Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

WaC

XSL Transformations (XSLT)

Version 1.0

W3C Recommendation 16 November 1999

Thisversion:

http://www.w3.0rg/ TR/1999/REC-x5lt-19991116
Available formats; XML, HTML

Latest version:

http://www.w3.0org/ TR/xslt

Previous versions:

http://www.w3.0rg/TR/1999/PR-xslt-19991008
http://www.w3.0rg/1999/08/WD-xslt-19990813
http://www.w3.0rg/1999/07/WD-xslt-19990709
http://www.w3.0rg/TR/1999/WD-xslt-19990421
http://www.w3.0rg/TR/1998/WD-xsl-19981216
http://www.w3.0rg/TR/1998/WD-xsl-19980818

Author:

James Clark <jjc@jclark.com>

Copyright © 1999 W3C ® (MIT, INRIA, Keio), All Rights Reserved.
W3C liability, trademark, document use, and software licensing rules apply.

http://www.renderx.com
http://www.w3.org/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116.xml
http://www.w3.org/TR/1999/REC-xslt-19991116.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/1999/PR-xslt-19991008
http://www.w3.org/1999/08/WD-xslt-19990813
http://www.w3.org/1999/07/WD-xslt-19990709
http://www.w3.org/TR/1999/WD-xslt-19990421
http://www.w3.org/TR/1998/WD-xsl-19981216
http://www.w3.org/TR/1998/WD-xsl-19980818
mailto:jjc@jclark.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Abstract

This specification defines the syntax and semantics of XSLT, which isalanguage for transforming XML
documentsinto other XML documents.

XSLT isdesigned for use as part of XSL, which is a stylesheet language for XML. In additionto XSLT,
XSL includesan XML vocabulary for specifying formatting. XSL specifiesthe styling of an XML document
by using XSLT to describe how the document is transformed into another XML document that uses the
formatting vocabulary.

XSLT isalso designed to be used independently of XSL. However, XSLT ishot intended as acompletely
general-purpose XML transformation language. Rather it is designed primarily for the kinds of transfor-
mations that are needed when XSLT is used as part of XSL.

Status of this document

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director asaW3C Recommendation. It is astable document and may be used as reference material
or cited as a normative reference from other documents. W3C's role in making the Recommendation isto
draw attention to the specification and to promote its widespread deployment. This enhances the function-
aity and interoperability of the Web.

Thelist of known errorsin this specification isavailable at http://www.w3.0rg/1999/11/REC-xslt-19991116-
errata.

Comments on this specification may be sent to xsl-editors@w3.org; archives of the commentsare available.
Public discussion of XSL, including XSL Transformations, takes place on the XSL-List mailing list.

The English version of this specification is the only normative version. However, for tranglations of this
document, see http://www.w3.org/Style/X SL /translations.html .

A list of current W3C Recommendations and other technica documents can be found at
http://www.w3.org/TR.

This specification has been produced as part of the W3C Style activity.

http://www.w3.org/Consortium/Process/#RecsW3C
http://www.w3.org/1999/11/REC-xslt-19991116-errata
http://www.w3.org/1999/11/REC-xslt-19991116-errata
mailto:xsl-editors@w3.org
http://lists.w3.org/Archives/Public/xsl-editors
http://www.mulberrytech.com/xsl/xsl-list/index.html
http://www.w3.org/Style/XSL/translations.html
http://www.w3.org/TR
http://www.w3.org/Style/Activity
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Table of Contents

I 018 0o [Tox o] o [PPSO 1
2. SEYIESNEEL SETUCLUN© ...ttt st s e s e et e et e e ae e saee et e e aeesneesneeennas 2
A s R I NP 1 0 7= o S 2
A Y =S 1= = 1= 1101 | RS 3
2.3. Literal Result Element as SEYIESNEELccoiiirieeeeererie et e 5
A @ N L= o I 1N = = 6
2.5. Forwards-Compatibl€ PrOCESSINGcccciviieiieieieceeeese s e e et e et sre e ente e sneesae e snas 6
2.6. COMDINING SEYIESNEALS ...t s 8
2.6.1. StYIESNEEL INCIUSIONooviiiiiecee ettt s e sttt sre e re e e e besreeneennenre e 8

A SIS Y] = == B 1 oo RS 9

2.7. EMbedding SEYIESNEELSoo ettt st 10

G I - 1= 1Y, oo [S 11
G300 R o o 8 A\ 0 L= 1 @ o1 o = o O 11
K = 7= 1S = 1 U SRS 11
TG T [T 07z 5= o = =S S 12
3.4, WhiItESPACE SEMPPING .eeueeverrereeieeriestesieseesesiestesseseeessessesseseesesseseesseseesessesseseessenessessessenseneesessens 12

A, EXPIESSIONS ..uuveeiteeiteeieeeteasteesseeaseesseesseassessaseaseessesssessnsesnsesssesssssansesasesssessssssasesssesssessnsesnsenssenns 13
I I~ a0 oL U | =S 14
L I (000~ o 1Y/ oo (= SR 14

