Extensible Markup Language
(XML) 1.0

W3C Recommendation 10 February 1998

Thisversion:

NP/ WWW.W.3.0rg/ | RZ1Y96/KEC-XMI - 1YY96UZ10. XM
NP //WWW.Wo.0rg/ 1 K/ 1996/KEC-XMI- 19YcUZ10. NI
NIP://WWW.W.o.0rg/ | R71996/KEC-XMI-1996UZ10.pd]
NP //WWW.Wo.0rg/ 1 =/ 1996/KEC-XMI-19Y6UZ10.pg

Latest version:
D/TWWW.W3.0rq -Xm

Previous version:

D 0/ TRIPR 971208
Editors:
Tim Bray (Textuality and Netscape) <fbray@iextuality.conj>

Jean Paoli (Microsoft) <feanpa@microsori.conj>
C. M. Sperberg-McQueen (University of Illinois at Chicago) <Emsmcg@uic.edy>

Copyright A© 1999 W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and
software licensing rules apply.

Abstract

The Extensible Markup Language (XML) is a subset of SGML that is completely described in this
document. Its goal is to enable generic SGML to be served, received, and processed on the Web in the
way that is now possible with HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML.

Status of this document

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director as a W3C Recommendation. It is a stable document and may be used as reference

Rendered by

http://www.w3c.org
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210.xml
http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.w3.org/TR/1998/REC-xml-19980210.pdf
http://www.w3.org/TR/1998/REC-xml-19980210.ps
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/PR-xml-971208
mailto:tbray@textuality.com
mailto:jeanpa@microsoft.com
mailto:cmsmcq@uic.edu
http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 2 of 37

material or cited as a normative reference from another document. W3C's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.
This enhances the functionality and interoperability of the Web.

This document specifies a syntax created by subsetting an existing, widely used international text
processing standard (Standard Generalized Markup Language, 1SO 8879:1986(E) as amended and
corrected) for use on the World Wide Web. It is a product of the W3C XML Activity, details of which
can be found at Pp7/www.w3.0ra7XMT]. A list of current W3C Recommendations and other technical
documents can be found at PTTpZ/WWW-W3.Ora/ TH.

This specification uses the term URI, which is defined by [BEmMersTee & all|, a work in progress
expected to update [[ETERECTZ3d] and [[(ETERECTS0E].

The list of known errors in this specification is available at

Please report errorsin this document to KMI-editor@w3.0rg.

Table of Contents

1 3
1.1. Prigin and Goa'3 4
12 4

2. Dociments 5
2.1. IWal-Formed XM D ocments 6
2.2. 6
2.3. Common Syntactic Consiructy 6

aracter 7
2.5, Commenis 8
2.6. 8
2.7. CDATA Secions 8
2.8. Prolog and Document Type Declaration 9
2.9. Siandalone Docment Declaraion 10
2.10. pVhite Space Handling 11
2.11. End-or-Cine Handling 12
2.12. Canguage Tdentitication 12

3. Cogical Structures 13
3.1. Bart-Tags, End-Tags, and Empty-Element T ag 13
3.2. Element Type Declaraiiong 14

3.2.1. Element Content 15
3.2.2. Mixed Confen 16
. 16
3.3.1. ATib DES 17
3.3.2 18

18

19

Rendered by

http://www.w3.org/XML
http://www.w3.org/TR
http://www.w3.org/XML/xml-19980210-errata
mailto:xml-editor@w3.org
http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 3 of 37
4. PhysSical Structureg 19
4.1. Character and Entity Relerences 20
4.2. Entity Declarationg 21
42.1. 21
4.2.2. EXiernal Fniiiies 22
4.3, 22
4.3.1. The Texi Declaration 22
4.3.2. \Well-Formed Parsed FOfities 23
4.3.3. Character Encoding in Entitiey 23
4.4. KMI_Processor_lreaiment of Fniities and Beterenced 24
4.4.1. 25
442 25
4.4.3. [ncluded 17 Vaidaing 25
4.4.4. 25
4.4 5, [IndodedinTiteral 25
4.4.6. 25
447. 26
4.4.8. 26
4.5, Construction of Tnternal Entity ReEplacement 1 exj 26
4.6. Predeiined Ehofiied 26
4.7. NOaion Declararnons 27
4.8. Document Entity 27
5. 27
ing and Non-vValidaling Processor 27
Sing OCESSOr 28
6. 28

Appendices

A. Beerenced 29
A.l. Normafive References 29
A.2. OIher Referenced 30
B. Characier CIasses 31
C. XML and SGML (Non-Normative] 33
Xpanson of Entity an ar acter erences (Non-Normative 33
E. 34
ECtion O aracter Encodings (Non-Nor mative 35
orking Group (Non-Normative 36

1. Introduction

Extensible Markup Language, abbreviated XML, describes a class of data objects called

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 4 of 37

focoments and partially describes the behavior of computer programs which process them. XML is an
application profile or restricted form of SGML, the Standard Generalized Markup Language [[S1
BE79]. By construction, XML documents are conforming SGML documents.

XML documents are made up of storage units called EQIIiEs, which contain either parsed or unparsed
data. Parsed data is made up of Eharaciers, some of which form Eharacier daid, and some of which form
markug. Markup encodes a description of the document's storage layout and logical structure. XML
provides a mechanism to impaose constraints on the storage layout and logical structure.

A software module caled an XML processor is used to read XML documents and provide access to
their content and structure. It is assumed that an XML processor is doing its work on behalf of another
module, called the application. This specification describes the required behavior of an XML processor
in terms of how it must read XML data and the information it must provide to the application.

1.1. Origin and Goals

XML was developed by an XML Working Group (originally known as the SGML Editorial Review
Board) formed under the auspices of the World Wide Web Consortium (W3C) in 1996. It was chaired
by Jon Bosak of Sun Microsystems with the active participation of an XML Specia Interest Group
(previously known as the SGML Working Group) also organized by the W3C. The membership of the
XML Working Group is given in an appendix. Dan Connolly served as the WG's contact with the W3C.

The design goalsfor XML are:

XML shall be straightforwardly usable over the Internet.

XML shall support awide variety of applications.

XML shall be compatible with SGML.

It shall be easy to write programs which process XML documents.

The number of optional featuresin XML isto be kept to the absolute minimum, ideally zero.
XML documents should be human-legible and reasonably clear.

The XML design should be prepared quickly.

The design of XML shall be formal and concise.

XML documents shall be easy to create.

© © N o g s~ DdPE

10. Tersenessin XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646 for characters,
Internet RFC 1766 for language identification tags, 1SO 639 for language name codes, and | SO 3166 for
country name codes), provides al the information necessary to understand XML Version 1.0 and
construct computer programs to processit.

This version of the XML specification may be distributed freely, as long as all text and legal notices
remain intact.
1.2. Terminology

The terminology used to describe XML documents is defined in the body of this specification. The
terms defined in the following list are used in building those definitions and in describing the actions of
an XML processor:

may
Conforming documents and XML processors are permitted to but need not behave as described.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 5 of 37

must

Conforming documents and XML processors are required to behave as described; otherwise
they arein error.

error

A violation of the rules of this specification; results are undefined. Conforming software may
detect and report an error and may recover from it.

fatal error

An error which a conforming must detect and report to the application. After
encountering a fatal error, the processor may continue processing the data to search for further
errors and may report such errors to the application. In order to support correction of errors, the
processor may make unprocessed data from the document (with intermingled character data and
markup) available to the application. Once afatal error is detected, however, the processor must
not continue normal processing (i.e., it must not continue to pass character data and information
about the document's logical structure to the application in the normal way).

at user option

Conforming software may or must (depending on the modal verb in the sentence) behave as
described; if it does, it must provide users a means to enable or disable the behavior described.

validity constraint

A rule which applies to all Eaid XML documents. Violations of validity constraints are errors;
they must, at user option, be reported by palidaiing processorg.

well-formedness constraint

A rule which applies to al XML documents. Violations of well-formedness
constraints are Ealaerrars.

match

(Of strings or names:) Two strings or names being compared must be identical. Characters with
multiple possible representations in I SO/IEC 10646 (e.g. characters with both precomposed and
base+diacritic forms) match only if they have the same representation in both strings. At user
option, processors may normalize such characters to some canonical form. No case folding is
performed. (Of strings and rules in the grammar:) A string matches a grammatical production if
it belongs to the language generated by that production. (Of content and content models)) An
element matches its declaration when it conforms in the fashion described in the constraint
[Flement V4l

for compatibility
A feature of XML included solely to ensure that XML remains compatible with SGML.

for interoperability

A non-binding recommendation included to increase the chances that XML documents can be
processed by the existing installed base of SGML processors which predate the WebSGML
Adaptations Annex to 1SO 8879.

2. Documents
A data object is an XML document if it is [EI=Tarmed, as defined in this specification. A well-formed

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 6 of 37

XML document may in addition be lAd if it meets certain further constraints.

Each XML document has both alogical and a physical structure. Physically, the document is composed
of units called EOIIES. An entity may to other entities to cause their inclusion in the document. A
document begins in a "root" or focument entityl. Logically, the document is composed of declarations,
elements, comments, character references, and processing instructions, all of which are indicated in the
document by explicit markup. The logical and physical structures must nest properly, as described in
[E3 7 Well-Formed Parsed Fnfified].

2.1. Well-Formed XML Documents
A textual object isawell-formed XML document if:
1. Taken asawhole, it matches the production label ed Oocoment.

2. It meetsal the well-formedness constraints given in this specification.
3. Each of the which is referenced directly or indirectly within the document is

[1] document := prolog ElEment Misd*

M atching the Docomeni production implies that:
1. It contains one or more Elements.

2. Thereis exactly one element, called the root, or document element, no part of which appearsin the
contem of any other element. For all other elements, if the start-tag is in the content of another
element, the end-tag is in the content of the same element. More simply stated, the elements,
delimited by start- and end-tags, nest properly within each other.

As a consequence of this, for each non-root element C in the document, there is one other element P in
the document such that C is in the content of P, but is not in the content of any other element that isin
the content of p. P isreferred to as the parent of ¢, and c asachild of P.

2.2. Characters

A parsed entity contains text, a sequence of Eharaciers, which may represent markup or character data.
A character is an atomic unit of text as specified by 1SO/IEC 10646 [[SOIECTORZA]. Legal characters
are tab, carriage return, line feed, and the legal graphic characters of Unicode and ISO/IEC 10646. The
use of "compatibility characters', as defined in section 6.8 of [[I0ICadd], is discouraged.

[2] Char = #x9|#xA |#xD | [#x20-#xD7FF] | [#xEQ00-#xFFFD] | [* any Unicode
[#x10000-#x 10FFFF] character, excluding
the surrogate blocks,
FFFE, and FFFF. */

The mechanism for encoding character code points into bit patterns may vary from entity to entity. All
XML processors must accept the UTF-8 and UTF-16 encodings of 10646; the mechanisms for signaling
which of the two is in use, or for bringing other encodings into play, are discussed later, in [E33]

[Character Encoding in Entitiey].

