

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

[90] AxisName := ‘ancestor'
| 'ancestor-or-self'
| 'attribute’
| ‘child'
| 'descendant’
| 'descendant-or-self'
| 'following'
| 'following-sibling'
| 'namespace’
| 'parent’
| 'preceding'
| 'preceding-sibling'
| 'self'

2.3. Node Tests

Every axishasaprincipal nodetype. If an axis can contain elements, then the principal nodetypeis e ement;
otherwise, it is the type of the nodes that the axis can contain. Thus,

- For the attribute axis, the principa node typeis attribute.
- For the namespace axis, the principal node type is namespace.
- For other axes, the principal node type is element.

A node test that is a[DNamd is true if and only if the type of the node (see E 5 — Data Mode] on page 19)
isthe principal nodetypeand hasan equal to thefexpanded-namd specified by theDNamd.
For example, chi | d: : par a selectsthe par a element children of the context node; if the context node
hasno par a children, it will select an empty set of nodes. at t ri but e: : hr ef selectsthehr ef attribute
of the context node; if the context node has no hr ef attribute, it will select an empty set of nodes.

A inthe node test is expanded into an using the namespace declarations from the
expression context. Thisis the same way expansion is done for element type namesin start and end-tags
except that the default namespace declared with xni ns is not used: if the[ONamd does not have a prefix,
then the namespace URI is null (thisis the same way attribute names are expanded). It is an error if the
has a prefix for which there is no namespace declaration in the expression context.

A nodetest * istruefor any node of the principal nodetype. For example, chi | d: : * will select all element
children of the context node, and at t ri but e: : * will select all attributes of the context node.

A node test can have the form NCName: * . In this case, the prefix is expanded in the same way aswith a
DNamd, using the context namespace declarations. It is an error if there is no namespace declaration for
the prefix in the expression context. The node test will be true for any node of the principal type whose
has the namespace URI to which the prefix expands, regardless of the local part of the
name.

Thenodetestt ext () istruefor any text node. For example, chi | d: : t ext () will select thetext node
children of the context node. Similarly, the node test conment () istrue for any comment node, and the
node test pr ocessi ng-i nstructi on() istruefor any processing instruction. The pr ocessi ng-
i nstruction() test may have an argument that is Literal; in this case, it is true for any processing
instruction that has a name equal to the value of the Literal.

A nodetest node() istruefor any node of any type whatsoever.

[234 NodeTest ::= est

| NodeTypd "y

Page 6 of 26 L ocation Paths

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

| 'processing-instruction’ ‘(')}

2.4. Predicates

Anaxisiseither aforward axisor areverse axis. An axisthat only ever contains the context node or nodes
that are after the context node in is aforward axis. An axis that only ever contains the
context node or nodes that are before the context node in is a reverse axis. Thus, the
ancestor, ancestor-or-self, preceding, and preceding-sibling axes are reverse axes; all other axesareforward
axes. Since the self axis always contains at most one node, it makes no difference whether it isaforward
or reverse axis. The proximity position of a member of a node-set with respect to an axisis defined to be
the position of the node in the node-set ordered in document order if the axisisaforward axis and ordered
in reverse document order if the axisisareverse axis. Thefirst positionis 1.

A predicatefilters anode-set with respect to an axisto produce a new node-set. For each node in the node-
set to be filtered, the is evaluated with that node as the context node, with the number of
nodes in the node-set as the context size, and with the proximity positior] of the node in the node-set with
respect to the axis as the context position; if evaluates to true for that node, the node is
included in the new node-set; otherwise, it is not included.

A is evaluated by evaluating the Expr] and converting the result to aboolean. If the result
isanumber, the result will be converted to true if the number is equal to the context position and will be
converted to false otherwise; if the result is not a number, then the result will be converted asif by a call
to thepoolear] function. Thus alocation path par a[3] isequivalent to par a[posi ti on()=3] .

[155] Predicate ::= '['PredicateExpi T
[166] PredicateExpr =

2.5. Abbreviated Syntax

Here are some exampl es of location paths using abbreviated syntax:

» par a selectsthe par a element children of the context node

» * selectsall element children of the context node

» text() selectsal text node children of the context node

« @ane selectsthe nanme attribute of the context node

e @ sdelectsall the attributes of the context node

e paral 1] seectsthefirst par a child of the context node

 parallast()] selectsthelast par a child of the context node

» */para selectsal par a grandchildren of the context node
 /doc/chapter[5]/section[2] selectsthesecondsect i on of thefifth chapt er of thedoc

e chapter// par a selects the par a element descendants of the chapt er element children of the
context node

» /[par a selectsall the par a descendants of the document root and thus selects al par a elementsin
the same document as the context node

Predicates Page 7 of 26

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

e /[/olist/itemsdectsal thei t emelementsin the sasme document as the context node that have
anol i st parent

» . selectsthe context node
» ./ / para seectsthe par a element descendants of the context node
. . selectsthe parent of the context node
* ../ @ ang sdectsthel ang attribute of the parent of the context node

* para] @ype="war ni ng"] selectsall par a children of the context nodethat haveat y pe attribute
with valuewar ni ng

o para] @ype="warni ng"][5] selectsthefifth par a child of the context node that has at ype
attribute with value war ni ng

 para[5][@ype="war ni ng"] seectsthefifth par a child of the context node if that child has a
t ype attribute with value war ni ng

» chapter[title="Introduction"] selectsthechapt er children of thecontext nodethat have
oneor moret i t | e children with Eiring-valud equal to | nt r oduct i on

o chapter[title] seectsthechapt er children of the context node that have oneor moretitl e
children

 enpl oyee[@ecretary and @ssi stant] selectsall theenpl oyee children of the context
node that have both asecr et ar y attribute and an assi st ant attribute

The most important abbreviation isthat chi | d: : can be omitted from alocation step. In effect, chi | d
isthe default axis. For example, alocation path di v/ par aisshortfor chi | d: : di v/ chi |l d: : par a.