S o 1= 0 PRSP TR PR 14
5.3. Defining TEMPIEIE RUIESocviieieieeeee st 16
AN o) Y 1o =] o] K= (LU =S 17
5.5. Conflict Resolution for TEMPIALE RUIESccveiuviieeece e 19
5.6. Overriding TEMPIALE RUIESc.coiiirieieeceese et e 19

LI/ o[RS 20
5.8. BUIlt-IN TEMPIAE RUIES ...ttt st sttt an e nras 20

6. NaAmMEd TEMPIALESocveeiiiiirierece e e e b st saeentesse et e sseeeenrenneens 21
7. Creating the RESUIT TTE. .viiuiiiicieiceese sttt st s ne et e nne e 21
7.1. Creating Elements and AtIrDULEScooveieiriiereeee e 22
7.1.1. Literal RESUIT EIEMENLSccceiririirieieeeiesiesie sttt ettt ene s 22

7.1.2. Creating Elements with XS1 : €l @MBNt e 24

7.1.3. Creating Attributeswith XS @ at t ri BUL @ oo 24

7.1.4. Named ALHIDULE SELScoivireeirereniieee ettt be e nae s 26

7.2, CrEaliNg TEXE .veieeeieeeieiesieie ettt b e s e et b e e e b e e et b e b se e e et e besbe b e e e e enenbenee e ens 27

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

7.3. Creating Processing INSITUCTIONSccvceeeriniirieieeeste sttt se e nnas 28
7.4, Creating COMIMENLSoiueiiieieeieeseeseeseeseeseeseesaeesreesaeesseesteesaeesaeesaeesseesseesseesseeseesssesssennseensees 28
83 ©e o)/ 1 11 29
7.6. COMPULING GENEIAIEA TEXE ...veueeueeeiriirierieeeiesie sttt ettt se et sr e e ne e e 30
7.6.1. Generating Text With XSl : val Ue- 0f i 30

7.6.2. Attribute Value TEMPIELESooeiiee et ee e s s s enes 31

8 8 112 =1 T 32
7.7.1. Number to String Conversion AtIDULESccocvvir e 34

8. REDELITION ..t b et e e et e e e s st e b e sae e b e she e besae e e e sre e e e nre e e e nas 36
9. CONAItIONAl PrOCESSING ..oveiviiirieiesiesiesiesieeereeneeee et e e ssesaesaesaesaesbesbesbesbesbeseessessesseeeneenseneenens 37
9.1. Conditional Processing With XS : 1 T oo e 37
9.2. Conditional Processing With XS| : CNO0SE ... 38

0 o 11 o OSSPSR 39
11. Variables and Par@mMELEr'Scccociieiiinieriesienie sttt st st sttt st 41
11.1. ReSUIt Tree FragmENEScccviceeiiesee e seesee st e e e ste e st e s e s e st ssressaeesaeesneesaeesneesaeesneesneesnnesnneas 42
11.2. Values of Variables and Parameterscocveeerenineseeenesesiesiesesese e see e st sessesnes 42
11.3. Using Values of Variables and Parameters with Xsl : COpy- Of oo 43
11.4. Top-level Variables and Parametersccoccvieiieriienic s sessee e seesieeses e e e e e e saeesseesneens 44
11.5. Variables and Parameters within TEMPIAEScccovvieeierie it 44
11.6. Passing Parameters to TEMPIAIESccooveieeriierieeee e 45

12. AddItioNal FUNCHIONSoiviiiiiiieiiisie ettt st sttt sttt s b e s b sbe e e 46
12.1. MUItiple SOUrCE DOCUMENLScceeieeieereeieeseeseeseeseeseesneesseesseesessneesneesasesssesnsssssssnsesnsesnsess 46
L2.2. KBYS ittt R A £ Rt R R bRt R Rt E e et bR et st e e b 47
12.3. NUMDEr FOIMELTING ..ecueeieeeiiiiieieeeies ettt sb e se e et ne b e e 50
12.4. Miscellaneous Additional FUNCLIONSooeioeiiieeceee e 52

13. IMIESSAJES ...ueeeieeiteerieeeee et e et e s e s e et e s e s me e s ae e e s e e r e e Re e s Re e eaE e e Re e e Re e eReeeaR e e ReenReenReeenreeneeneenneennes 53
I = 1 o 1SS 54
14.1. EXIENSION EIBMENTS ..ottt st s st 54
14.2. EXENSION FUNCLIONSviieiiieiiicieeiese st ee sttt ae et ae st sre e teseeeseensestesneeneessessesneesesennss 55

15, FAIIDACK .. e p e e e e et re e 55
G T 1 0 1 S 56
G20 IV I @ W 10 1Y/ oo RS 57
2 Y @ 101 =1 oo S 59
16.3. Text OUIPUL MELNOUcoiiiieeeieieee e bbb e 61
16.4. Disabling OULPUL ESCAPDING ...veecveerieerieerieerieesteesteesieeseeeseeeseeessesssessseessesssesssssssesssesssesssesssesssesnes 61