2.3. Common Syntactic Constructs
This section defines some symbols used widely in the grammar.
B (white space) consists of one or more space (#x20) characters, carriage returns, line feeds, or tabs.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 7 of 37
[3] S = (#x20|#x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other characters. Letters consist of an
alphabetic or syllabic base character possibly followed by one or more combining characters, or of an
ideographic character. Full definitions of the specific characters in each class are given in [Rppendix B]

A Name is a token beginning with a letter or one of a few punctuation characters, and continuing with
letters, digits, hyphens, underscores, colons, or full stops, together known as name characters. Names
beginning with the string "xm ™, or any string which would match ((*X |['x') (‘M]|'n)
('L, arereserved for standardization in this or future versions of this specification.

NOTE: The colon character within XML names is reserved for experimentation with name spaces. Its meaning is
expected to be standardized at some future point, at which point those documents using the colon for experimental
purposes may need to be updated. (There is no guarantee that any name-space mechanism adopted for XML will
in fact use the colon as a name-space delimiter.) In practice, this means that authors should not use the colon in
XML names except as part of name-space experiments, but that XML processors should accept the colon as a
name character.

An (name token) is any mixture of name characters.

[4] NameChar

Cemed |Dag | -] Combinmachar |
EXrendet]

[5] Name 1= (C=I=d|''|"")(NameChan)*
[6] Names := [~Namé (8[~ama)*

[7 Nmtoken = (NameChad)+

[8] Nmtokens NmIoken (B Nmioken)*

Literal data is any quoted string not containing the quotation mark used as a delimiter for that string.
Literals are used for specifying the content of internal entities (Enfityvalud), the values of attributes

(BIan&), and externa identifiers (SysStemLiteral). Note that a SysStemLiteral can be parsed without
scanning for markup.

[9] EntityValue := "' (["% &"] | EERelerenca | Referenca)* ™
["" ("% &"] | BEREEence | Eeferenca)™ "™

" ([<&"] | EEEEnm)* ™
| " ([~ <&'] | EEEEama)* "

[ll] %/SteleteraI ('"' [’\"]* "") | (""" [/\']* -----)
[12] PubidLitera = "' PONOCHan* ™' |"" (EOboChad - "")* "
[13] PubidChar #x20 | #xD | #xA | [aZA-Z0-9] | [-')+, /=21 * #@$_%]

[10] AttValue

2.4. Character Data and Markup

[C=xd consists of intermingled Eharacier dard and markup. Markup takes the form of part=tagg, End-tags,
EMpiy-element 1ag3, entity reierencey, Characier refevences, [OMIMENS, delimiters,
[focument type declarationg, and Processing instructiong.

All text that is not markup constitutes the character data of the document.

The ampersand character (&) and the left angle bracket (<) may appear in their literal form only when
used as markup delimiters, or within a COmmem, a processing instruction, or a COATA Seciion. They
are also legal within the [itera_entity varug of an internal entity declaration; see [E3Z WWell-Formed
Barsed Fnfies]. If they are needed elsewhere, they must be using either
feferences or the strings "&anp; " and "&t;" respectively. The right angle bracket (>) may be

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 8 of 37

represented using the string "> ; ", and must, for_ compatibility, be escaped using "> ; " or a character
reference when it appears in the string "]11>" in content, when that string is not marking the end of a
CDATA Seciion

In the content of elements, character data is any string of characters which does not contain the
start-delimiter of any markup. In a CDATA section, character data is any string of characters not
including the CDATA-section-close delimiter, "11>".

To alow attribute values to contain both single and double quotes, the apostrophe or single-quote
character (") may be represented as" ' ", and the double-quote character () as"" ; ".

[14] CharData = ["<&]* - (["<&]* 1] >' [*<&]*)

2.5. Comments

Comments may appear anywhere in a document outside other narkup; in addition, they may appear
within the document type declaration at places alowed by the grammar. They are not part of the
document's Eharacier dard; an XML processor may, but need not, make it possible for an application to

retrieve the text of comments. [For_compatibility, the string "- - " (double-hyphen) must not occur within
comments.
[15] Comment := '<!--'((Chad-'-)|(-'(Coad-"-")))* -- >

An example of acomment:
<l-- declarations for <head> & <body> -->

2.6. Processing I nstructions
Processing instructions (PIs) allow documents to contain instructions for applications.

[16] Pl '<? (8 (Chap* - (Chag* '?>' Chan*)))?'2>'
[17] PlTarget = [Ema- ((X'|'x) (M'|'m) (L'[1))

Pls are not part of the document's Eharacier daid, but must be passed through to the application. The Pl
begins with atarget (PTTargel) used to identify the application to which the instruction is directed. The

target names "xWm.", "xml ", and so on are reserved for standardization in this or future versions of this
specification. The XML mechanism may be used for formal declaration of Pl targets.

2.7. CDATA Sections

CDATA sections may occur anywhere character data may occur; they are used to escape blocks of text
containing characters which would otherwise be recognized as markup. CDATA sections begin with the
string "<! [CDATA[" and end with the string "] 1 >":

[18] CDSect = [DOSarChard CoFEnd

[19] CDStart := '<I[CDATAT[

[20] CData := (Chad* - (Chag* ']]>' Chad*))
[21] CDEnd := 1]>'

Within a CDATA section, only the CDERQA string is recognized as markup, so that |eft angle brackets
and ampersands may occur in their literal form; they need not (and cannot) be escaped using "&l t ; " and
"&anp; ". CDATA sections cannot nest.

An example of a CDATA section, in which "<greeting>" and "</ greeting>" are recognized as

ENArACTE 0, not [arkuf:

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 9 of 37

<! [CDATA[<greeti ng>Hel | o, world!</greeting>]]>

2.8. Prolog and Document Type Declaration

XML documents may, and should, begin with an XML declaration which specifies the version of XML
being used. For example, the following is a complete XML document, but not k20:

<?xm version="1.0""?>
<greeting>Hel l o, world!</greeting>

and soisthis:

<greeting>Hell o, world!</greeting>

The version number "1. 0" should be used to indicate conformance to this version of this specification; it
is an error for a document to use the value "1.0" if it does not conform to this version of this
specification. It is the intent of the XML working group to give later versions of this specification
numbers other than "1. 0", but this intent does not indicate a commitment to produce any future versions
of XML, nor if any are produced, to use any particular numbering scheme. Since future versions are not
ruled out, this construct is provided as a means to allow the possibility of automatic version recognition,
should it become necessary. Processors may signal an error if they receive documents labeled with
versions they do not support.

The function of the markup in an XML document is to describe its storage and logical structure and to
associate attribute-value pairs with its logical structures. XML provides a mechanism, the OoCOmen
[Ype _declaration, to define constraints on the logical structure and to support the use of predefined
storage units. An XML document is valid if it has an associated document type declaration and if the
document complies with the constraints expressed in it.

The document type declaration must appear before the first ElEment in the document.

[22] prolog 1= KT TIEI? MISH* (HOCTypeded) IS)?
[23] XMLDecl = '<?ml' ZESOAIOE ENcodingDec)? EN0Ded? 8?7 2>

[24] Versioninfo ::= B'version' EJ (' erSonNmm ' | " MerSonNom ")
[25] Eq = B?'= B?

[26] VersonNum = ([a&zA-Z0-9 ..] |-+

[27] Misc = |En|8

The XML document type declaration contains or points to arkup declarationg that provide a grammar
for a class of documents. This grammar is known as a document type definition, or DTD. The document
type declaration can point to an external subset (a specia kind of External_entity]) containing markup
declarations, or can contain the markup declarations directly in an internal subset, or can do both. The
DTD for adocument consists of both subsets taken together.

A markup declaration is an glement type declaraiior], an Birihiie-0S declaraiion, an Entity declaration,
or a ho@Amon declaraiion. These declarations may be contained in whole or in part within parametd
Enfifies, as described in the well-formedness and validity constraints below. For fuller information, see
[EPhysScal Structures] .

[28] doctypedecl = '<!DOCTYPE' BNam# (B EXtarnann)?8? ('
(Markupdecl | PEREErenca |§)* T 87)7">'
[29] markupdecl = EEmended | EHLISDeEd | EntityDed] | NaEaionDed | Bl

[

The markup declarations may be made up in whole or in part of the feplacement texi of paramed]
EOffies. The productions later in this specification for individua nonterminals (EEMenidec]
EISed, and so on) describe the declarations after all the parameter entities have been ICded.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 10 of 37

Validity Constraint: Root Element Type
The in the document type declaration must match the element type of the (Do elemen.

Validity Constraint: Proper Declaration/PE Nesting

Parameter-entity fepracement texi must be properly nested with markup declarations. That is to say,
if either the first character or the last character of a markup declaration (Tnarkupdec] above) is
contained in the replacement text for a parameier-entity rererenca, both must be contained in the
same replacement text.

Weéll-Formedness Constraint: PEsin Internal Subset

In the internal DTD subset, parameter-entity rererenceg can occur only where markup declarations
can occur, not within markup declarations. (This does not apply to references that occur in external
parameter entities or to the external subset.)

Like the internal subset, the external subset and any external parameter entities referred to in the DTD
must consist of a series of complete markup declarations of the types allowed by the non-terminal
symbol markupdec], interspersed with white space or parameier-entity rererence3. However, portions
of the contents of the external subset or of external parameter entities may conditionally be ignored by
using the Eondifional seciion construct; thisis not allowed in the internal subset.

[30] extSubset = [E=IDeC?EXTSIhsADe
[31] extSubsetDecl (Markupded] | Eondiitonalsedd | PBEReferenca | B)*

The external subset and external parameter entities also differ from the internal subset in that in them,
parameter-entity_reierenceg are permitted within markup declarations, not only between markup
declarations.

An example of an XML document with a document type declaration:

<?xm version="1.0"?>
<! DOCTYPE greeting SYSTEM "hell o.dtd">
<greeting>Hell o, world!</greeting>

The Eysiem identitie] "hel | o. dt d" givesthe URI of aDTD for the document.

The declarations can also be given locally, asin this example:

<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE greeting [
] <! ELEMENT greeting (#PCDATA) >
>
<greeting>Hel l o, world!</greeting>

If both the external and interna subsets are used, the internal subset is considered to occur before the
external subset. This has the effect that entity and attribute-list declarations in the internal subset take
precedence over those in the external subset.

2.9. Standalone Document Declaration

Markup declarations can affect the content of the document, as passed from an to an
application; examples are attribute defaults and entity declarations. The standalone document
declaration, which may appear as a component of the XML declaration, signals whether or not there are

such declarations which appear external to the focument entity.

[32] SDDecl := B'standalone’ EQ (("" ('yes |'no) ") | (" (yes |
o) ™))

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 11 of 37

In a standalone document declaration, the value "yes" indicates that there are no markup declarations
external to the focument entity (either in the DTD externa subset, or in an externa parameter entity
referenced from the internal subset) which affect the information passed from the XML processor to the
application. The value "no" indicates that there are or may be such external markup declarations. Note
that the standalone document declaration only denotes the presence of externa declarations; the
presence, in a document, of references to external entities, when those entities are internally declared,
does not change its standalone status.