There is aso an abbreviation for attributes: att ri but e: : can be abbreviated to @ For example, a
location path para[@ ype="warning"] is short for
child::para[attribute::type="warni ng"] andsoseectspar a childrenwithat ype attribute
with value equal towar ni ng.

/| isshort for / descendant - or - sel f: : node()/ . For example, / / par a is short for / descen-
dant - or-sel f:: node()/chil d:: paraandsowill select any par a element in the document (even
apar a element that isadocument element will be selected by / / par a since the document element node
is a child of the root node); div//para is short for div/descendant-or-
sel f:: node()/chil d:: paraandsowill select all par a descendants of di v children.

The location path / / par a[1] does not mean the same as the location path / descendant : : para[1] . The
latter selectsthe first descendant par a element; the former selects all descendant par a elementsthat are the first
par a children of their parents.

A location step of . isshort for sel f: : node() . Thisisparticularly useful in conjunction with/ / . For
example, the location path . / / par a is short for
sel f::node()/descendant-or-sel f::node()/child::para

and so will select all par a descendant elements of the context node.

Similarly, alocation step of . . is short for par ent : : node() . For example, . . / ti t| e isshort for
parent::node()/child::titleandsowill selecttheti t| e children of the parent of the context
node.

Page 8 of 26 L ocation Paths

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

[175 AbbreviatedAbsolutel oca- '/I' Relativel ocationPath

tionPath

[185) AbbreviatedRelativeLocar ::= Relativel ocationPath /' [Steg
tionPath

[197] AbbreviatedStep ::=

[208] AbbreviatedAxisSpecifier

I
6]
N

3. Expressions
3.1. Basics

A VariableRefer encg evaluates to the value to which the variable name is bound in the set of variable
bindings in the context. It isan error if the variable name is not bound to any value in the set of variable
bindingsin the expression context.

Parentheses may be used for grouping.

[216] Expr = [rExpr

(22 PrimaryExpr = MariableReferencg
"¢ Exprl"y
| Literal

| Numb
|

unctionCall

C||=
E!
Q=

3.2. Function Calls

A expression isevaluated by using the[FunctionNamd to identify afunction in the expression
evaluation context function library, evaluating each of the [Arguments, converting each argument to the
type required by the function, and finally calling the function, passing it the converted arguments. It isan
error if the number of argumentsiswrong or if an argument cannot be converted to the required type. The
result of the expression is the result returned by the function.

An argument is converted to type string asif by calling the function. An argument is converted to
type number asif by calling thehumbeq function. An argument is converted to type boolean asif by calling
the function. An argument that is not of type node-set cannot be converted to a node-set.

[255] FunctionCall ::= [EunctionNamg'(' (|Argument (', Argument)*)?")’
[271] Argument =
3.3. Node-sets

A location path can be used as an expression. The expression returns the set of nodes selected by the path.
The| operator computes the union of its operands, which must be node-sets.

Basics Page 9 of 26

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Predicatgs are used to filter expressionsin the same way that they are used in location paths. It isan error
if the expression to be filtered does not evaluate to a node-set. The filters the node-set with
respect to the child axis.

|:| The meaning of aPr edicatd depends crucially on which axisapplies. For example, pr ecedi ng: : f 0o[1] returns
thefirst f oo element in reverse document order, because the axisthat appliestothe[1] predicateisthe preceding
axis; by contrast, (pr ecedi ng: : foo) [1] returnsthe first f oo element in document order, because the axis
that appliestothe[1] predicateisthe child axis.

The/ and// operators compose an expression and arelative location path. It isan error if the expression
does not evaluate to anode-set. The/ operator does composition in the same way aswhen/ isusedin a
location path. Asin location paths, / / isshort for / descendant - or - sel f: : node()/.

There are no types of objects that can be converted to node-sets.

[280] UnionExpr ::=
| UnionExpr] T PathExpd]
[297] PathExpr ::= [LocationPatH
| Eilter Expr
| Eilter Expr] ‘' Relativel ocationPath
| Eilter Expr] /' Relativel ocationPatH
[327] FilterExpr = PrimaryExpr]
| Eilter Expr] Predicatd
3.4. Booleans

An object of type boolean can have one of two values, true and false.

Anor expression is evaluated by evaluating each operand and converting its value to a boolean asif by
acall tothepoolean] function. Theresult istrueif either valueistrue and false otherwise. Theright operand
is not evaluated if the left operand evaluatesto true.

Anand expression is evaluated by evaluating each operand and converting its value to a boolean asif by
acall to the function. The result is true if both values are true and false otherwise. The right
operand is not evaluated if the left operand evaluates to false.

An (that isnot just aRelational Expr]) or aRelational Expr (that isnot just an[AdditiveExpr])
is evaluated by comparing the objects that result from evaluating the two operands. Comparison of the
resulting objects is defined in the following three paragraphs. First, comparisons that involve node-sets
are defined in terms of comparisons that do not involve node-sets; thisis defined uniformly for =, ! =, <=,
<, >= and >. Second, comparisons that do not involve node-sets are defined for = and ! =. Third, compar-
isons that do not involve node-sets are defined for <=, <, >=and >.

If both objects to be compared are node-sets, then the comparison will betrueif and only if thereisanode
in the first node-set and a node in the second node-set such that the result of performing the comparison
on the of the two nodesis true. If one object to be compared is a node-set and the other isa
number, then the comparison will be true if and only if there is a node in the node-set such that the result
of performing the comparison on the number to be compared and on the result of converting the
of that node to a number using the function istrue. If one object to be compared is a node-
set and the other is a string, then the comparison will be true if and only if thereis a node in the node-set
such that the result of performing the comparison on the of the node and the other string is

Page 10 of 26 Expressions

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

true. If one object to be compared is a node-set and the other is a boolean, then the comparison will be
trueif and only if the result of performing the comparison on the boolean and on the result of converting
the node-set to a boolean using the function is true.