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

17, CONTOMMANCE ...ttt ettt ae bt bt be b e s b e s be s e e s b e s b e b e e e e et e e e e e e eneeaesaesaesaenaeas 62
RS N0 =14 o] o IR 63
Appendices
AL REFEIBNCES ...ttt ettt ae e aeeae e Rt Rt Ee e Rt s b e e b e e EeeReeEe e e e e nee e et enes 63
AL NOIMELIVE REFEIENCES ...cuviiicieeiese sttt st re e testesre e e e tesreenneneenes 63
F N @ 1 g = 1= oS 63
B. Element SyNtaX SUMIMAIY ...t st st sa e st st sre e s n e sre s 64
C.DTD Fragment for XSLT Stylesheets (NON-NOrmative)cccccveevenerienenieneseesee e 69
D. EXamples (NON-NOIMALIVE)ccceiiriiriirienieeiesie ettt st st s sn e s nesae e ses 77
D.1. DOCUMENE EXAMPIE ...ecuviiiieiciecie ettt sttt st s r et st s teeaa e besbesaeeneestesnesaneseesrs 77
D.2. DAQEXAMPIE ..ottt bbb bbb e e nre s 79
E. Acknowledgements (NON-NOIMALIVE)cccviriirinieireniesie e see s sesssessesssessessesssesnsnns 85
F. Changes from Proposed Recommendation (NON-NOrmative)cccceveeveneenennensnsessennens 85
G. Featuresunder Consideration for Future Versionsof XSLT (Non-Normative) 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

This pageisintentionally left blank.

Vi

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

1. Introduction

This specification defines the syntax and semantics of the XSLT language. A transformation inthe XSLT
language is expressed as a well-formed XML document [XML] conforming to the Namespaces in XML
Recommendation [XML Names], which may include both elementsthat are defined by XSLT and elements
that are not defined by XSLT. XSLT-defined elements are distinguished by belonging to a specific XML
namespace (see § 2.1 — XSLT Namespace on page 2), which is referred to in this specification as the
XSLT namespace. Thusthis specification isadefinition of the syntax and semantics of the XSLT namespace.

A transformation expressed in XSLT describes rules for transforming a source tree into aresult tree. The
transformation is achieved by associating patterns with templates. A pattern is matched against el ements
inthe sourcetree. A template isinstantiated to create part of the result tree. Theresult treeis separate from
the sourcetree. The structure of the result tree can be completely different from the structure of the source
tree. In constructing the result tree, elements from the source tree can befiltered and reordered, and arbitrary
structure can be added.

A transformation expressed in XSLT is called a stylesheet. This is because, in the case when XSLT is
transforming into the XSL formatting vocabulary, the transformation functions as a stylesheet.

This document does not specify how an XSLT stylesheet is associated with an XML document. It isrec-
ommended that XSL processors support the mechanism described in [XML Stylesheet]. When this or any
other mechanism yields a sequence of more than one XSL T stylesheet to be applied simultaneously to a
XML document, then the effect should be the same as applying a single stylesheet that imports each
member of the sequencein order (see § 2.6.2 — Stylesheet Import on page 9).

A stylesheet contains a set of template rules. A template rule has two parts: a pattern which is matched
against nodes in the source tree and a template which can be instantiated to form part of the result tree.
Thisallowsastylesheet to be applicableto awide class of documentsthat have similar sourcetree structures.

A template isinstantiated for a particular source element to create part of the result tree. A template can
contain elements that specify literal result element structure. A template can also contain elements from
the XSLT namespacethat areinstructionsfor creating result tree fragments. When atemplateisinstantiated,
each instruction is executed and replaced by the result tree fragment that it creates. Instructions can select
and process descendant source elements. Processing a descendant element creates a result tree fragment
by finding the applicable template rule and instanti ating its templ ate. Note that elements are only processed
when they have been selected by the execution of an instruction. The result tree is constructed by finding
the template rule for the root hode and instantiating its template.

In the process of finding the applicable template rule, more than one template rule may have a pattern that
matches agiven e ement. However, only one template rule will be applied. The method for deciding which
template rule to apply is described in § 5.5 — Conflict Resolution for Template Rules on page 19 .

A single template by itself has considerable power: it can create structures of arbitrary complexity; it can
pull string values out of arbitrary locations in the source tree; it can generate structures that are repeated
according to the occurrence of elementsin the source tree. For simple transformations where the structure
of the result tree is independent of the structure of the source tree, a stylesheet can often consist of only a
single template, which functions as a template for the complete result tree. Transformations on XML
documents that represent data are often of this kind (see Appendix D.2 — Data Example on page 79).
XSLT alows asimplified syntax for such stylesheets (see § 2.3 — Literal Result Element as Stylesheet

on pageb).

When atemplate is instantiated, it is always instantiated with respect to a current node and a current
node list . The current node is aways a member of the current node list. Many operationsin XSLT are

Page 1 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

relative to the current node. Only afew instructions change the current node list or the current node (see
8 5 — Template Rules on page 14 and § 8 — Repetition on page 36); during the instantiation of one of
these instructions, the current node list changes to a new list of nodes and each member of this new list
becomes the current node in turn; after the instantiation of the instruction is complete, the current node
and current node list revert to what they were before the instruction was instantiated.