If there are no external markup declarations, the standalone document declaration has no meaning. If
there are external markup declarations but there is no standalone document declaration, the value "no" is
assumed.

Any XML document for which standal one="no" holds can be converted algorithmicaly to a
standalone document, which may be desirable for some network delivery applications.

Validity Constraint: Standalone Document Declar ation
The standalone document declaration must have the value "no" if any external markup declarations
contain declarations of:

Ae attributes with values, if elements to which these attributes apply appear in the document
without specifications of values for these attributes, or

Ae entities (other than anp, It, gt, apos, quot), if to those entities appear in the
document, or

Ae attributes with values subject to DormaAlZatod, where the attribute appears in the document with
avalue which will change as aresult of normalization, or

Ae element types with ElEment conteni, if white space occurs directly within any instance of those
types.

An example XML declaration with a standalone document declaration:

<?xm version="1.0" standal one='yes' ?>

2.10. White Space Handling

In editing XML documents, it is often convenient to use "white space” (spaces, tabs, and blank lines,
denoted by the nonterminal B in this specification) to set apart the markup for greater readability. Such
white space istypically not intended for inclusion in the delivered version of the document. On the other
hand, "significant" white space that should be preserved in the delivered version is common, for
example in poetry and source code.

An must always pass al characters in a document that are not markup through to the
application. A [validaiing processol must also inform the application which of these characters
constitute white space appearing in ElEment confent.

A specia named xni : space may be attached to an element to signal an intention that in that
element, white space should be preserved by applications. In valid documents, this attribute, like any
other, must be if it isused. When declared, it must be given as an Enumeraied typg whose only
possible values are "def aul t " and "pr eser ve". For example:

<! ATTLI ST poem xml :space (defaul t|preserve) 'preserve'>

The value "def aul t " signals that applications default white-space processing modes are acceptable for
this element; the value "preserve" indicates the intent that applications preserve all the white space.
This declared intent is considered to apply to all elements within the content of the element where it is
specified, unless overriden with another instance of the xm : space attribute.

The of any document is considered to have signaled no intentions as regards application

Rendered by EED0ETA

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 12 of 37

space handling, unless it provides a value for this attribute or the attribute is declared with a default
value.

2.11. End-of-Line Handling

XML are often stored in computer files which, for editing convenience, are organized
into lines. These lines are typically separated by some combination of the characters carriage-return
(#xD) and line-feed (#xA).

To simplify the tasks of ppplicaiiong, wherever an external parsed entity or the literal entity value of an
internal parsed entity contains either the literal two-character sequence "#xD#xA" or a standalone literal
#xD, an must pass to the application the single character #xA. (This behavior can
conveniently be produced by normalizing all line breaks to #xA on input, before parsing.)

2.12. Language | dentification

In document processing, it is often useful to identify the natural or formal language in which the content
is written. A special named xn : | ang may be inserted in documents to specify the language
used in the contents and attribute values of any element in an XML document. In valid documents, this
atribute, like any other, must be if it is used. The values of the attribute are language
identifiers as defined by [(ETERECT/6H], "Tags for the Identification of Languages':

[33] LanguagelD ::= [angcodq (-' Eobhcodd)*

[34] Langcode ::= | |
[35] ISO639Code ::= ([az] |[A-Z]) ([a-2] | [A-Z])

[36] lanaCode = (i'|'l) "' ([a-7] | [A-Z])+

[37] UserCode := (X'|'X) "' ([aZ] |[A-Z])+

[38] Subcode = ([aZ] |[A-Z])+

The may be any of the following:

Ae a two-letter language code as defined by [[SOX63Y], "Codes for the representation of names of
languages"

A+ alanguage identifier registered with the Internet Assigned Numbers Authority [[ANZAI]; these begin
with the prefix "i -" (or "1-")

A+ alanguage identifier assigned by the user, or agreed on between parties in private use; these must
begin with the prefix "x-" or "X-" in order to ensure that they do not conflict with names later
standardized or registered with IANA

There may be any number of segments; if the first subcode segment exists and the Subcode
consists of two letters, then it must be a country code from [[SO-3T6H], " Codes for the representation of
names of countries." If the first subcode consists of more than two letters, it must be a subcode for the
language in question registered with IANA, unless the Cangcodg begins with the prefix "x- " or "x-".

It is customary to give the language code in lower case, and the country code (if any) in upper case.
Note that these values, unlike other namesin XML documents, are case insensitive.

For example:

<p xm :lang="en">The quick brown fox junps over the |azy dog.</p>
<p xm :lang="en-G@">Wat col our is it?</p>
<p xm :lang="en-US">What color is it?</p>
<sp who="Faust" desc='leise' xm:|ang="de">
<| >Habe nun, ach! Phil osophie, </I>
<| >Juristerei, und Medizin</|>
<l >und | ei der auch Theol ogi e</| > .
<l >durchaus studiert nmit hei AYem BemAYh' /| >

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 13 of 37
</ sp>

The intent declared with xni : 1 ang is considered to apply to all attributes and content of the element
where it is specified, unless overridden with an instance of xn : I ang on another element within that
content.

A simple declaration for xm : | ang might take the form

xm :lang NMIOKEN #| MPLI ED

but specific default values may also be given, if appropriate. In a collection of French poems for English
students, with glosses and notesin English, the xml:lang attribute might be declared this way:

<! ATTLI ST poem xm :lang NMIOKEN ' fr' >
<I' ATTLI ST gloss xm :lang NMIOKEN ' en' >
<I ATTLI ST note xm :1ang NMICKEN 'en' >

3. Logical Structures

Each contains one or more elements, the boundaries of which are either delimited by
Barttagg and pnd-tagg, or, for elements, by an pmpty-element tag. Each element has a type,
identified by name, sometimes called its "generic identifier" (Gl), and may have a set of attribute
specifications. Each attribute specification has a rame and alala.

[39] element =

| ET’ad conrem ETag
This specification does not constrain the semantics, use, or (beyond syntax) names of the element types
and attributes, except that names beginning with a match to ((" X' |'x')("M|'m)('L'|'1")) are

reserved for standardization in this or future versions of this specification.

Well-Formedness Constraint: Element Type Match
The in an element's end-tag must match the element type in the start-tag.

Validity Constraint: Element Valid

An element is valid if there is a declaration matching Elementdec] where the matches the
element type, and one of the following holds:

1. The declaration matches EMPTY and the element has no comtem.

2. The declaration matches and the sequence of EhId elementd belongs to the language
generated by the regular expression in the content model, with optional white space (characters
matching the nonterminal B) between each pair of child elements.

3. The declaration matches Mixed and the content consists of Eharacier daid and Ehild_elements
whose types match names in the content model.

4. The declaration matches ANy, and the types of any Ehild elements have been declared.

3.1. Start-Tags, End-Tags, and Empty-Element Tags
The beginning of every non-empty XML element is marked by a start-tag.

[40] STag = '<' Name (8 Efriboe)* §?'>'
[41] Attribute = K~amaEdBiivana

The in the start- and end-tags gives the element's type. The Nama-BITVallie pairs are referred to

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 14 of 37

as the attribute specifications of the element, with the in each pair referred to as the attribute
name and the content of the BITV/allia (the text betweenthe' or * delimiters) as the attribute value.

Well-Formedness Constraint: Unique Att Spec
No attribute name may appear more than once in the same start-tag or empty-element tag.

Validity Constraint: Attribute Value Type

The attribute must have been declared; the value must be of the type declared for it. (For attribute
types, see [E3ATNhiie 1§ Declaranons).)

Well-Formedness Constraint: No External Entity References
Attribute values cannot contain direct or indirect entity references to external entities.

Weéll-Formedness Constraint: No < in Attribute Values

The [epracement texi of any entity referred to directly or indirectly in an attribute value (other than
"<") must not contain a<.

An example of a start-tag:
<t erndef id="dt-dog" term="dog">

The end of every element that begins with a start-tag must be marked by an end-tag containing a name
that echoes the element’s type as given in the start-tag:

[42] ETag = '</' NamaB?'>'

An example of an end-tag:
</ terndef >

The between the start-tag and end-tag is called the element's content:

[43] content = (FIETE | ChATDAM | EEarans | COSed | BT |
Commen)*

If an element is empty, it must be represented either by a start-tag immediately followed by an end-tag
or by an empty-element tag. An empty-element tag takes a special form:

[44] EmptyElemTag := '<' Name(8BIrboeE)* §?Y/>'

Empty-element tags may be used for any element which has no content, whether or not it is declared
using the keyword EMPTY. [FOr_Interoperability, the empty-element tag must be used, and can only be
used, for elements which are OeClared EMPTY.

Examples of empty elements:

<IMG align="1eft"

src="http://ww. w3. org/ | cons/ WMV w3c_hone" />

</ br >

3.2. Element Type Declarations

The structure of an KMT_docomeni may, for purposes, be constrained using element
type and attribute-list declarations. An element type declaration constrains the element's conten.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 15 of 37

Element type declarations often constrain which element types can appear as of the element. At
user option, an XML processor may issue a warning when a declaration mentions an element type for
which no declaration is provided, but thisis not an error.

An element type declaration takes the form:

[45] dementdecl ::= '<!/ELEMENT' BNamaB pontentspeq8?'>'
[46] contentspec = 'EMPTY'|'ANY'| ixed | Ehildren

where the gives the element type being declared.

Validity Constraint: Unique Element Type Declaration
No element type may be declared more than once.

Examples of element type declarations:

<! ELEMENT br EMPTY>

<! ELEMENT p (#PCDATA| enph)* >

<! ELEMENT Y%ane. para; %ontent.para; >
<! ELEMENT cont ai ner ANY>

3.2.1. Element Content

An element has element content when elements of that type must contain only elements (no
character data), optionally separated by white space (characters matching the nonterminal B). In this
case, the constraint includes a content model, a simple grammar governing the allowed types of the
child elements and the order in which they are allowed to appear. The grammar is built on content
particles (ens), which consist of names, choice lists of content particles, or sequence lists of content
particles:

[47] children 1= (EHOI|gen) (7 |™']'+)?
[48] cp = (NANR|ENOCE|ge) (7]%]'+)?
[49] choice := '(B?cp(B?'| B?pn)* B?")
[50] seq = (' B?cp(B?') B?pn)* B?Y)

where each is the type of an element which may appear as a EQilld. Any content particle in a
choice list may appear in the ElEMen conieni at the location where the choice list appears in the
grammar; content particles occurring in a sequence list must each appear in the Element contend in the
order given in the list. The optiona character following a name or list governs whether the element or
the content particles in the list may occur one or more (+), zero or more (*), or zero or one times (?).
The absence of such an operator means that the element or content particle must appear exactly once.
This syntax and meaning are identical to those used in the productions in this specification.

The content of an element matches a content model if and only if it is possible to trace out a path
through the content model, obeying the sequence, choice, and repetition operators and matching each
element in the content against an element type in the content model. [For compatibility, it isan error if an
element in the document can match more than one occurrence of an element type in the content model.
For more information, see [[Rppendix E. erministic content Modelg|.