When neither object to be compared isanode-set and the operator is= or ! =, then the objectsare compared
by converting them to a common type as follows and then comparing them. If at least one object to be
compared is a boolean, then each object to be compared is converted to a boolean as if by applying the
function. Otherwise, if at least one object to be compared is a number, then each object to be
compared is converted to a number asif by applying the humbeq function. Otherwise, both objects to be
compared are converted to strings as if by applying thetring function. The = comparison will be true if
and only if the objects are equal; the ! = comparison will be true if and only if the objects are not equal.
Numbers are compared for equality according to |EEE 754 [[EEE 754]. Two booleans are equal if either
both are true or both are false. Two strings are equal if and only if they consist of the same sequence of
UCS characters.

I:I If $x isbound to a node-set, then $x="f 00" does not mean the same asnot ($x! ="f oo") : the former istrue
if and only if some node in $x has the string-value f 0o; the latter is true if and only if all nodesin $x have the
string-valuef oo.

When neither object to be compared is a node-set and the operator is <=, <, >= or >, then the objects are
compared by converting both objects to numbers and comparing the numbers according to |EEE 754. The
< comparison will betrueif and only if thefirst number islessthan the second number. The <= comparison
will be trueif and only if the first number is less than or equal to the second number. The > comparison
will be trueif and only if the first number is greater than the second number. The >= comparison will be
trueif and only if the first number is greater than or equal to the second number.

I:I When an XPath expression occurs in an XML document, any < and <= operators must be quoted according to
XML 1.0rulesby using, for example, & t; and &l t ; =. Inthefollowing example the value of thet est attribute
isan XPath expression:

<xsl:if test="@alue &t; 10">. ..</xsl:if>

| BrExpi] ‘or' RndExpH]

[361] AndExpr =
| and

[378] EqualityExpr ::= RelationalExpi]
FqualityExpr] '=' Relational Expr|
| EqualityExpi] = Relational Expi]

[403] RelationalExpr ::= AdditiveExpr]

| Relational Expr] '<' AdditiveExpr]
| Relational Expr| *>' AdditiveExpr]

| Relational Expr] '<="AdditiveExpr]
| Relational Expr] ">="[AdditiveExpr

[344 OrExpr

|:| The effect of the above grammar is that the order of precedenceis (lowest precedence first):
e or

e and

Booleans Page 11 of 26

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

¢ <=,<,>= >
and the operators are all eft associative.

For example,3 > 2 > lisequivaentto(3 > 2) > 1, whichevaluatesto false.

3.5. Numbers

A number represents a floating-point number. A number can have any double-precision 64-bit format
|EEE 754 value [|EEE 754]. Theseinclude a special “Not-a-Number” (NaN) value, positive and negative
infinity, and positive and negative zero. See [Section 4.2.3 of [PLJ] for a summary of the key rules of the
|EEE 754 standard.

The numeric operators convert their operands to numbers as if by calling the humbed function.

The + operator performs addition.

The - operator performs subtraction.

|:| Since XML alows- in names, the - operator typically needs to be preceded by whitespace. For example, f 0o-
bar evaluatesto anode-set containing the child elementsnamed f oo- bar ;f oo - bar evauatestothedifference

of the result of converting the Etring-valug of the first f 0o child element to a number and the result of converting
the Eiring-valug of the first bar child to a number.

Thedi v operator performs floating-point division according to |EEE 754.

The nmod operator returns the remainder from atruncating division. For example,
* 5 nod 2returnsl

* 5 nod -2returns1

* -5 nod 2returns- 1

e -5 nod -2retuns-1

I:I Thisis the same as the %operator in Java and ECMAScript.

|:| Thisis not the same as the IEEE 754 remainder operation, which returns the remainder from a rounding division.

[444) AdditiveExpr = MultiplicativeExpr|
[AdditiveExpr] '+ MultiplicativeExpr]
| RdditiveExpi] *-* MultiplicativeExpi]
[469] MultiplicativeExpr ::= [UnaryExpi]
[MultiplicativeExpr] M ul ‘ iplyOper ator] |Unar yExpr]
| MultiplicativeExpd ‘div' UnaryExpi]
| MultiplicativeExpi] ‘mod UnaryExpr]
[506] UnaryExpr ::=
|-

Page 12 of 26 Expressions

http://java.sun.com/docs/books/jls/html/4.doc.html#9208
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

3.6. Strings

Strings consist of a sequence of zero or more characters, where a character is defined asin the XML Rec-
ommendation [XML]]. A single character in X Path thus correspondsto asingle Unicode abstract character
with a single corresponding Unicode scalar value (see [[Unicodd]); this is not the same thing as a 16-bit
Unicode code value: the Unicode coded character representation for an abstract character with Unicode
scalar value greater that U+FFFF isapair of 16-bit Unicode code values (a surrogate pair). In many pro-
gramming languages, astring isrepresented by a sequence of 16-bit Unicode code val ues; implementations
of XPath in such languages must take care to ensure that a surrogate pair is correctly treated as a single
XPath character.

I:I It is possible in Unicode for there to be two strings that should be treated as identical even though they consist of
the distinct sequences of Unicode abstract characters. For example, some accented characters may be represented
in either a precomposed or decomposed form. Therefore, X Path expressions may return unexpected results unless
both the charactersin the X Path expression and in the XML document have been normalized into acanonical form.

See [[Character Model].

3.7. Lexical Structure
When tokenizing, the longest possible token is always returned.

For readability, whitespace may be used in expressions even though not explicitly allowed by the grammar:
ExprWhitespacd may be freely added within patterns before or after any Expr T oker.