XSLT makes use of the expression language defined by [XPath] for selecting elementsfor processing, for
conditional processing and for generating text.

XSLT provides two “hooks’ for extending the language, one hook for extending the set of instruction
elements used in templates and one hook for extending the set of functions used in XPath expressions.
These hooks are both based on XML namespaces. Thisversion of XSLT does not define a mechanism for
implementing the hooks. See § 14 — Extensions on page 54 .

The XSL WG intends to define such a mechanism in afuture version of this specification or in a separate specifi-
cation.

The element syntax summary notation used to describe the syntax of X SLT-defined elementsis described
in § 18 — Notation on page 63 .

The MIME media typest ext/ xm and appl i cati on/ xm [RFC2376] should be used for XSLT
stylesheets. It is possible that a media type will be registered specifically for XSLT stylesheets; if and
when it is, that mediatype may also be used.

2. Stylesheet Structure

2.1. XSL'T Namespace
The XSLT namespace hasthe URI ht t p: / / www. w3. or g/ 1999/ XSL/ Tr ansf orm

|:| The 1999 inthe URI indicatesthe year in which the URI was allocated by the W3C. It does not indicatetheversion
of XSLT being used, which is specified by attributes (see § 2.2 — Stylesheet Element on page 3 and § 2.3 —
Literal Result Element as Stylesheet on page 5).

XSLT processors must use the XML namespaces mechanism [XML Names] to recognize elements and
attributes from this namespace. Elements from the X SLT namespace are recognized only in the stylesheset
not in the source document. The complete list of XSLT-defined elements is specified in Appendix B —
Element Syntax Summary on page 64 . Vendors must not extend the XSLT namespace with additional
elements or attributes. Instead, any extension must be in a separate namespace. Any namespace that is
used for additional instruction elements must be identified by means of the extension element mechanism
specified in § 14.1 — Extension Elements on page 54 .

This specification uses a prefix of xsl : for referring to elements in the XSLT namespace. However,
XSLT stylesheets are free to use any prefix, provided that there is a namespace declaration that binds the
prefix to the URI of the XSLT namespace.

An element from the XSLT namespace may have any attribute not from the XSLT namespace, provided
that the expanded-name of the attribute has a non-null namespace URI. The presence of such attributes
must not change the behavior of XSLT elements and functions defined in this document. Thus, an XSLT
processor is aways free to ignore such attributes, and must ignore such attributes without giving an error

Page 2 of 86 Stylesheet Structure

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

if it does not recognize the namespace URI. Such attributes can provide, for example, unique identifiers,
optimization hints, or documentation.

It isan error for an element from the XSLT namespace to have attributes with expanded-names that have
null namespace URIs (i.e. attributes with unprefixed names) other than attributes defined for the element
in this document.

The conventions used for the names of XSLT elements, attributes and functions are that names are all lower-case,
use hyphensto separate words, and use abbreviations only if they already appear in the syntax of arelated language
such as XML or HTML.

2.2. Stylesheet Element

<xsl : styl esheet

id =id

ext ensi on- el enent - prefi xes = tokens

excl ude-resul t-prefi xes = tokens

version = nunber >

<l-- Content: (xsl:inport*, top-Ilevel-elenents) -->
</ xsl : styl esheet >

<xsl :transform

id =id

ext ensi on-el enent - prefi xes = tokens

excl ude-result-prefixes = tokens

versi on = nunber >

<l-- Content: (xsl:inmport*, top-Ilevel-elenents) -->
</ xsl :transfornp

A stylesheet isrepresented by an xsl : st yl esheet element inan XML document. xsl : t ransf orm
isallowed asasynonym for xsl : st yl esheet .

Anxsl : styl esheet element must haveaver si on attribute, indicating the version of XSLT that the
stylesheet requires. For this version of XSLT, the value should be 1. 0. When the value is not equal to
1. 0, forwards-compatible processing mode is enabled (see 8§ 2.5 — Forwards-Compatible Processing on

page 6).

Thexsl : st yl esheet element may contain the following types of elements:
* Xxsl:inport

e xsl:include

* Xxsl:strip-space

* xsl:preserve-space

* Xxsl:output

* Xxsl: key

e xsl :decinal -formt

Stylesheet Element Page 3 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

xsl
xsl
xsl
xsl

xsl

:nanespace-al i as
cattribute-set
;vari abl e

. par am

itenpl ate

An element occurring as a child of an xsl : st yl esheet element is called atop-level element.

This example showsthe structure of astylesheet. Ellipses(. . .) indicate where attribute values or content
have been omitted. Although this example shows one of each type of allowed element, stylesheets may
contain zero or more of each of these elements.