Validity Constraint: Proper Group/PE Nesting

Parameter-entity fepracement tex] must be properly nested with parenthetized groups. That is to say,
if either of the opening or closing parentheses in aChoica, geq, or MIxed construct is contained in the
replacement text for aparameter entity], both must be contained in the same replacement text.

[Eor interoperanility, if a parameter-entity reference appears in a Cooica, geg, or construct, its

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 16 of 37

replacement text should not be empty, and neither the first nor last non-blank character of the
replacement text should be a connector (| or,).

Examples of element-content models:

<! ELEMENT spec (front, body, back?)>
<l ELEMENT di vl (head, (p | list | note)*, div2*)>
<! ELEMENT di ctionary-body (%iv.mx; | %lict.mx;)*>

3.2.2. Mixed Content

An element has mixed content when elements of that type may contain character data, optionally
interspersed with elements. In this case, the types of the child elements may be constrained, but
not their order or their number of occurrences:

[51] Mixed = '(B?'#PCDATA'(B?'| B?Nzmm)* B?')*"
|'(B?#PCDATA' B?')

where the give the types of elements that may appear as children.

Validity Constraint: No Duplicate Types
The same name must not appear more than once in a single mixed-content declaration.

Examples of mixed content declarations:

<! ELEMENT p (#PCDATA| ajul |bli]em*>
<! ELEMENT p (#PCDATA | %ont; | Y%hrase; | Y%pecial; | %borm)* >
<! ELEMENT b (#PCDATA) >

3.3. Attribute-List Declarations

are used to associate hame-value pairs with ElEmeni3. Attribute specifications may appear
only within partragg and Empty-element tags; thus, the productions used to recognize them appear in
[BIS@art-Tags, End-Tags, and Empty-Element Tagg]. Attribute-list declarations may be used:

Ae To define the set of attributes pertaining to a given element type.
Ae To establish type constraints for these attributes.
Ae To provide OEAIIVATES for attributes.

Attribute-list declarations specify the name, data type, and default value (if any) of each attribute
associated with a given element type:

[52] AttlistDecl ::= '<IATTLIST' B NamaEBEiDear* §?'>'
[53] AttDef = BNameBRETypgBDeaniDec]

The in the BIINSDed rule is the type of an element. At user option, an XML processor may
issue awarning if attributes are declared for an element type not itself declared, but thisis not an error.
The inthe rule is the name of the attribute.

When more than one is provided for a given element type, the contents of all those provided
are merged. When more than one definition is provided for the same attribute of a given element type,
the first declaration is binding and later declarations are ignored. [For_interoperability] writers of DTDs
may choose to provide at most one attribute-list declaration for a given element type, at most one
attribute definition for a given attribute name, and at least one attribute definition in each attribute-list
declaration. For interoperability, an XML processor may at user option issue a warning when more than

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 17 of 37

one attribute-list declaration is provided for a given element type, or more than one attribute definition
is provided for agiven attribute, but thisis not an error.

3.3.1. Attribute Types

XML attribute types are of three kinds: a string type, a set of tokenized types, and enumerated types.
The string type may take any literal string as a value; the tokenized types have varying lexical and
semantic constraints, as noted:

[54] AttType := [BTnglypeg|[okenizedType |Enumeratedypa
[55] StringType 'CDATA'

[56] TokenizedType 1D’
| 'IDREF
| ''DREFS
['ENTITY"
|'ENTITIES
[' NMTOKEN'
[' NMTOKENS

Validity Constraint: 1D

Vaues of type | D must match the production. A hame must not appear more than once in an
XML document as a value of this type; i.e., ID values must uniquely identify the elements which
bear them.

Validity Constraint: One|D per Element Type
No element type may have more than one ID attribute specified.

Validity Constraint: ID Attribute Default
An ID attribute must have a declared default of #1 MPLI ED or #REQUI RED.

Validity Constraint: IDREF

Vaues of type | DREF must match the production, and values of type | DREFS must match
Names; each must match the value of an ID attribute on some element in the XML document;
i.e. | DREF values must match the value of some ID attribute.

Validity Constraint: Entity Name

Vaues of type ENTI TY must match the production, values of type ENTI TI ES must match
Names; each must match the name of an declared in the OT1T.

Validity Constraint: Name Token
Values of type NMIOKEN must match the production; values of type NMTOKENS must match .

Enumerated attributes can take one of a list of values provided in the declaration. There are two kinds
of enumerated types:

[57] EnumeratedType := [Nolationlypg |ENImeranon
[58] NotationType := 'NOTATION' B'(B?Nama (8?'| B?Nams)* 8?')'

[59] Enumeration (' B? NMoked (87 B? Nmioken)* §?°)

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 18 of 37

A NOTATI ON attribute identifies a Dofaiiod, declared in the DTD with associated system and/or public
identifiers, to be used in interpreting the element to which the attribute is attached.

Validity Constraint: Notation Attributes

Values of this type must match one of the names included in the declaration; all notation
names in the declaration must be declared.

Validity Constraint: Enumeration
Values of thistype must match one of the tokensin the declaration.

[For interoperability] the same should not occur more than once in the enumerated attribute
types of asingle element type.

3.3.2. Attribute Defaults

|AIriniTe declaraiion provides information on whether the attribute's presence is required, and if not,
how an XML processor should react if a declared attribute is absent in a document.

[60] DefaultDecl ::= #REQUIRED' |'#IMPLIED'
| (#FIXED' S)? EIIVAIE)

In an attribute declaration, #REQUI RED means that the attribute must always be provided, #I MPLI ED that
no default value is provided. If the declaration is neither #REQUI RED nor #| MPLI ED, then the BIfvalla
value contains the declared default value; the #FI XED keyword states that the attribute must always have
the default value. If adefault value is declared, when an XML processor encounters an omitted attribute,
it isto behave as though the attribute were present with the declared default value.

Validity Constraint: Required Attribute

If the default declaration is the keyword #REQUI RED, then the attribute must be specified for all
elements of the type in the attribute-list declaration.

Validity Constraint: Attribute Default L egal
The declared default value must meet the lexical constraints of the declared attribute type.

Validity Constraint: Fixed Attribute Default

If an attribute has a default value declared with the #FI XED keyword, instances of that attribute must
match the default value.

Examples of attribute-list declarations:

<! ATTLI ST ter ndef
id I D #REQUI RED
name CDATA #l MPLI ED>
<I' ATTLI ST i st
type (bul | et s| ordered| gl ossary) "ordered">
<I' ATTLI ST form
nmet hod CDATA #FI XED " POST" >

3.3.3. Attribute-Value Nor malization

Before the value of an attribute is passed to the application or checked for validity, the XML processor
must normalize it asfollows:

A+ acharacter reference is processed by appending the referenced character to the attribute value

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 19 of 37

Ae an entity reference is processed by recursively processing the replacement text of the entity

A+ a whitespace character (#x20, #xD, #xA, #x9) is processed by appending #x20 to the normalized
value, except that only a single #x20 is appended for a "#xD#xA" sequence that is part of an
external parsed entity or the literal entity value of an internal parsed entity

Ae other characters are processed by appending them to the normalized value
If the declared value is not CDATA, then the XML processor must further process the normalized

atribute value by discarding any leading and trailing space (#x20) characters, and by replacing
sequences of space (#x20) characters by a single space (#x20) character.

All attributes for which no declaration has been read should be treated by a non-validating parser as if
declared CDATA.
3.4. Conditional Sections

Conditional sections are portions of the flocument type declaration exiernal subse] which are included
in, or excluded from, the logical structure of the DTD based on the keyword which governs them.

[61] conditionalSect ::= |
[62] includeSect ::= '<!I['S?'INCLUDE S?T' 11>
[63] ignoreSect = '<I['S?'IGNORE S?[' [gnoresectcontenty*] >'

[64] ignoreSectContents ::= [anorg ('<![' [anoreseciContentg']] >' [Qnor@)*
[65] Ignore = [hag* - (Chad* (‘<!['[17] >) Chad*)

Like the internal and external DTD subsets, a conditional section may contain one or more complete
declarations, comments, processing instructions, or nested conditional sections, intermingled with white
space.

If the keyword of the conditional section is | NCLUDE, then the contents of the conditional section are part
of the DTD. If the keyword of the conditional section is | GNORE, then the contents of the conditional
section are not logicaly part of the DTD. Note that for reliable parsing, the contents of even ignored
conditional sections must be read in order to detect nested conditional sections and ensure that the end
of the outermost (ignored) conditional section is properly detected. If a conditional section with a
keyword of 1 NCLUDE occurs within alarger conditional section with akeyword of | GNORE, both the outer
and the inner conditional sections are ignored.

If the keyword of the conditional section is a parameter-entity reference, the parameter entity must be
replaced by its content before the processor decides whether to include or ignore the conditional section.

An example:

<IENTITY %draft 'INCLUDE >

<IENTITY %final 'IGNORE >

<I[%raft;[

<! ELEMENT book (comments*, title, body, supplenents?)>
>

<I[%inal;]
TiELENENT book (title, body, supplenents?)>
>

4. Physical Structures

An XML document may consist of one or many storage units. These are caled entities; they all have
content and are all (except for the document entity, see below, and the Extermnal D TT) SbhsAl) identified
by name. Each XML document has one entity called the flocument entity], which serves as the starting

Rendered by EEQ0ErA

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 20 of 37

point for the and may contain the whole document.

Entities may be either parsed or unparsed. A parsed entity's contents are referred to as its
Ex1; thistExl is considered an integral part of the document.

An unparsed entity is a resource whose contents may or may not be =1, and if text, may not be XML.
Each unparsed entity has an associated hafaiod, identified by name. Beyond a requirement that an XML
processor make the identifiers for the entity and notation available to the application, XML places no
constraints on the contents of unparsed entities.

Parsed entities are invoked by name using entity references; unparsed entities by name, given in the
value of ENTI TY or ENTI Tl ES attributes.

General entities are entities for use within the document content. In this specification, general entities
are sometimes referred to with the unqualified term entity when this leads to no ambiguity. Parameter
entities are parsed entities for use within the DTD. These two types of entities use different forms of
reference and are recognized in different contexts. Furthermore, they occupy different namespaces; a
parameter entity and a general entity with the same name are two distinct entities.

4.1. Character and Entity References

A character reference refers to a specific character in the | SO/IEC 10646 character set, for example one
not directly accessible from available input devices.

[66] CharRef = '&# [0-9]+ "
| &#x' [0-9afA-F]+ "

Well-Formedness Constraint: Legal Character
Characters referred to using character references must match the production for Charl.

If the character reference begins with "&#x", the digits and letters up to the terminating ; provide a
hexadecimal representation of the character's code point in ISO/IEC 10646. If it begins just with " &#",
the digits up to the terminating ; provide adecimal representation of the character's code point.

An entity reference refers to the content of a named entity. References to parsed general entities use
ampersand (&) and semicolon (;) as delimiters. Parameter-entity references use percent-sign (%9 and
semicolon (;) asdelimiters.

[67] Reference ::= |
[68] EntityRef = '&' Nama';
[69] PEReference = %' !