The following special tokenization rules must be applied in the order specified to disambiguate the
grammar:

« If thereis apreceding token and the preceding token isnot oneof @: : , (,[,, or an[Operator], then
a* must be recognized as aM ultiplyOper ator] and an must be recognized as an
Namd.

* If the character following an (possibly after intervening Expr Whitespacd) is (, then the
token must be recognized as aNodeT ypd or afFunctionNamé.

* If thetwo charactersfollowing an (possibly after intervening[Expr Whitespacd) are: : , then
the token must be recognized as an [AxisNam4.

+ Otherwise, the token must not be recognized asaM ultiplyOper ator|, anOper ator Name, ajNodeT ype,
aFunctionNamd, or an [AxisNamd.

[519 Exprioken = ‘([[TIT IV [@]
NameT
NodeTypd

Operatod
FunctionNamd

xisNam
iteral
Number]

\ ariableRefer encq

: =

[567] Literal

|
—

2
—

*

[578 Number

Didit (. Diditd?)?

Strings Page 13 of 26

http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

| Digits
[5%] Digits = [0-9]+
[604 Operator ::=
| MultiplyOper ator]
[FTI T+ =P 1= e <= > o=
[621] OperatorName ::= ‘'and'|'or'|'mod' |'div'
[69 MultiplyOperator = ™'
[637] FunctionName := [ONamd- NodeTypd
[651] VariableReference = '$ ONamd
[661] NameTest = ™'
| DNamé
[630] NodeType := ‘comment'
| 'text’
| 'processing-instruction’
| 'node!
[697] ExprWhitespace = B

4. Core Function Library

This section describes functions that X Path implementations must always include in the function library
that is used to evaluate expressions.

Each function in the function library is specified using a function prototype, which gives the return type,
the name of the function, and the type of the arguments. If an argument type is followed by a question
mark, then the argument is optional; otherwise, the argument is required.

4.1. Node Set Functions

Function: number last()

The[as{ function returns a number equal to the from the expression evaluation context.
Function: number position()

Thepositior function returns anumber equal to thefontext positior] from the expression eval uation context.
Function: number count(node-set)

TheEoun{ function returns the number of nodes in the argument node-set.

Function: node-set id(object)

The [d function selects elements by their unique ID (see § 5.2.1 — Unique 1Dg on page 21). When the
argument to[d is of type node-set, then the result isthe union of the result of applying [d to thetring-valug
of each of the nodes in the argument node-set. When the argument to [d is of any other type, the argument
is converted to astring asif by acall to the function; the string is split into a whitespace-separated
list of tokens (whitespace is any sequence of characters matching the production [8); the result is a node-

Page 14 of 26 CoreFunction Library

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml#NT-S
http://www.w3.org/TR/REC-xml#NT-S
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

set containing the elements in the same document as the context node that have a unique 1D equal to any
of thetokensin thelist.

* id("foo") selectstheelement with uniqueID f oo

e id("foo")/child::para[position()=5] sdectsthefifth para child of the element with
uniqueID f oo

Function: string local-name(node-set?)

The function returns the local part of the of the node in the argument node-
set that is first in focument ordey. If the argument node-set is empty or the first node has no
hamd, an empty string is returned. If the argument is omitted, it defaults to a node-set with the context
node asits only member.

Function: string namespace-uri(node-set?)

Thehamespace-ur] function returns the namespace URI of thefxpanded-namd of the nodein the argument
node-set that is first inlocument ordey. If the argument node-set is empty, the first node has no
hamd, or the namespace URI of the isnull, an empty string is returned. If the argument
is omitted, it defaults to a node-set with the context node asits only member.

I:I The string returned by the function will be empty except for element nodes and attribute nodes.

Function: string name(node-set?)

The function returns a string containing a representing the of the node in
the argument node-set that is first inlocument ordey]. The[DNamd must represent the expanded-namd with
respect to the namespace declarations in effect on the node whose is being represented.
Typicaly, thiswill bethe that occurred in the XML source. This need not be the case if there are
namespace declarations in effect on the node that associate multiple prefixes with the same namespace.
However, an implementation may include information about the original prefix in its representation of
nodes; in this case, an implementation can ensure that the returned string is always the same as the[ONamd
used in the XML source. If the argument node-set is empty or the first node has no expanded-namd, an
empty string is returned. If the argument it omitted, it defaults to a node-set with the context node as its
only member.

|:| The string returned by the hamd function will be the same as the string returned by the [ocal-nam¢d function except
for element nodes and attribute nodes.

4.2. String Functions
Function: string string(object?)
TheEtrind function converts an object to a string as follows:

A node-set is converted to astring by returning the Etring-valud of the node in the node-set that is first
in document ordey]. If the node-set is empty, an empty string is returned.

* A number is converted to a string as follows
- NaN isconverted to the string NaN

- positive zero is converted to the string O

String Functions Page 15 of 26

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

negative zero is converted to the string O
- positiveinfinity is converted tothestring I nfinity
- negativeinfinity isconverted to the string- I nfinity

- if thenumber isaninteger, the number is represented in decimal form asafNumber] with no decimal
point and no leading zeros, preceded by aminus sign (-) if the number is negative

- otherwise, the number is represented in decimal form as aNumber] including a decimal point with
at least one digit before the decimal point and at least one digit after the decimal point, preceded
by a minus sign (-) if the number is negative; there must be no leading zeros before the decimal
point apart possibly from the one required digit immediately before the decimal point; beyond the
one required digit after the decimal point there must be as many, but only as many, more digits as
are needed to uniquely distinguish the number from all other IEEE 754 numeric values.

» The boolean false value is converted to the string f al se. The boolean true value is converted to the
stringt r ue.

* An object of atype other than the four basic types is converted to a string in away that is dependent
on that type.

If the argument is omitted, it defaults to a node-set with the context node as its only member.