<xsl:styl esheet version="1.0"

<xsl :
<xsl :
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl
<xsl :
</ xsl
<xsl :
<xsl :
<xsl :
</ Xsl
<xsl :

</ xsl

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

import href="..."/>

i nclude href="..."/>

:strip-space elenents="..."/>

I preserve-space elements="..."/>

:out put method="..."/>

:key name="..." match="..." use="..."/>
:deci mal -format nane="..."/>

:nanespace-al i as styl esheet-prefix="..."

attri bute-set nanme="...">

cattribute-set>

vari abl e nanme="...">...</xsl:vari abl e>

param nane="..."> ..</xsl:paranp

tenplate match="...">

:tenpl ate>

tenpl ate nane="...">

:tenpl ate>

Page 4 of 86

resul t-prefix="...

u/>

Stylesheet Structure

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ xsl : styl esheet >

The order in which the children of the xsl : st yl esheet element occur is not significant except for
xsl :i nmport elements and for error recovery. Users are free to order the elements as they prefer, and
stylesheet creation tools need not provide control over the order in which the elements occur.

In addition, the xsl : st yl esheet element may contain any element not from the XSLT namespace,
provided that the expanded-name of the element has anon-null namespace URI. The presence of such top-
level elements must not change the behavior of XSLT elements and functions defined in this document;
for example, it would not be permitted for such atop-level element to specify that xsl : appl y-tem
pl at es wasto use different rulesto resolve conflicts. Thus, an XSLT processor is aways free to ignore
such top-level elements, and must ignore atop-level element without giving an error if it does not recognize
the namespace URI. Such elements can provide, for example,

» information used by extension elements or extension functions (see 8§ 14 — Extensions on page 54),
» information about what to do with the result tree,

 information about how to obtain the source tree,

» metadata about the stylesheet,

 structured documentation for the stylesheet.

2.3. Literal Result Element as Stylesheet

A simplified syntax isalowed for stylesheets that consist of only asingle template for the root node. The
stylesheet may consist of just aliteral result element (see § 7.1.1 — Literal Result Elements on page 22).
Such a stylesheet is equivalent to astylesheet withan xsl : st yl esheet element containing atemplate
rule containing the literal result element; the template rule has a match pattern of / . For example

<htm xsl:version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf'
xm ns="http://ww. w3. org/ TR/ xhtm 1/strict">
<head>
<title>Expense Report Summary</title>
</ head>
<body>
<p>Total Anount: <xsl:val ue-of sel ect="expense-report/total"/></p>
</ body>
</htm >

has the same meaning as

<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nt'
xm ns="http://ww.w3.org/ TR/ xhtm 1/strict">
<xsl:tenplate match="/">
<htm >
<head>
<title>Expense Report Summary</title>

Literal Result Element as Stylesheet Page 5 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ head>
<body>
<p>Total Anount: <xsl:val ue-of select="expense-report/total"/></p>
</ body>
</htm >
</ xsl :tenpl at e>
</ xsl : styl esheet >

A literal result element that isthe document element of a stylesheet must haveanxsl : ver si on attribute,
which indicates the version of XSLT that the stylesheet requires. For this version of XSLT, the value
shouldbel. 0; thevalue must be aNumber. Other literal result elementsmay also haveanxsl : ver si on
atribute. When the xsl : ver si on attribute is not equal to 1. 0, forwards-compatible processing mode
isenabled (see § 2.5 — Forwards-Compatible Processing on page 6).

Theallowed content of aliteral result element when used asastylesheet isno different from when it occurs
within a stylesheet. Thus, aliteral result element used as a stylesheet cannot contain top-level elements.

In some situations, the only way that a system can recognize that an XML document needsto be processed
by an XSLT processor asan XSLT stylesheet isby examining the XML document itself. Using thesimplified
syntax makes this harder.

|:| For example, another XML language (AXL) might also useanax! : ver si on onthe document element to indicate

that an XML document was an AXL document that required processing by an AXL processor; if a document had

both an axl| : ver si on attribute and an xsl : ver si on attribute, it would be unclear whether the document
should be processed by an XSLT processor or an AXL processor.

Therefore, the simplified syntax should not be used for XSLT stylesheets that may be used in such a situ-
ation. This situation can, for example, arise when an XSLT stylesheet is transmitted as a message with a
MIME mediatype of t ext/ xm or appl i cati on/ xm to arecipient that will use the MIME media
type to determine how the message is processed.

2.4. Qualified Names

The name of an internal XSLT object, specificaly a named template (see 8§ 6 — Named Templates on
page 21), amode (see 8 5.7 — Modes on page 20), an attribute set (see 8§ 7.1.4 — Named Attribute Sets
on page 26), akey (see § 12.2 — Keys on page 47), adecimal-format (see § 12.3 — Number Formatting
on page 50), avariable or aparameter (see 8§ 11 — Variables and Parameters on page 41) is specified as
aQName. If it hasaprefix, then the prefix is expanded into a URI reference using the namespace declara-
tionsin effect on the attribute in which the name occurs. The expanded-name consisting of the local part
of the name and the possibly null URI reference is used as the name of the object. The default namespace
isnot used for unprefixed names.