Well-Formedness Constraint: Entity Declared

In a document without any DTD, a document with only an internal DTD subset which contains no
parameter entity references, or a document with "st andal one='yes' ", the Rlamea given in the entity
reference must that in an Enfity_declaration, except that well-formed documents need not
declare any of the following entities: anp, I t, gt, apos, quot . The declaration of a parameter entity
must precede any reference to it. Similarly, the declaration of a general entity must precede any
reference to it which appears in a default value in an attribute-list declaration.

Note that if entities are declared in the external subset or in external parameter entities, a
non-validating processor is ot obligaied td read and process their declarations; for such documents,
the rule that an entity must be declared is awell-formedness constraint only if Flandalone="yes)|.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 21 of 37

Validity Constraint: Entity Declared

In a document with an external subset or external parameter entities with "st andal one=' no' ", the
given in the entity reference must that in an ENliTy declaratior. For interoperability,
valid documents should declare the entities anp, I t, gt, apos, quot, in the form specified in [E&
Eredefined Fonties]. The declaration of a parameter entity must precede any reference to it.
Similarly, the declaration of a genera entity must precede any reference to it which appears in a
default value in an attribute-list declaration.

Well-Formedness Constraint: Parsed Entity

An entity reference must not contain the name of an pnparsed_entityl. Unparsed entities may be
referred to only in declared to be of type ENTI TY or ENTI TI ES.

Well-Formedness Constraint: No Recursion
A parsed entity must not contain arecursive reference to itself, either directly or indirectly.

Well-Formedness Constraint: In DTD
Parameter-entity references may only appear in the OT1.

Examples of character and entity references:

Type <key>l ess-than</key> (<,) to save options.
Thi s docunent was prepared on &docdate; and
is classified &security-1level;.

Example of a parameter-entity reference:
<!-- declare the paranmeter entity "ISOL,at2"... -->
<IENTITY % | SOLat 2
SYSTEM "http://wwv. xm . contfiso/isolat2-xm.entities" >

<l-- ... nowreference it. -->
% SOLat 2;

4.2. Entity Declar ations
Entities are declared thus:

[70] EntityDecl ::= |

[71] GEDecl = '<IENTITY' BNameB EntityDe] B?'>'
[72] PEDecl = '<IENTITY'B'% BNamaBPED:e8?'>'
[73] EntityDef = | (EXTemai™ NDaranedl?)
[74] PEDef = Eniiyvaug|ExXenalD

The identifies the entity in an or, in the case of an unparsed entity, in the value of
an ENTI TY or ENTI TI ES attribute. If the same entity is declared more than once, the first declaration
encountered is binding; at user option, an XML processor may issue a warning if entities are declared
multiple times.

4.2.1. Internal Entities

If the entity definition is an Entityvalug, the defined entity is called an internal entity. There is no
separate physical storage object, and the content of the entity is given in the declaration. Note that some
processing of entity and character references in the [iteral_entity valug may be required to produce the
correct feplacement texi: see [E-5-_Consiruction of Tnternal Entity Replacement 1exi].

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 22 of 37

Aninternal entity is aparsed entity.
Example of an internal entity declaration:

<IENTITY Pub-Status "This is a pre-rel ease of the
specification.">

4.2.2. External Entities
If the entity is not internal, it is an external entity, declared as follows:

[75] ExternallD = 'SYSTEM' BEySemLiteral
|'PUBLIC' B PIhd iTeral B EySemLiteral
[76] NDataDecl ::= B'NDATA' BNama
If the NDaraDed is present, thisis a general pnparsed entity; otherwise it is aparsed entity.

Validity Constraint: Notation Declared
The Mama must match the declared name of a bofation.

The BystemLiteral is called the entity's systemidentifier. It is a URI, which may be used to retrieve the
entity. Note that the hash mark (#) and fragment identifier frequently used with URIs are not, formally,
part of the URI itself; an XML processor may signal an error if afragment identifier is given as part of a
system identifier. Unless otherwise provided by information outside the scope of this specification (e.g.
a specia XML element type defined by a particular DTD, or a processing instruction defined by a
particular application specification), relative URIs are relative to the location of the resource within
which the entity declaration occurs. A URI might thus be relative to the focument entity, to the entity
containing the EXTemal DT SI0SAl, or to some other EXTernal parameter_entity.

An XML processor should handle a non-ASCII character in a URI by representing the character in
UTF-8 as one or more bytes, and then escaping these bytes with the URI escaping mechanism (i.e., by
converting each byte to %HH, where HH is the hexadecimal notation of the byte value).

In addition to a system identifier, an external identifier may include a public identifier. An XML
processor attempting to retrieve the entity's content may use the public identifier to try to generate an
alternative URI. If the processor is unable to do so, it must use the URI specified in the system literal.
Before a match is attempted, all strings of white space in the public identifier must be normalized to
single space characters (#x20), and leading and trailing white space must be removed.

Examples of external entity declarations:

<l ENTI TY open- hat ch
SYSTEM "http://ww. textual ity. conf boil erpl at e/ OpenHat ch. xm ">
<l ENTI TY open- hat ch
PUBLI C "-// Textual ity// TEXT Standard open-hatch boil erplate//EN'
"http://ww. textuality.coniboilerplate/ QpenHatch. xm ">
<IENTI TY hat ch-pic
SYSTEM ". ./ grafi x/ OpenHat ch. gi f"
NDATA gi f >

4.3. Parsed Entities

4.3.1. The Text Declaration
External parsed entities may each begin with atext declaration.

[77] TextDed = '<?xml' ECSOAIAID? ENcodmaDed] B? 2>

The text declaration must be provided literally, not by reference to a parsed entity. No text declaration

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 23 of 37

may appear at any position other than the beginning of an external parsed entity.

4.3.2. Well-For med Parsed Entities

The document entity is well-formed if it matches the production label ed Dociimeni. An external general
parsed entity is well-formed if it matches the production |abeled EXTIParsedEni. An external parameter
entity iswell-formed if it matches the production labeled EXIPH.

[78] extParsedEnt = [CEXTIEC]? COMIEM
[79] extPE = [EXIIEI? BCSINSDE]

An internal general parsed entity is well-formed if its replacement text matches the production labeled
conrent. All internal parameter entities are well-formed by definition.

A consequence of well-formedness in entities is that the logical and physical structures in an XML
document are properly nested; no B@t=tag, End-tad, EmMpiy-element tag, Elemeni, Comment, processing
InSIriciion, Character Teferenca, or can begin in one entity and end in another.

4.3.3. Character Encoding in Entities

Each external parsed entity in an XML document may use a different encoding for its characters. All
XML processors must be able to read entitiesin either UTF-8 or UTF-16.

Entities encoded in UTF-16 must begin with the Byte Order Mark described by |SO/IEC 10646 Annex
E and Unicode Appendix B (the ZERO WIDTH NO-BREAK SPACE character, #xFEFF). This is an
encoding signature, not part of either the markup or the character data of the XML document. XML
processors must be able to use this character to differentiate between UTF-8 and UTF-16 encoded
documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-16 encodings, it is
recognized that other encodings are used around the world, and it may be desired for XML processors to
read entities that use them. Parsed entities which are stored in an encoding other than UTF-8 or UTF-16
must begin with a [EXCdeclaraiion containing an encoding declaration:

[80] EncodingDecl := B'encoding’ EJ ("' ENCNama™ |"" EONCNAma"")

[81] EncName := [A-ZaZ] ([A-Z&z0-9.]|"-)* [* Encoding name
containsonly Latin
characters */

In the focument entity, the encoding declaration is part of the KIMTdeclaraiiod. The is the
name of the encoding used.

In an encoding declaration, the values "UTF-8", "UTF-16", "ISO 10646-UcCs-2", and
"I SO 10646- UCS- 4" should be used for the various encodings and transformations of Unicode /
ISO/IEC 10646, the values "1 SO-8859- 1", "I SO- 8859- 2", ... "I SO- 8859- 9" should be used for the parts

of 1SO 8859, and the values "I SO 2022- JP", "shi ft _JI S", and "EUC- JP" should be used for the various
encoded forms of JS X-0208-1997. XML processors may recognize other encodings, it is
recommended that character encodings registered (as charsets) with the Internet Assigned Numbers
Authority [[ANA], other than those just listed, should be referred to using their registered names. Note
that these registered names are defined to be case-insensitive, so processors wishing to match against
them should do so in a case-insensitive way.

In the absence of information provided by an external transport protocol (e.g. HTTP or MIME), it isan
erron for an entity including an encoding declaration to be presented to the XML processor in an
encoding other than that named in the declaration, for an encoding declaration to occur other than at the
beginning of an external entity, or for an entity which begins with neither a Byte Order Mark nor an
encoding declaration to use an encoding other than UTF-8. Note that since ASCII is a subset of UTF-8,
ordinary ASCII entities do not strictly need an encoding declaration.

Rendered by

TextDecl
http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 24 of 37

It is a [EEACEmal when an XML processor encounters an entity with an encoding that it is unable to
process.

Examples of encoding declarations:

<?xm encodi ng=' UTF- 8" ?>
<?xm encodi ng=' EUC- JP' ?>

4.4. XML Processor Treatment of Entities and Refer ences

The table below summarizes the contexts in which character references, entity references, and
invocations of unparsed entities might appear and the required behavior of an in each
case. The labelsin the leftmost column describe the recognition context:

Reference in Content

as a reference anywhere after the ptart=tag and before the End-tag of an element; corresponds to
the nonterminal CONTEM.

Reference in Attribute Value

as a reference within either the value of an attribute in a part=tag, or a default value in an
HIIhiie declarafion; corresponds to the nonterminal BITVala.

Occurs as Attribute Value

as alNama, not a reference, appearing either as the value of an attribute which has been declared
as type ENTI TY, or as one of the space-separated tokens in the value of an attribute which has
been declared as type ENTI Tl ES.

Reference in Entity Value

as a reference within a parameter or internal entity's [iferal_entity valug in the entity's
declaration; corresponds to the nonterminal EntityValue.

Referencein DTD

as a reference within either the internal or external subsets of the DI, but outside of an
EntityValug or BIfVallie.

Entity Type Character
Parameter Internal External Unparsed
Generd Parsed General
Reference in | Not recognized [Dcmiged
Content
Referencein
Attribute
Vaue
Occurs as Sedalesti Sealsatza
Attribute
Vaue
Referencein ByDasseq BYDassed [hclnded
EntityValue [iferal
Reference in | [Dcded as PH Forbidden Forbidden Forbidder
DTD

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 25 of 37

4.4.1. Not Recognized

Outside the DTD, the % character has no special significance; thus, what would be parameter entity
references in the DTD are not recognized as markup in Eonrenmn. Similarly, the names of unparsed
entities are not recognized except when they appear in the value of an appropriately declared attribute.

4.4.2. Included

An entity is included when its feplacement 1ex] is retrieved and processed, in place of the reference
itself, as though it were part of the document at the location the reference was recognized. The
replacement text may contain both Eharacier daid and (except for parameter entities) markug, which
must be recognized in the usual way, except that the replacement text of entities used to escape markup
delimiters (the entities anp, I1t, gt, apos, quot) is aways treated as data. (The string "AT&anp; T; "
expands to "AT&T; " and the remaining ampersand is not recognized as an entity-reference delimiter.) A
character reference isincluded when the indicated character is processed in place of the reference itself.