Thest ri ng functionisnot intended for converting numbersinto strings for presentation to users. Thef or mat -
nunber function and xs| : number element in [KSLT]] provide this functionality.

Function: string concat(string, string, string)
The function returns the concatenation of its arguments.
Function: boolean starts-with(string, string)

The function returns true if the first argument string starts with the second argument string,
and otherwise returns false.

Function: boolean contains(string, string)

The function returns true if the first argument string contains the second argument string, and
otherwise returns false.

Function: string substring-before(string, string)

The pubstring-beford function returns the substring of the first argument string that precedes the first
occurrence of the second argument string in thefirst argument string, or the empty string if thefirst argument
string does not contain the second argument string. For example, substring-
bef ore("1999/04/01","/") returns1999.

Function: string substring-after(string, string)

TheEubstring-after] function returns the substring of the first argument string that followsthefirst occurrence
of the second argument string in the first argument string, or the empty string if the first argument string
does not contain the second argument string. For example, subst ri ng-af t er (" 1999/ 04/ 01", "/ ")
returns04/ 01, and substri ng-af ter (" 1999/ 04/ 01", " 19") returns99/ 04/ 01.

Function: string substring(string, number, number?)
The function returns the substring of the first argument starting at the position specified in the
second argument with length specified in the third argument. For example, subst ri ng(" 12345", 2, 3)

Page 16 of 26 CoreFunction Library

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

returns" 234" . If the third argument is not specified, it returns the substring starting at the position spec-
ified in the second argument and continuing to the end of the string. For example, sub-
string("12345", 2) returns" 2345" .

More precisely, each character in the string (see on page 13) is considered to have anumeric
position: the position of the first character is 1, the position of the second character is 2 and so on.

This differs from Java and ECMAScript, in which the St ri ng. subst ri ng method treats the position of the
first character as0.

The returned substring contains those characters for which the position of the character is greater than or
equal to the rounded value of the second argument and, if the third argument is specified, less than the
sum of the rounded value of the second argument and the rounded value of the third argument; the com-
parisons and addition used for the above follow the standard |EEE 754 rules; rounding is done as if by a
call tothe function. The following examples illustrate various unusual cases:

e substring("12345", 1.5, 2.6) returns" 234"

e substring("12345", 0, 3) returns" 12"

e substring("12345", 0 div 0, 3) retuns""

e substring("12345", 1, 0 div 0) returns""

e substring("12345", -42, 1 div 0) returns" 12345"
e substring("12345", -1 div 0, 1 div 0) returns""
Function: number string-length(string?)

The Etring-length returns the number of characters in the string (see g 3.6 — Stringg on page 13) If the
argument is omitted, it defaults to the context node converted to a string, in other words the B
of the context node.

Function: string normalize-space(string?)

Thepormalize-spacd function returnsthe argument string with whitespace normalized by stripping leading
and trailing whitespace and replacing sequences of whitespace characters by a single space. Whitespace
characters are the same asthose allowed by the[§ productionin XML. If the argument is omitted, it defaults
to the context node converted to a string, in other words the of the context node.

Function: string translate(string, string, string)

The function returns the first argument string with occurrences of characters in the second
argument string replaced by the character at the corresponding position in the third argument string. For
example, transl at e("bar", "abc", " ABC") returns the string BAr . If there is a character in the
second argument string with no character at a corresponding position in the third argument string (because
the second argument string is longer than the third argument string), then occurrences of that character in
the first argument string are removed. For example, transl ate("--aaa--", "abc-", " ABC")
returns” AAA" . If acharacter occurs more than oncein the second argument string, then the first occurrence
determines the replacement character. If the third argument string is longer than the second argument
string, then excess characters are ignored.

|:| The function is not a sufficient solution for case conversion in al languages. A future version of XPath
may provide additional functions for case conversion.

String Functions Page 17 of 26

http://www.w3.org/TR/REC-xml#NT-S
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

4.3. Boolean Functions

Function: boolean boolean(object)

The function converts its argument to a boolean as follows:

» anumber istrueif and only if it is neither positive or negative zero nor NaN
» anode-setistrueif and only if it is non-empty

» asdtringistrueif and only if itslength is non-zero

* anobject of atype other than the four basic typesis converted to aboolean in away that is dependent
on that type

Function: boolean not(boolean)

Thehof function returns true if its argument is false, and false otherwise.
Function: boolean true()

Thefrud function returns true.

Function: boolean false()

Thefalsd function returns false.

Function: boolean lang(string)

The function returnstrue or fal se depending on whether the language of the context node as specified
by xm : | ang attributes is the same as or is a sublanguage of the language specified by the argument
string. The language of the context node is determined by the value of the xim : | ang attribute on the
context node, or, if the context nodehasno xni : | ang attribute, by the value of thexmi : | ang attribute
on the nearest ancestor of the context node that hasan xm : | ang attribute. If there is no such attribute,
then returns false. If there is such an attribute, then returnstrue if the attribute value is equal to
the argument ignoring case, or if thereis some suffix starting with - such that the attribute value is equal
to the argument ignoring that suffix of the attribute value and ignoring case. For example, | ang(" en™)
would return true if the context node is any of these five elements:

<para xm :lang="en"/>

<di v xm : | ang="en"><par a/ ></ di v>
<para xm :lang="EN'/>

<para xm :lang="en-us"/>

4.4. Number Functions
Function: number number(object?)
The humbei function converts its argument to a number as follows:

« astring that consists of optional whitespace followed by an optional minussign followed by aNumbe]
followed by whitespace is converted to the IEEE 754 number that is nearest (according to the |IEEE
754 round-to-nearest rule) to the mathematical value represented by the string; any other string is
converted to NaN

* boolean trueis converted to 1; boolean false is converted to O

+ anode-set isfirst converted to astring asif by acall to the Etring function and then converted in the
same way as a string argument

Page 18 of 26 CoreFunction Library

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

* anobject of atype other than the four basic typesis converted to anumber in away that is dependent
on that type

If the argument is omitted, it defaults to a node-set with the context node asits only member.