2.5. Forwar ds-Compatible Processing

An element enables forwards-compatible mode for itself, its attributes, its descendants and their attributes
if eitheritisanxsl : st yl esheet elementwhosever si on attributeisnotequal to1. 0, oritisaliteral
result element that hasan xsl : ver si on attribute whosevalueisnot equal to 1. 0, or itisaliteral result
element that does not have an xsl : ver si on attribute and that is the document element of a stylesheet
using the simplified syntax (see 8§ 2.3 — Literal Result Element as Stylesheet on page 5). A literal result

Page 6 of 86 Stylesheet Structure

http://www.w3.org/TR/xpath#NT-Number
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

element that hasan xsl : ver si on attribute whose value is equal to 1. O disables forwards-compatible
mode for itself, its attributes, its descendants and their attributes.

If an element is processed in forwards-compatible mode, then:

» ifitisatop-level element and XSLT 1.0 does not allow such elements as top-level elements, then the
element must be ignored aong with its content;

o ifitisanelementinatemplate and XSLT 1.0 does not allow such elements to occur in templates, then
if the element is not instantiated, an error must not be signaled, and if the element is instantiated, the
XSLT must perform fallback for the element as specified in § 15 — Fallback on page 55 ;

» if the element has an attribute that XSLT 1.0 does not alow the element to have or if the element has
an optional attribute with a value that the XSLT 1.0 does not allow the attribute to have, then the
attribute must be ignored.

Thus, any XSLT 1.0 processor must be able to process the following stylesheet without error, although
the stylesheet includes elements from the XSLT namespace that are not defined in this specification:

<xsl:styl esheet version="1.1"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:tenplate match="/">
<xsl : choose>
<xsl:when test="systemproperty('xsl:version') >= 1.1">
<xsl:exciting-new 1. 1-feature/>
</ xsl : when>
<xsl : ot herw se>
<htm >
<head>
<title>XSLT 1.1 required</title>
</ head>
<body>
<p>Sorry, this stylesheet requires XSLT 1.1.</p>
</ body>
</htm >
</ xsl : ot herw se>
</ xsl : choose>
</ xsl : tenpl at e>
</ xsl : styl esheet >

|:| If astylesheet dependscrucially on atop-level element introduced by aversion of XSL after 1.0, then the stylesheet
canusean xsl : message element witht er m nat e="yes" (see 8§ 13 —Messages on page 53) to ensure that
XSLT processorsimplementing earlier versions of XSL will not silently ignore the top-level element. For example,

<xsl :styl esheet version="1.5"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl :inmportant-new1.1-decl aration/>
<xsl:tenplate match="/">

<xsl : choose>
<xsl :when test="systemproperty('xsl:version') &t; 1.1">

Forwar ds-Compatible Processing Page 7 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<xsl : message term nate="yes">
<xsl:text>Sorry, this stylesheet requires XSLT 1.1.</xsl:text>
</ xsl : message>
</ xsl : when>
<xsl : ot herwi se>

</ xsl : ot herw se>
</ xsl : choose>
</ xsl : tenpl at e>

</ xsl : styl esheet >
If an expression occursin an attribute that is processed in forwards-compatible mode, then an XSLT pro-

cessor must recover from errors in the expression as follows:

 if the expression does not match the syntax allowed by the X Path grammar, then an error must not be
signaled unless the expression is actually evaluated;

» if the expression calls afunction with an unprefixed name that is not part of the XSLT library, then an
error must not be signaled unless the function is actually called;

» if the expression calls afunction with a number of argumentsthat XSLT does not allow or with argu-
ments of types that XSLT does not allow, then an error must not be signaled unless the function is
actually called.

2.6. Combining Stylesheets

XSLT provides two mechanisms to combine stylesheets:

- aninclusion mechanism that allows stylesheets to be combined without changing the semantics of the
stylesheets being combined, and
- an import mechanism that allows stylesheets to override each other.

2.6.1. Stylesheet Inclusion

<l-- Category: top-level-elenment -->
<xsl :i ncl ude
href = uri-reference />

An XSLT stylesheet may include another XSLT stylesheet using an xsl : i ncl ude element. The
xsl ;i ncl ude eement hasan hr ef attribute whose valueis a URI reference identifying the stylesheet
to be included. A relative URI is resolved relative to the base URI of the xsl : i ncl ude element (see
§ 3.2—-Base URI on page 11).

Thexsl : i ncl ude element is only allowed as atop-level element.

Theinclusion works at the XML tree level. The resource located by the hr ef attribute valueis parsed as
an XML document, and the children of the xsl : st yl esheet element in this document replace the
xsl : i ncl ude element intheincluding document. Thefact that template rules or definitionsareincluded
does not affect the way they are processed.

Page 8 of 86 Stylesheet Structure

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

The included stylesheet may use the simplified syntax described in § 2.3 — Litera Result Element as
Stylesheet on page 5 . The included stylesheet is treated the same as the equivalent xsl : st yl esheet
element.

Itisan error if astylesheet directly or indirectly includesitself.

|:| Including a stylesheet multiple times can cause errors because of duplicate definitions. Such multiple inclusions
are less obvious when they are indirect. For example, if stylesheet B includes stylesheet A, stylesheet C includes
stylesheet A, and stylesheet D includes both stylesheet B and stylesheet C, then A will be included indirectly by D
twice. If al of B, C and D are used asindependent stylesheets, then the error can be avoided by separating everything
in B other than the inclusion of A into a separate stylesheet B' and changing B to contain just inclusions of B' and
A, similarly for C, and then changing D to include A, B', C'.