4.4.3. Included If Validating

When an XML processor recognizes a reference to a parsed entity, in order to the document,
the processor must its replacement text. If the entity is external, and the processor is not
attempting to validate the XML document, the processor may, but need not, include the entity's
replacement text. If a non-validating parser does not include the replacement text, it must inform the
application that it recognized, but did not read, the entity.

This rule is based on the recognition that the automatic inclusion provided by the SGML and XML
entity mechanism, primarily designed to support modularity in authoring, is not necessarily appropriate
for other applications, in particular document browsing. Browsers, for example, when encountering an
external parsed entity reference, might choose to provide a visual indication of the entity's presence and
retrieve it for display only on demand.

4.4.4. Forbidden
The following are forbidden, and constitute (Al errors:

A« the appearance of areference to an [Nparsed entiny.

As the appearance of any character or general-entity reference in the DTD except within an
EntityVvalug or BIfvVala.

A+ areferenceto an external entity in an attribute value.

4.45. Included in Literal

When an appears in an attribute value, or a parameter entity reference appears in a
literal entity value, itsfeplacement texi is processed in place of the reference itself as though it were part
of the document at the location the reference was recognized, except that a single or double quote
character in the replacement text is always treated as a hormal data character and will not terminate the
literal. For example, thisis well-formed:

<IENTITY % YN '"Yes"' >
<IENTI TY What HeSai d "He said &YN, " >

while thisis not;

<IENTITY EndAttr "27'" >
<elenment attribute='a-&EndAttr; >

4.4.6. Notify
When the name of an appears as a token in the value of an attribute of declared type

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 26 of 37

ENTI TY or ENTI TI ES, a validating processor must inform the application of the pystam and publig (if
any) identifiers for both the entity and its associated DoEAION.

4.4.7. Bypassed

When a genera entity reference appearsin the in an entity declaration, it is bypassed and
left asis.

4.4.8. Included as PE

Just as with external parsed entities, parameter entities need only be [ncluded 1T validating. When a
parameter-entity reference is recognized in the DTD and included, its fepracement 1ex] is enlarged by
the attachment of one leading and one following space (#x20) character; the intent is to constrain the
replacement text of parameter entities to contain an integral number of grammatical tokensin the DTD.

4.5. Construction of Internal Entity Replacement Text

In discussing the treatment of internal entities, it is useful to distinguish two forms of the entity's value.
The literal entity value is the quoted string actually present in the entity declaration, corresponding to
the non-terminal Entityvaiug. The replacement text is the content of the entity, after replacement of
character references and parameter-entity references.

The literal entity value as given in an internal entity declaration (EntfityvValug) may contain character,
parameter-entity, and general-entity references. Such references must be contained entirely within the
literal entity value. The actual replacement text that is as described above must contain the
replacement text of any parameter entities referred to, and must contain the character referred to, in
place of any character references in the literal entity value; however, general-entity references must be
left as-is, unexpanded. For example, given the following declarations:

<IENTITY % pub "Éditions Gllimrd" >

<IENTITY rights "All rights reserved" >

<! ENTI TY book "La Peste: Albert Canus,
© 1947 Y%pub;. &rights;" >

then the replacement text for the entity "book" is:

La Peste: Al bert Canus,
A© 1947 A%ditions Gallinmardé&rights;

The general-entity reference "&ri ght's; " would be expanded should the reference "&book; " appear in
the document's content or an attribute value.

These simple rules may have complex interactions; for a detailed discussion of a difficult example, see
[AppendixX D. EXpansion o Entity an aracier Rererencey|.

4.6. Predefined Entities

Entity and character references can both be used to escape the left angle bracket, ampersand, and other
delimiters. A set of general entities (anp, I't, gt, apos, quot) is specified for this purpose. Numeric
character references may aso be used; they are expanded immediately when recognized and must be
treated as character data, so the numeric character references "< " and "& " may be used to
escape < and & when they occur in character data.

All XML processors must recognize these entities whether they are declared or not. [For Interoperability,
valid XML documents should declare these entities, like any others, before using them. If the entities in
guestion are declared, they must be declared as internal entities whose replacement text is the single
character being escaped or a character reference to that character, as shown below.

<IENTITY It " & #60; " >
<IENTI TY gt " > " >
<IENTITY anp " & #38; " >

<IENTITY apos " ' " >

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 27 of 37

<IENTITY quot " "" >

Note that the < and & characters in the declarations of "I t" and "anp" are doubly escaped to meet the
reguirement that entity replacement be well-formed.

4.7. Notation Declar ations

Notations identify by name the format of pnparsed entities, the format of elements which bear a notation
attribute, or the application to which aprocessing Instructior] is addressed.

Notation declarations provide a name for the notation, for use in entity and attribute-list declarations
and in attribute specifications, and an external identifier for the notation which may allow an XML
processor or its client application to locate a helper application capable of processing data in the given
notation.

[82] NotationDecl ::= '<INOTATION' BNameé B (ExTernain | Publicn) §?
I>I
[83] PubliclD := 'PUBLIC' BEuOhid1teral

XML processors must provide applications with the name and external identifier(s) of any notation
declared and referred to in an attribute value, attribute definition, or entity declaration. They may
additionally resolve the external identifier into the EyStem idenutiey, file name, or other information
needed to allow the application to call a processor for data in the notation described. (It is not an error,
however, for XML documents to declare and refer to notations for which notation-specific applications
are not available on the system where the XML processor or application is running.)

4.8. Document Entity

The document entity serves as the root of the entity tree and a starting-point for an [RIMIC_processol. This
specification does not specify how the document entity is to be located by an XML processor; unlike
other entities, the document entity has no name and might well appear on a processor input stream
without any identification at al.

5. Conformance

5.1. Validating and Non-Validating Processors
Conforming fall into two classes. validating and non-validating.

Validating and non-validating processors aike must report violations of this specification's

well-formedness constraints in the content of the and any other that they
read.

Validating processors must report violations of the constraints expressed by the declarations in the
OT0, and failures to fulfill the validity constraints given in this specification. To accomplish this,
validating XML processors must read and process the entire DTD and all external parsed entities
referenced in the document.

Non-validating processors are required to check only the focument_entity], including the entire internal
DTD subset, for well-formedness. While they are not required to check the document for validity, they
are required to process all the declarations they read in the internal DTD subset and in any parameter
entity that they read, up to the first reference to a parameter entity that they do not read; that is to say,
they must use the information in those declarations to attribute values, the
replacement text of internal entities, and supply Jefault atiribuie value. They must not process Entity
or EMrhie-TSdeclaraions encountered after a reference to a parameter entity that is not
read, since the entity may have contained overriding declarations.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 28 of 37

5.2. Using XML Processors

The behavior of a validating XML processor is highly predictable; it must read every piece of a
document and report all well-formedness and validity violations. Less is required of a non-validating
processor; it need not read any part of the document other than the document entity. This has two effects
that may be important to users of XML processors:

Ae Certain well-formedness errors, specifically those that require reading external entities, may not be
detected by a non-validating processor. Examples include the constraints entitled Entity Declared,
Parsed Entity, and NoRecorsion, as well as some of the cases described as forbidder] in [E-Z—XMT
Erocessor Treaiment of Fhiifies and Reterenced).

A« The information passed from the processor to the application may vary, depending on whether the
processor reads parameter and external entities. For example, a non-validating processor may not
attribute values, the replacement text of internal entities, or supply
Bfrihie valmes, where doing so depends on having read declarations in external or parameter
entities.

For maximum reliability in interoperating between different XML processors, applications which use
non-validating processors should not rely on any behaviors not required of such processors.
Applications which require facilities such as the use of default attributes or internal entities which are
declared in external entities should use validating XML processors.

6. Notation

The formal grammar of XML is given in this specification using a simple Extended Backus-Naur Form
(EBNF) notation. Each rule in the grammar defines one symboal, in the form

synbol ::= expression

Symbols are written with an initial capital letter if they are defined by a regular expression, or with an
initial lower case letter otherwise. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are used to match
strings of one or more characters:

#XN

where N is a hexadecimal integer, the expression matches the character in ISO/IEC 10646
whose canonical (UCS-4) code value, when interpreted as an unsigned binary number, has the
value indicated. The number of leading zeros in the #xN form is insignificant; the number of
leading zeros in the corresponding code value is governed by the character encoding in use and
is not significant for XML.

[a-zA-Z] , [#xN- #xN|
matches any with avaluein the range(s) indicated (inclusive).

[ra-z], [M#xN-#xN]|
matches any with a value outside the range indicated.

[~abe], [M#xNEXNEXN]
matches any with avalue not among the characters given.

"string"

matches aliteral string that given inside the double quotes.

Rendered by

wf-textent
wf-norecursion
http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 29 of 37

"string'
matches aliteral string that given inside the single quotes.

These symbols may be combined to match more complex patterns as follows, where A and B represent
simple expressions:

(expr essi on)
expr essi on istreated as a unit and may be combined as described in thislist.

A?

matches A or nothing; optional A.
A B

matches A followed by B.
Al B

matches A or B but not both.
A- B

matches any string that matches A but does not match B.
A+

matches one or more occurrences of A.
A*

matches zero or more occurrences of A.

Other notations used in the productions are:

[* o0 %
comment.

[wic:]

well-formedness constraint; this identifies by name a constraint on documents
associated with a production.

[ve:

o]
validity constraint; this identifies by name a constraint on kald documents associated with a
production.

Appendix A. References

A.1l. Normative References

IANA
(Internet Assigned Numbers Authority) Official Names for Character Sets, ed. Keld Simonsen et al. See
[p7/Tip.S - eduw/in-notes/1ana/assi gnments/ character-sets.

Rendered by EED0ETA

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 30 of 37

IETF RFC 1766

IETF (Internet Engineering Task Force). RFC 1766: Tags for the Identification of Languages, ed. H.
Alvestrand. 1995.

10 639

(International Organization for Standardization). 1S0O 639:1988 (E). Code for the representation of
names of languages. [Geneva)]: International Organization for Standardization, 1988.

SO 3166

(International Organization for Standardization). SO 3166-1:1997 (E). Codes for the representation of
names of countries and their subdivisions -- Part 1. Country codes [Geneva): International Organization
for Standardization, 1997.

|SO/IEC 10646

ISO (International Organization for Standardization). |SO/IEC 10646-1993 (E). |nformation technol ogy
-- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic Multilingual
Plane. [Geneval: International Organization for Standardization, 1993 (plus amendments AM 1 through
AM 7).

Unicode

The Unicode Consortium. The Unicode Sandard, Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

A.2. Other References

Aho/Ullman

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Reading: Addison-Wesley, 1986, rpt. corr. 1988.

Berners-Leeet al.

Berners-Lee, T., R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax and
Semantics. 1997. (Work in progress; see updates to RFC1738.)