I:I Thehumber function should not be used for conversion of numeric data occurring in an element in an XML document
unless the element is of atype that represents numeric data in a language-neutral format (which would typically
be transformed into a language-specific format for presentation to auser). In addition, thehumbeq function cannot
be used unless the language-neutral format used by the element is consistent with the X Path syntax for aNumber].

Function: number sum(node-set)

The function returns the sum, for each node in the argument node-set, of the result of converting the

of the node to a number.

Function: number floor(number)

The function returns the largest (closest to positive infinity) number that is not greater than the
argument and that is an integer.

Function: number ceiling(number)

The function returns the smallest (closest to negative infinity) number that is not less than the
argument and that is an integer.

Function: number round(number)

The function returns the number that is closest to the argument and that is an integer. If there are
two such numbers, then the onethat is closest to positive infinity isreturned. If the argument is NaN, then
NaN is returned. If the argument is positive infinity, then positive infinity is returned. If the argument is
negative infinity, then negative infinity is returned. If the argument is positive zero, then positive zero is
returned. If the argument is negative zero, then negative zero isreturned. If the argument isless than zero,
but greater than or equal to -0.5, then negative zero is returned.

|:| For these last two cases, the result of calling thefound function is not the same as the result of adding 0.5 and then
calling the flood function.

5. Data M odel

XPath operateson an XML document asatree. This section describes how X Path modelsan XML document
asatree. Thismode isconceptual only and does not mandate any particular implementation. Therelation-
ship of this model to the XML Information Set [XML Infosef] is described in [Appendix B — XML Infor]
mation Set Mappingd on page 25.

XML documents operated on by X Path must conform to the XML Namespaces Recommendation [XML]
Nameg].

The tree contains nodes. There are seven types of node:

e root nodes
* ¢element nodes
e text nodes

e attribute nodes

Number Functions Page 19 of 26

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

* namespace nodes
* processing instruction nodes
* comment nodes

For every type of node, thereisaway of determining astring-value for anode of that type. For sometypes
of node, the string-value is part of the node; for other types of node, the string-value is computed from the
string-value of descendant nodes.

I:I For element nodes and root nodes, the string-value of a node is not the same as the string returned by the DOM
nodeVal ue method (see [DOM]).

Sometypes of node also have an expanded-name, whichisapair consisting of alocal part and anamespace
URI. Thelocal part isastring. The namespace URI iseither null or astring. The namespace URI specified
inthe XML document can bea URI reference as defined in [REC2396]; this meansit can have afragment
identifier and can be relative. A relative URI should be resolved into an absolute URI during namespace
processing: the namespace URIs of of nodes in the data model should be absolute. Two
Expanded-namds are equal if they have the same local part, and either both have a null namespace URI or
both have non-null namespace URI s that are equal.

Thereisan ordering, document order, defined on all the nodesin the document corresponding to the order
in which the first character of the XML representation of each node occurs in the XML representation of
the document after expansion of general entities. Thus, the root node will be the first node. Element nodes
occur beforetheir children. Thus, document order orders element nodes in order of the occurrence of their
start-tag in the XML (after expansion of entities). The attribute nodes and namespace nodes of an element
occur before the children of the element. The namespace nodes are defined to occur before the attribute
nodes. Therelative order of namespace nodes isimplementation-dependent. The relative order of attribute
nodes is implementation-dependent. Reverse document order is the reverse of flocument ordel].

Root nodes and element nodes have an ordered list of child nodes. Nodes never share children: if one node
is not the same node as another node, then none of the children of the one node will be the same node as
any of the children of another node. Every node other than the root node has exactly one parent, whichis
either an element node or the root node. A root node or an element node is the parent of each of its child
nodes. The descendants of a node are the children of the node and the descendants of the children of the
node.

5.1. Root Node

Theroot nodeistheroot of thetree. A root node does not occur except asthe root of the tree. The element
node for the document element is a child of the root node. The root node also has as children processing
instruction and comment nodes for processing instructions and commentsthat occur in the prolog and after
the end of the document element.

The of the root node is the concatenation of the of all text node of

the root node in document order.

The root node does not have an xpanded-namd.

5.2. Element Nodes

There is an element node for every element in the document. An element node has an
computed by expanding the of the element specified in the tag in accordance with the XML

Page 20 of 26 Data Model

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Namespaces Recommendation [XML Nameg]. The namespace URI of the element's will
be null if the QNamd has no prefix and there is no applicable default namespace.

I:I In the notation of Appendix A.3 of [XML Nameg], the local part of the expanded-name corresponds to thet ype
attribute of the ExpETy pe element; the namespace URI of the expanded-name correspondsto the ns attribute of
the ExpEType element, and isnull if the ns attribute of the ExpEType element is omitted.

The children of an element node are the element nodes, comment nodes, processing instruction nodes and
text nodes for its content. Entity references to both internal and external entities are expanded. Character
references are resolved.

The of an element node is the concatenation of the of al text node descendants

of the element node in document order.

5.2.1. UniquelDs

An element node may have a unique identifier (ID). Thisis the value of the attribute that is declared in
the DTD astype| D. No two elementsin a document may have the same unique ID. If an XML processor
reportstwo elementsin a document as having the same unique ID (whichis possible only if the document
isinvalid) then the second element in document order must be treated as not having a unique ID.

I:I If a document does not have aDTD, then no element in the document will have aunique ID.

5.3. Attribute Nodes

Each element node has an associated set of attribute nodes; the element is the of each of these
attribute nodes; however, an attribute node is not a child of its parent element.

|:| Thisis different from the DOM, which does not treat the element bearing an attribute as the parent of the attribute
(see [DOMY).