2.6.2. Stylesheet Import

<xsl :inport
href = uri-reference />

An XSLT stylesheet may import another XSLT stylesheet using an xsl : i mpor t element. Importing a
stylesheet isthe same asincluding it (see 8§ 2.6.1 — Stylesheet Inclusion on page 8) except that definitions
and template rules in the importing stylesheet take precedence over template rules and definitions in the
imported stylesheet; this is described in more detail below. The xsl : i nport element has an hr ef
attribute whose valueisaURI reference identifying the stylesheet to beimported. A relative URI isresolved
relative to the base URI of thexsl : i nport element (see 8§ 3.2 —-Base URI on page 11).

Thexsl : i nport element isonly alowed as atop-level element. Thexsl : i mport element children
must precedeall other element children of anxsl : st yl esheet element,includingany xsl : i ncl ude
element children. When xsl : i ncl ude is used to include a stylesheet, any xsl : i nport elementsin
theincluded document are moved up in theincluding document to after any existingxsl : i npor t elements
in the including document.

For example,

<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:inmport href="article.xsl"/>
<xsl:inmport href="bigfont.xsl"/>
<xsl:attribute-set name="note-style">
<xsl:attribute name="font-style">italic</xsl:attribute>
</xsl:attribute-set>
</ xsl : styl esheet >

Thexsl : st yl esheet dementsencountered during processing of astylesheet that containsxsl : i nport
elements are treated as forming an import tree. In the import tree, each xsl : st yl esheet element has
one import child for each xsl : i nport element that it contains. Any xsl : i ncl ude elements are
resolved before constructing theimport tree. Anxsl : st yl esheet elementintheimport treeisdefined
to have lower import precedence than another xsl : st yl esheet eement in theimport treeif it would
be visited before that xsl : st yl esheet element in a post-order traversal of the import tree (i.e. a
traversal of the import tree in which an xsl : st yl esheet element isvisited after itsimport children).
Each definition and template rule hasimport precedence determined by the xsl : st yl esheet eement
that containsiit.

Combining Stylesheets Page 9 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

For example, suppose

o stylesheet A imports stylesheets B and C in that order;

» stylesheet B imports stylesheet D;

» stylesheet C imports stylesheet E.

Then the order of import precedence (lowest first) isD, B, E, C, A.

Since xsl : i nport elements are required to occur before any definitions or template rules, an implementation
that processes imported stylesheets at the point at which it encountersthe xsl : i mpor t element will encounter
definitions and template rules in increasing order of import precedence.

In general, adefinition or template rule with higher import precedence takes precedence over a definition
or template rule with lower import precedence. Thisisdefined in detail for each kind of definition and for
template rules.

Itisan error if astylesheet directly or indirectly importsitself. Apart from this, the case where a stylesheet
with a particular URI is imported in multiple places is not treated specially. The import tree will have a
separate xsl : st yl esheet for each placethat it isimported.

|:| If xsl :appl y-inports isused (see § 5.6 — Overriding Template Rules on page 19), the behavior may be
different from the behavior if the stylesheet had been imported only at the place with the highest import precedence.

2.7. Embedding Stylesheets

Normally an XSLT stylesheset isacomplete XML document withthexsl : st yl esheet element asthe
document element. However, an XSLT stylesheet may also be embedded in another resource. Two forms
of embedding are possible:

- the XSLT stylesheet may be textually embedded in anon-XML resource, or
- thexsl : styl esheet eement may occur in an XML document other than as the document element.

To facilitate the second form of embedding, the xsl : st yl esheet element is allowed to have an 1D
attribute that specifies a unique identifier.

|:| In order for such an attribute to be used with the XPath id function, it must actually be declared in the DTD as
being an ID.

Thefollowing example shows how thexm - st yl esheet processing instruction [XML Stylesheet] can
be used to alow a document to contain its own stylesheet. The URI reference uses arelative URI with a
fragment identifier to locatethe xsl : st yl esheet element:

<?xm -styl esheet type="text/xm" href="#stylel"?>

<! DOCTYPE doc SYSTEM "doc. dtd">

<doc>

<head>

<xsl:styl esheet id="stylel"
versi on="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
xm ns: fo="http://ww. w3. org/ 1999/ XSL/ For mat " >

Page 10 of 86 Stylesheet Structure

http://www.w3c.org/TR/xpath#function-id
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<xsl:inmport href="doc.xsl"/>
<xsl:tenplate match="id('foo')">
<f o: bl ock font-wei ght="bol d"><xsl : appl y-tenpl at es/ ></f o: bl ock>
</ xsl :tenpl at e>
<xsl :tenpl ate mat ch="xsl : styl esheet">
<l-- ignhore -->
</ xsl : tenpl at e>
</ xsl : styl esheet >
</ head>
<body>
<para id="foo">

</ par a>
</ body>
</ doc>

A stylesheet that is embedded in the document to which it isto be applied or that may beincluded or imported into
an stylesheet that is so embedded typically needsto contain atemplate rule that specifiesthat xsl : st yl esheet
elements are to be ignored.