BrAvggemann-Klein
BrAYggemann-Klein, AnnBegular Expressions into Finite Automata. Extended abstract in |. Simon,

Hrsg., LATIN 1992, S. 97-98. Springer-Verlag, Berlin 1992. Full Version in Theoretical Computer
Science 120: 197-213, 1993.

BrAv.ggemann-Klein and Wood

BrA%gggmann—KIein, Anne, and Derick WooReterministic Regular Languages. UniversitAzat Freiburg,
Institut fAYar Informatik, Bericht 38, Oktober 1991.

Clark
James Clark. Comparison of SGML and XML . See REp7//WWW.W3.0rg/ TR/NOTE-Sgmi-xmI-97/1219.

IETF RFC1738

IETF (Internet Engineering Task Force). RFC 1738: Uniform Resource Locators (URL), ed. T.
Berners-Lee, L. Masinter, M. McCahill. 1994.

IETF RFC1808

IETF (Internet Engineering Task Force). RFC 1808: Relative Uniform Resource Locators, ed. R.
Fielding. 1995.

Rendered by

http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 31 of 37

IETF RFC2141
IETF (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R. Moats. 1997.

SO 8879

ISO (International Organization for Standardization). 1SO 8879: 1986(E). Information processing -- Text
and Office Systems -- Standard Generalized Markup Language (SGML). First edition -- 1986-10-15.
[Geneva]: International Organization for Standardization, 1986.

ISO/IEC 10744

ISO (International Organization for Standardization). | SO/IEC 10744-1992 (E). Information technology
-- Hypermedia/Time-based Sructuring Language (HyTime). [Geneval: International Organization for
Standardization, 1992. Extended Facilities Annexe. [Geneva): International Organization for
Standardization, 1996.

Appendix B. Character Classes

Following the characteristics defined in the Unicode standard, characters are classed as base characters
(among others, these contain the alphabetic characters of the Latin aphabet, without diacritics),
ideographic characters, and combining characters (among others, this class contains most diacritics);
these classes combine to form the class of |etters. Digits and extenders are a so distinguished.

[84] Letter = BasChal |[deoqraphid
[85] BaseChar = [#X0041-#X005A] | [#x0061-#x007A] | [#x00CO-#x00D6]

| [#X00D8-#X00F6] | [#X00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148] | [#X014A-#x017E]
| [#x0180-#x01C3] | [#Xx01CD-#x01F0] | [#X01F4-#x01F5]
| [#XO1FA-#x0217] | [#x0250-#x02A8] |
[#x02BB-#x02C1] | #x0386 | [#x0388-#x038A] | #x038C |
[#X038E-#x03A1] | [#X03A3-#x03CEH] |
[#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE | #x03E0
| [#X03E2-#x03F3] | [#X0401-#X040C] | [#X040E-#x044F]
| [#X0451-#x045C] | [#X045E-#x0481] | [#x0490-#x04C4]
| [#X04CT7-#x04C8] | [#x04CB-#x04CC] |
[#x04D0-#x04EB] | [#X04EE-#X04F5] | [#X04F8-#x04F9]
| [#X0531-#x0556] | #Xx0559 | [#x0561-#x0586] |
[#x05D0-#X05EA] | [#x05F0-#x05F2] | [#x0621-#x063A]
| [#x0641-#x064A] | [#x0671-#x06B7] |
[#X0BBA-#X0BBE] | [#x06C0-#X06CH] |
[#x06D0-#x06D3] | #x06D5 | [#X06ES-#X06E6] |
[#x0905-#x0939] | #x093D | [#x0958-#x0961] |
[#x0985-#x098C] | [#x098F-#x0990] | [#x0993-#x09A8] |
[#X09AA-#x09B0] | #x09B2 | [#x09B6-#x09BY] |
[#x09DC-#x09DD] | [#X09DF-#x09E1] |
[#X09F0-#X09F1] | [#X0A05-#X0A0A] |
[#XOAOF-#X0A10] | [#X0A13-#x0A28] |
[#XOA2A-#x0A30] | [#x0A32-#x0A33] |
[#XOA35-#x0A36] | [#XO0A38-#x0A39] |
[#XOAB59-#XOA5C] | #XOASBE | [#X0A72-#x0A74] |
[#XOA85-#x0A8B] | #x0A8D | [#XOASF-#X0A9]] |
[#XOA93-#x0AAS] | [#XOAAA-#X0ABO] |
[#XOAB2-#x0AB3] | [#XxOAB5-#X0ABY] | #X0ABD |
#XOAEO | [#x0B05-#x0BOC] | [#x0BOF-#x0B10] |
[#x0B13-#x0B28] | [#Xx0B2A-#x0B30] | [#Xx0B32-#x0B33]
| [#x0B36-#x0B39] | #x0B3D | [#x0B5C-#x0B5D] |
[#XOB5F-#x0B61] | [#x0B85-#x0B8A] |

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 32 of 37

[#XOBSE-#x0B90] | [#x0B92-#x0B95] |
[#X0BO9-#X0B9A] | #x0BIC | [#XOB9E-#XOBOF] |
[#XOBA3-#XO0BA4] | [#XOBAS-#X0BAA] |
[#XOBAE-#x0BB5] | [#x0BB7-#x0BBY] |
[#x0C05-#x0COC] | [#xOCOE-#x0C10] |
[#X0C12-#x0C28] | [#X0C2A-#x0C33] | [#Xx0C35-#x0C39]
| [#x0CB0-#x0C61] | [#x0C85-#x0C8C] |
[#XOC8E-#x0C90] | [#X0C92-#x0CAS] |
[#XOCAA-#x0CB3] | [#X0CB5-#x0CB9)] | #x0OCDE |
[#XOCEQ-#XOCE1] | [#x0D05-#x0D0C] |
[#XODOE-#x0D10] | [#x0D12-#x0D28] |
[#xOD2A-#x0D39)] | [#x0OD60-#x0D61] |
[#XOEO1-#X0E2E] | #x0E30 | [#X0OE32-#X0E33] |
[#XOE40-#x0EA5] | [#XO0ES1-#x0ES2] | #X0E84 |
[#XOE87-#x0ES8] | #XOESA | #XOE8D | [#XOE94-#x0E97]
| [#XOE99-#XOE9F] | [#XOEA1-#XOEAS3] | #XOEAS |
H#XOEAT7 | [#XOEAA-#XOEAB] | [#XOEAD-#XOEAE] |
#XOEBO | [#XOEB2-#X0EB3] | #X0EBD |
[#XOECO-#XOECA] | [#XOF40-#x0F47] | [#XxOF49-#x0F69] |
[#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100 |
[#x1102-#x1103] | [#x1105-#x1107] | #x1109 |
[#x110B-#x110C] | [#x110E-#x1112] | #x113C | #x113E |
#x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155] |
#x1150 | [#x115F-#x1161] | #x1163 | #x1165 | #x1167 |
#x1169 | [#x116D-#x116E] | [#x1172-#x1173] | #x1175 |
#X119E | #x11A8 | #x11AB | [#x11AE-#x11AF] |
[#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2] | #x11EB
| #x11FO | #x11F9 | [#x1E00-#x1E9B] | [#x1EAO-#x1EF9]
| [#x1FO0-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45]
| [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59 | #x1F58
| #x1F5D | [#x1F5F-#x1F7D] | [#X1F80-#x1FB4] |
[#x1FB6-#x1FBC] | #x1FBE | [#x1FC2-#x1FC4] |
[#X1FC6-#x1FCC] | [#x1FDO-#x1FD3] |
[#x1FD6-#x1FDB] | [#X1FEO-#x1FEC] |
[HX1FF2-#x1FF4] | [#x1FF6-#x 1FFC] | #x2126 |
[#x212A-#x212B] | #x212E | [#x2180-#x2182] |
[#x3041-#x3094] | [#x30A 1-#x30FA] | [#x3105-#x312C] |
[#xACO0-#xD7A3]

[#XAEQ0-#X9FAS] | #x3007 | [#x3021-#x3029]

[#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] |
[#x0591-#x05A 1] | [#X05A3-#x05B9] |
[#x05BB-#x05BD] | #x05BF | [#X05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] |
[#x06DD-#X06DF] | [#X06E0-#X06E4] | [#X06E7-#x06ES]
| [#X0BEA-#X0BED] | [#x0901-#x0903] | #x093C |
[#X093E-#x094C] | #x094D | [#x0951-#x0954] |
[#x0062-#x0963] | [#x0981-#x0983] | #x09BC | #X09BE |
#X09BF | [#X09CO-#x09C4] | [#x09CT7-#x09CH] |
[#X09CB-#x09CD] | #x09D7 | [#X09E2-#X09E3] | #x0A02
| #XOA3C | #XOA3E | #x0A3F | [#X0A40-#x0A42] |
[#XOAA47-#x0A48] | [#XOA4B-#x0A4D] |
[#XOA70-#x0A71] | [#xOA81-#x0A83] | #X0ABC |
[#XOABE-#X0AC5] | [#XOACT7-#X0ACY)] |
[#XOACB-#x0ACD)] | [#x0BO1-#x0B03] | #x0B3C |
[#XOB3E-#x0B43] | [#x0B47-#x0B48g] |
[#xOB4B-#x0B4D] | [#Xx0B56-#x0B57] |
[#x0B82-#x0B83] | [#XOBBE-#x0BC2] |
[#xOBC6-#x0BCS] | [#XxOBCA-#x0BCD] | #x0BD7 |
[#x0C01-#x0C03] | [#X0C3E-#x0C44] | [#x0C46-#x0CAS]

[86] Ideographic
[87] CombiningChar

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 33 of 37

| [#XOCA4A-#x0CAD] | [#X0C55-#x0C56] |
[#x0C82-#x0C83] | [#XOCBE-#x0CC4] |
[#X0CC6-#x0CC8] | [#XOCCA-#x0CCD] |
[#x0CD5-#x0CD6] | [#x0D02-#x0D03] |
[#XOD3E-#x0D43] | [#x0D46-#x0D48] |
[#XOD4A-#x0D4D] | #x0D57 | #xOE3L |
[#XOE34-#XOE3A] | [#XOEA7-#XOEAE] | #x0EBL |
[#XOEB4-#XO0EBO)] | [#XOEBB-#x0EB(] |
[#XOECS-#XOECD)] | [#XOF18-#x0F19] | #xOF35 | #xOF37 |
#XOF39 | #XOF3E | #X0F3F | [#XOF71-#x0F84] |
[#XOF86-#X0F8B] | [#XOF90-#X0F95] | #X0F7 |
[#XOF99-#X0FAD)] | [#XOFB1-#xOFB7] | #XOFBI |
[#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099 |
#x309A

[#x0030-#x0039] | [#x0660-#x0669)] | [#x06F0-#x06FY] |
[#x0966-#x096F] | [#X09E6-#X09EF] | [#x0A66-#x0A6F]
| [#XOAE6-#XOAEF] | [#x0B66-#X0B6F] |
[#XOBE7-#X0BEF] | [#X0C66-#x0C6F] |
[#XOCE6-#X0CEF] | [#x0D66-#X0D6F]

[#XOE50-#X0E59] | [#XOEDO-#XOEDY] | [#X0F20-#x0F29]

#x00B7 | #x02DO0 | #x02D1 | #x0387 | #x0640 | #xOE46 |
#XOECS | #x3005 | [#x3031-#x3035] | [#x309D-#x309E] |
[#x30FC-#X30FE]

[88] Digit

[89] Extender

The character classes defined here can be derived from the Unicode character database as follows:
A« Name start characters must have one of the categories LI, Lu, Lo, Lt, NI.