Elements never share attribute nodes: if one e ement node is not the same node as another el ement node,
then none of the attribute nodes of the one element node will be the same node as the attribute nodes of
another e ement node.

The = operator tests whether two nodes have the same value, not whether they are the same node. Thus attributes
of two different elements may compare as equal using =, even though they are not the same node.

A defaulted attribute istreated the same as a specified attribute. If an attribute was declared for the element
type in the DTD, but the default was declared as #1 MPLI ED, and the attribute was not specified on the
element, then the element's attribute set does not contain a node for the attribute.

Some attributes, suchasxm : | ang and xn : space, have the semanticsthat they apply to all elements
that are descendants of the element bearing the attribute, unless overridden with an instance of the same
attribute on another descendant element. However, this does not affect where attribute nodes appear in the
tree: an element has attribute nodes only for attributes that were explicitly specified in the start-tag or
empty-element tag of that element or that were explicitly declared in the DTD with a default value.

An attribute node has an and a firing-valud. The is computed by
expanding the[DNamd specified in thetagin the XML document in accordance with the X ML Namespaces

Attribute Nodes Page 21 of 26

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Recommendation [XML Named]. The namespace URI of the attribute's name will be null if the
of the attribute does not have a prefix.

I:I In the notation of Appendix A.3 of [XML Nameg], the local part of the expanded-name corresponds to the nane
attribute of the ExpAName element; the namespace URI of the expanded-name correspondsto the ns attribute of
the ExpANare element, and isnull if the ns attribute of the ExpANane element is omitted.

An attribute node has a gtring-valug. The gtring-valug is the normalized value as specified by the XML
Recommendation [XML]]. An attribute whose normalized valueis azero-length string is not treated specially:
it results in an attribute node whose is azero-length string.

I:I It is possible for default attributes to be declared in an external DTD or an external parameter entity. The XML
Recommendation does not require an XML processor to read an external DTD or an external parameter unless it
isvalidating. A stylesheet or other facility that assumesthat the X Path tree contains default attribute val ues declared
in an external DTD or parameter entity may not work with some non-validating XML processors.

There are no attribute nodes corresponding to attributes that declare namespaces (see [XML Nameg]).

5.4. Namespace Nodes

Each element has an associated set of namespace nodes, one for each distinct namespace prefix that isin
scope for the element (including the xm prefix, which isimplicitly declared by the XML Namespaces
Recommendation [KXML Named|) and one for the default namespace if one is in scope for the element.
The element isthe of each of these namespace nodes; however, a namespace node is not a child of
its parent element. Elements never share namespace nodes: if one element node is not the same node as
another element node, then none of the namespace nodes of the one element node will be the same node
asthe namespace nodes of another element node. This meansthat an element will have anamespace node:

» for every attribute on the element whose name starts with xm ns: ;

» for every attribute on an ancestor element whose name starts xnl ns: unless the element itself or a
nearer ancestor redeclares the prefix;

« for anxnl ns attribute, if the element or some ancestor has an xnl ns attribute, and the value of the
xnl ns attribute for the nearest such element is non-empty

D An attribute xm ns="" “undeclares’ the default namespace (see [KXML Named)).

A namespace node has an expanded-namd: the local part is the namespace prefix (this is empty if the
namespace node is for the default namespace); the namespace URI is aways null.

The of anamespace node is the namespace URI that is being bound to the namespace prefix;
if it isrelative, it must be resolved just like a namespace URI in an pxpanded-namd.

5.5. Processing I nstruction Nodes

Thereisaprocessing instruction node for every processing instruction, except for any processing instruction
that occurs within the document type declaration.

A processing instruction has an pxpanded-namd: the local part is the processing instruction's target; the
namespace URI is null. The of a processing instruction node is the part of the processing
instruction following the target and any whitespace. It does not include the terminating ?>.

Page 22 of 26 Data Model

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

|:| The XML declaration isnot aprocessing instruction. Therefore, thereisno processing instruction node corresponding
to the XML declaration.

5.6. Comment Nodes

There is a comment node for every comment, except for any comment that occurs within the document
type declaration.

Thektring-valud of comment is the content of the comment not including the opening <! - - or theclosing
- >,

A comment node does not have an pxpanded-namd.

5.7. Text Nodes

Character data is grouped into text nodes. As much character data as possible is grouped into each text
node: atext node never has an immediately following or preceding sibling that is atext node. The
of atext node is the character data. A text node always has at least one character of data.

Each character withinaCDATA sectionistreated as character data. Thus, <! [CDATA[<]] > inthe source
document will treated thesame as &l t ; . Both will result in asingle < character in atext node in the tree.
Thus, aCDATA section istreated asif the<! [CDATA[and]] > wereremoved and every occurrence of
< and &werereplaced by & t; and &anp; respectively.

When a text node that contains a < character is written out as XML, the < character must be escaped by, for
example, using & t ; , or including it in a CDATA section.

Charactersinside comments, processing instructions and attribute values do not produce text nodes. Line-
endingsin external entities are normalized to #xA as specified in the XML Recommendation [XML]].
A text node does not have an expanded-namd.

6. Conformance

XPath is intended primarily as a component that can be used by other specifications. Therefore, XPath
relies on specificationsthat use X Path (such as[[X Pointef] and [[XSLT]]) to specify criteriafor conformance
of implementations of X Path and does not define any conformance criteriafor independent implementations
of XPath.

Appendix A. References

A.1l. Normative References

IEEE 754

Institute of Electrical and Electronics Engineers. |EEE Standard for Binary Floating-Point Arith-
metic. ANSI/IEEE Std 754-1985.

Comment Nodes Page 23 of 26

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

RFC2396

T.Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource ldentifiers (URI): Generic Syntax.
IETF RFC 2396. See http://www.ietf.org/rfc/rfc2396.tx.

XML

World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Recommendation.
See http://www.w3.0ra/TR/1998/REC-xmlI-19980210

XML Names

World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.org/TR/REC-xml-nameg

A.2. Other References

Character Model

World Wide Web Consortium. Character Model for the World Wide Web. W3C Working Draft.
See http://www.w3.0rg/TR/WD-charmod

DOM
World Wide Web Consortium. Document Object Model (DOM) Level 1 Specification. W3C
Recommendation. See http://www.w3.0rg/TR/REC-DOM-Level-1|

JLS

J. Godling, B. Joy, and G. Steele. The Java Language Specification. See
http://java.sun.com/docs/books/jls/index.html.

|SO/IEC 10646
ISO (International Organization for Standardization). | SO/IEC 10646-1:1993, Information tech-
nology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic
Multilingual Plane. International Standard. See http://wwuw.iso.ch/cate/d18741.html.

TEI
C.M. Sperberg-McQueen, L. Burnard Guidelines for Electronic Text Encoding and Interchange.
See http://etext.virginia.edu/TEL.html.

Unicode
Unicode Consortium. The Unicode Sandard. Seettp://www.unicode.ora/unicode/standard/stand
)

XML Infoset

World Wide Web Consortium. XML Information Set. W3C Working Draft. See
http://www.w3.org/ TR/xml-infose]

XPointer

World Wide Web Consortium. XML Pointer Language (XPointer). W3C Working Draft. See
http://www.w3.ora/TR/WD-Xpti

Page 24 of 26 References

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/WD-charmod
http://www.w3.org/TR/REC-DOM-Level-1
http://java.sun.com/docs/books/jls/index.html
http://www.iso.ch/cate/d18741.html
http://etext.virginia.edu/TEI.html
http://www.unicode.org/unicode/standard/standard.html
http://www.unicode.org/unicode/standard/standard.html
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/WD-xptr
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

XQL

J. Robie, J. Lapp, D. Schach. XML Query Language (XQL). See
http://www.w3.ora/TandS/QL /OL 98/pp/xal .html]

XST

World Wide Web Consortium. XS Transformations (XSLT). W3C Recommendation. See
http://www.w3.ora/TR/xdl{

Appendix B. XML Information Set Mapping (Non-Normative)

The nodes in the XPath data model can be derived from the information items provided by the XML
Information Set [XML Infosef] as follows:

|:| A new version of the XML Information Set Working Draft, which will replace the May 17 version, was close to
completion at the time when the preparation of thisversion of XPath was completed and was expected to be rel eased
at the same time or shortly after the release of this version of XPath. The mapping is given for this new version of
the XML Information Set Working Draft. If the new version of the XML Information Set Working has not yet been
released, W3C members may consult the internal Working Group version

http://www.w3.org/X M L/Group/1999/09/WD-xml-infoset-19990915.html| (members only).

e Theroot node comes from the document information item. The children of the root node come from
the children and children - comments properties.

* An element node comes from an element information item. The children of an element node come
from the children and children - comments properties. The attributes of an element node come from
the attributes property. The namespaces of an element node come from the in-scope namespaces
property. Thelocal part of thefexpanded-namd of the element node comesfrom the local name property.
The namespace URI of the of the element node comes from the namespace URI
property. The unique I D of the element node comesfrom the children property of the attributeinforma:
tion item in the attributes property that has an attribute type property equal to | D.

* An attribute node comes from an attribute information item. The local part of the pxpanded-namg of
the attribute node comes from the local name property. The namespace URI of the pxpanded-namg of
the attribute node comes from the namespace URI property. The of the node comes from
concatenating the character code property of each member of the children property.

« A text node comesfrom asequence of one or more consecutive character information items. The[tring]
of the node comes from concatenating the character code property of each of the character
information items.

» A processing instruction node comes from a processing instruction information item. The local part of
the of the node comes from the target property. (The namespace URI part of the
of the node is null.) The of the node comes from the content property.
There are no processing instruction nodesfor processing instruction itemsthat are children of document
type declaration information item.

« A comment node comes from a comment information item. The of the node comes from
the content property. There are no comment nodes for comment information items that are children of
document type declaration information item.

Other References Page 25 of 26

http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.w3.org/TR/xslt
http://www.w3.org/XML/Group/1999/09/WD-xml-infoset-19990915.html
http://www.w3.org/XML/Group/1999/09/WD-xml-infoset-19990915.html
http://cgi.w3.org/MemberAccess/
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

* A namespace node comes from a namespace declaration information item. The local part of the
:exﬁanded namé of the node comes from the prefix property. (The namespace URI part of thefxpanded]
hamd of the node is null.) The Eiring-valug of the node comes from the namespace URI property.

Page 26 of 26 XML Information Set Mapping

http://www.renderx.com

	Colophon
	Abstract
	Status of this document

	Table of Contents
	1. Introduction
	2. Location Paths
	2.1. Location Steps
	2.2. Axes
	2.3. Node Tests
	2.4. Predicates
	2.5. Abbreviated Syntax

	3. Expressions
	3.1. Basics
	3.2. Function Calls
	3.3. Node-sets
	3.4. Booleans
	3.5. Numbers
	3.6. Strings
	3.7. Lexical Structure

	4. Core Function Library
	4.1. Node Set Functions
	4.2. String Functions
	4.3. Boolean Functions
	4.4. Number Functions

	5. Data Model
	5.1. Root Node
	5.2. Element Nodes
	5.2.1. Unique IDs

	5.3. Attribute Nodes
	5.4. Namespace Nodes
	5.5. Processing Instruction Nodes
	5.6. Comment Nodes
	5.7. Text Nodes

	6. Conformance
	A. References
	A.1. Normative References
	A.2. Other References

	B. XML Information Set Mapping (Non-Normative)