A« Name characters other than Name-start characters must have one of the categories Mc, Me, Mn,
Lm, or Nd.

Ae Characters in the compatibility area (i.e. with character code greater than #xF900 and less than
#XFFFE) are not allowed in XML names.

Ae Characters which have a font or compatibility decomposition (i.e. those with a "compatibility
formatting tag" in field 5 of the database -- marked by field 5 beginning with a"<") are not allowed.

Ae The followi ng characters are treated as name-start characters rather than name characters, because
the property file classifies them as Alphabetic: [#x02BB-#x02C1], #x0559, #x06E5, #x06ES6.

Ae Characters #x20DD-#x20EO are excluded (in accordance with Unicode, section 5.14).

Ae Character #00B7 is classified as an extender, because the property list so identifiesit.

Ae Character #x0387 is added as a name character, because #x00B7 isits canonical equivalent.
Ae Characters':' and' ' are allowed as name-start characters.

A« Characters'-' and " are allowed as name characters.

Appendix C. XML and SGML (Non-Normative)

XML is designed to be a subset of SGML, in that every kaid XML document should also be a
conformant SGML document. For a detailed comparison of the additiona restrictions that XML places
on documents beyond those of SGML, see [[CIad].

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 34 of 37

Appendix D. Expansion of Entity and Character References
(Non-Nor mative)

This appendix contains some examples illustrating the sequence of entity- and character-reference
recognition and expansion, as specified in [-Z_XMT Processor Ireaiment of Fniiiies and Reterenced).

If the DTD contains the declaration

<IENTITY exanpl e "<p>An anpersand (&#38;) may be escaped
numeri cal | y (& #38; #38;) or with a general entity

(&anp; anp;). </ p>" >

then the XML processor will recognize the character references when it parses the entity declaration,
and resolve them before storing the following string as the value of the entity "exanpl e":
<p>An anpersand (&) may be escaped

nunerical ly (&#38;) or with a general entity
(&anp; amp; Y </ p>

A reference in the document to "&exanpl e; " will cause the text to be reparsed, at which time the start-
and end-tags of the "p" element will be recognized and the three references will be recognized and
expanded, resulting in a" " element with the following content (all data, no delimiters or markup):

An anpersand (& nmay be escaped
nunerically (&%#38;) or with a general entity

(&) .

A more complex example will illustrate the rules and their effects fully. In the following example, the
line numbers are solely for reference.

1 <?xm version='1.0""?>

2 <! DOCTYPE test |

3 <! ELEMENT test (#PCDATA) >

4 <IENTITY % xx ' %zz;' >

5 <IENTITY % zz ' < ! ENTITY tricky "error-prone" > >
6 WxX;

71>

8 <test>This sanple shows a &tricky; nethod. </test>

This produces the following:

Ae in line 4, the reference to character 37 is expanded immediately, and the parameter entity "xx" is
stored in the symbol table with the value "%zz; . Since the replacement text is not rescanned, the
reference to parameter entity "zz" is not recognized. (And it would be an error if it were, since "zz
isnot yet declared.)

Ae inline 5, the character reference "< " is expanded immediately and the parameter entity "zz" is
stored with the replacement text "<! ENTITY tricky "error-prone" >", which is a well-formed
entity declaration.

Ae inline 6, the reference to "xx" is recognized, and the replacement text of "xx" (namely "vzz; ") is
parsed. The referenceto "zz" isrecognized in its turn, and its replacement text (<! ENTI TY tri cky
"error-prone” >") is parsed. The genera entity "tricky" has now been declared, with the
replacement text "er r or - prone".

Ae inline 8, the reference to the general entity "tri cky" is recognized, and it is expanded, so the full
content of the "t est " element is the self-describing (and ungrammatical) string This sample shows a
error-prone method.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 35 of 37

Appendix E. Deterministic Content Models
(Non-Nor mative)

[FOr compaiibiTity, it is required that content models in element type declarations be deterministic.

SGML requires deterministic content models (it cals them "unambiguous"); XML processors built
using SGML systems may flag non-deterministic content models as errors.

For example, the content model ((b, ¢) | (b, d)) isnhon-deterministic, because given an initial b the
parser cannot know which b in the model is being matched without looking ahead to see which element
follows the b. In this case, the two references to b can be collapsed into a single reference, making the
model read (b, (c¢ | d)).Aninitial b now clearly matches only a single name in the content model.
The parser doesn't need to look ahead to see what follows; either ¢ or d would be accepted.

More formally: afinite state automaton may be constructed from the content model using the standard
algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Uliman [Eh/TImad]. In many such
algorithms, afollow set is constructed for each position in the regular expression (i.e., each leaf node in
the syntax tree for the regular expression); if any position has a follow set in which more than one
following position is labeled with the same element type name, then the content model is in error and
may be reported as an error.

Algorithms exist which allow many but not al non-deterministic content models to be reduced
automatically to equivaent deterministic models; see BrAY,ggemann-Klein 199 BfAY-0gemann-KIgin

Appendix F. Autodetection of Character Encodings
(Non-Normative)

The XML encoding declaration functions as an internal label on each entity, indicating which character
encoding isin use. Before an XML processor can read the internal label, however, it apparently has to
know what character encoding is in use--which is what the internal label is trying to indicate. In the
genera case, this is a hopeless situation. It is not entirely hopeless in XML, however, because XML
limits the general case in two ways. each implementation is assumed to support only a finite set of
character encodings, and the XML encoding declaration is restricted in position and content in order to
make it feasible to autodetect the character encoding in use in each entity in normal cases. Also, in many
cases other sources of information are available in addition to the XML data stream itself. Two cases
may be distinguished, depending on whether the XML entity is presented to the processor without, or
with, any accompanying (external) information. We consider the first case first.

Because each XML entity not in UTF-8 or UTF-16 format must begin with an XML encoding
declaration, in which the first characters must be '<?xnmi ', any conforming processor can detect, after
two to four octets of input, which of the following cases apply. In reading this list, it may help to know
that in UCS-4, '<' is "#x0000003C" and '? is " #x0000003F", and the Byte Order Mark required of
UTF-16 data streamsis "#xFEFF".

b

e 00 00 00 3C: UCS-4, big-endian machine (1234 order)

* 3C 00 00 00: UCS-4, little-endian machine (4321 order)

00 00 3C 00: UCS-4, unusual octet order (2143)

00 3C 00 00: UCS-4, unusual octet order (3412)

FE FF: UTF-16, big-endian

FF FE: UTF-16, little-endian

00 3C 00 3F: UTF-16, big-endian, no Byte Order Mark (and thus, strictly speaking, in error)

j.>>).>>).>> j.>>).>) >

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 36 of 37

A« 3Cc 00 3F 00: UTF-16, little-endian, no Byte Order Mark (and thus, strictly speaking, in error)

Ae 3C 3F 78 6D: UTF-8, SO 646, ASCII, some part of SO 8859, Shift-JIS, EUC, or any other 7-bit,
8-bit, or mixed-width encoding which ensures that the characters of ASCII have their normal
positions, width, and values; the actual encoding declaration must be read to detect which of these
applies, but since al of these encodings use the same bit patterns for the ASCII characters, the
encoding declaration itself may be read reliably

Ae 4C 6F A7 94:. EBCDIC (in some flavor; the full encoding declaration must be read to tell which
code pageisin use)

Ae other: UTF-8 without an encoding declaration, or else the data stream is corrupt, fragmentary, or
enclosed in awrapper of some kind

This level of autodetection is enough to read the XML encoding declaration and parse the
character-encoding identifier, which is still necessary to distinguish the individua members of each
family of encodings (e.g. to tell UTF-8 from 8859, and the parts of 8859 from each other, or to
distinguish the specific EBCDIC code page in use, and so on).

Because the contents of the encoding declaration are restricted to ASCII characters, a processor can
reliably read the entire encoding declaration as soon as it has detected which family of encodingsisin
use. Since in practice, all widely used character encodings fall into one of the categories above, the
XML encoding declaration allows reasonably reliable in-band labeling of character encodings, even
when external sources of information at the operating-system or transport-protocol level are unreliable.

Once the processor has detected the character encoding in use, it can act appropriately, whether by
invoking a separate input routine for each case, or by calling the proper conversion function on each
character of input.

Like any sdlf-labeling system, the XML encoding declaration will not work if any software changes the
entity's character set or encoding without updating the encoding declaration. Implementors of
character-encoding routines should be careful to ensure the accuracy of the internal and external
information used to label the entity.

The second possible case occurs when the XML entity is accompanied by encoding information, asin
some file systems and some network protocols. When multiple sources of information are available,
their relative priority and the preferred method of handling conflict should be specified as part of the
higher-level protocol used to deliver XML. Rules for the relative priority of the internal label and the
MIME-type label in an external header, for example, should be part of the RFC document defining the
text/xml and application/xml MIME types. In the interests of interoperability, however, the following
rules are recommended.

Ae If an XML entity isin afile, the Byte-Order Mark and encoding-declaration Pl are used (if present)
to determine the character encoding. All other heuristics and sources of information are solely for
error recovery.

Ae If an XML entity is delivered with a MIME type of text/xml, then the char set parameter on the
MIME type determines the character encoding method; all other heuristics and sources of
information are solely for error recovery.

Ae If an XML entity is delivered with a MIME type of application/xml, then the Byte-Order Mark and
encoding-declaration Pl are used (if present) to determine the character encoding. All other
heuristics and sources of information are solely for error recovery.

These rules apply only in the absence of protocol-level documentation; in particular, when the MIME
types text/xml and application/xml are defined, the recommendations of the relevant RFC will supersede
these rules.

Rendered by

http://www.renderx.com

Extensible Markup Language (XML) 1.0 (REC-xml-19980210) Page 37 of 37

Appendix G. W3C XML Working Group (Non-Normative)

This specification was prepared and approved for publication by the W3C XML Working Group (WG).
WG approval of this specification does not necessarily imply that all WG members voted for its
approval. The current and former members of the XML WG are:

Jon Bosak, Sun (Chair); James Clark (Technical Lead); Tim Bray, Textuality and Netscape (XML
Co-editor); Jean Paoli, Microsoft (XML Co-editor); C. M. Sperberg-McQueen, U. of Ill. (XML
Co-editor); Dan Connolly, W3C (W3C Liaison); Paula Angerstein, Texcel; Steve DeRose, INSO; Dave
Hollander, HP; Eliot Kimber, ISOGEN; Eve Maer, ArborText; Tom Magliery, NCSA; Murray
Maoney, Muzmo and Grif; Makoto Murata, Fuji Xerox Information Systems; Joel Nava, Adobe;
Conleth O'Connell, Vignette; Peter Sharpe, SoftQuad; John Tigue, DataChannel

Rendered by

http://www.renderx.com