3. Data M odel

The datamodel used by XSLT isthe same asthat used by X Path with the additions described in this section.
XSLT operates on source, result and stylesheet documents using the same data model. Any two XML
documents that have the same tree will be treated the same by XSLT.

Processing instructions and comments in the stylesheet are ignored: the stylesheet is treated as if neither
processing instruction nodes nor comment nodes were included in the tree that represents the stylesheet.

3.1. Root Node Children

The normal restrictions on the children of the root node are relaxed for the result tree. The result tree may
have any sequence of nodes as children that would be possible for an element node. In particular, it may
have text node children, and any number of element node children. When written out using the XML
output method (see § 16 — Output on page 56), it is possible that a result tree will not be a well-formed
XML document; however, it will always be awell-formed external general parsed entity.

When the source treeis created by parsing awell-formed XML document, the root node of the sourcetree
will automatically satisfy the normal restrictions of having no text node children and exactly one element
child. When the source tree is created in some other way, for example by using the DOM, the usual
restrictions are relaxed for the source tree as for the result tree.

3.2. Base URI

Every node also has an associated URI called its base URI, which is used for resolving attribute values
that represent relative URIs into absolute URIs. If an element or processing instruction occurs in an
external entity, the base URI of that element or processing instruction is the URI of the external entity;

Root Node Children Page 11 of 86

http://www.w3.org/TR/xpath#data-model
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

otherwise, the base URI isthe base URI of the document. The base URI of the document node isthe URI
of the document entity. The base URI for atext node, a comment node, an attribute node or a hamespace
nodeisthe base URI of the parent of the node.

3.3. Unpar sed Entities

Theroot node has a mapping that givesthe URI for each unparsed entity declared in the document'sDTD.
The URI is generated from the system identifier and public identifier specified in the entity declaration.
The XSLT processor may use the public identifier to generate a URI for the entity instead of the URI
specified in the system identifier. If the XSLT processor does not use the public identifier to generate the
URI, it must use the system identifier; if the system identifier is arelative URI, it must be resolved into
an absolute URI using the URI of the resource containing the entity declaration asthe base URI [RFC2396].

3.4. Whitespace Stripping

After thetreefor asource document or stylesheet document has been constructed, but beforeit is otherwise
processed by XSLT, some text nodes are stripped. A text node is never stripped unless it contains only
whitespace characters. Stripping the text node removes the text node from the tree. The stripping process
takes as input a set of element names for which whitespace must be preserved. The stripping process is
applied to both stylesheets and source documents, but the set of whitespace-preserving element namesis
determined differently for stylesheets and for source documents.

A text nodeis preserved if any of the following apply:
» The element name of the parent of the text node isin the set of whitespace-preserving element names.

» Thetext node contains at least one non-whitespace character. Asin XML, a whitespace character is
#x20, #x9, #xD or #xA.

» An ancestor element of the text node has an xm : space attribute with avalue of pr eser ve, and
no closer ancestor element hasxm : space with avalue of def aul t .

Otherwise, the text node is stripped.
Thexmnl : space attributes are not stripped from the tree.

|:| Thisimpliesthat if anxm : space attributeis specified on aliteral result element, it will beincluded in the result.

For stylesheets, the set of whitespace-preserving element names consists of just xsl : t ext .

<l-- Category: top-level-elenment -->
<xsl :strip-space
el ements = tokens />

<l-- Category: top-level-elenment -->
<xsl : preserve-space
el ements = tokens />

For source documents, the set of whitespace-preserving element names is specified by xsl : stri p-
space and xsl : preserve- space top-level elements. These elements each have an el enent s
attribute whose value is awhitespace-separated list of NameT ests. Initialy, the set of whitespace-preserving

Page 12 of 86 Data Mode

http://www.w3.org/TR/xpath#NT-NameTest
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

element names contains all element names. If an element name matchesaNameTestinanxsl : stri p-
space element, then it is removed from the set of whitespace-preserving element names. If an element
name matchesaNameTestinanxsl : pr eser ve- space element, thenit isadded to the set of whitespace-
preserving element names. An element matches a NameTest if and only if the NameTest would be true
for the element as an XPath node test. Conflicts between matches to xsl : stri p- space and
xsl : preserve-space elements are resolved the same way as conflicts between template rules (see
8 5.5 — Conflict Resolution for Template Rules on page 19). Thus, the applicable match for a particular
element name is determined as follows:

* First, any match with lower import precedence than another match is ignored.

* Next, any match with a NameTest that has a lower default priority than the default priority of the
NameTest of another match isignored.

It is an error if this leaves more than one match. An XSLT processor may signal the error; if it does not
signal the error, it must recover by choosing, from amongst the matches that are left, the one that occurs
last in the stylesheet.

4. EXpressions

XSLT usesthe expression language defined by X Path [X Path]. Expressionsare used in XSLT for avariety
of purposesincluding:

- selecting nodes for processing;

- gpecifying conditions for different ways of processing a node;

- generating text to be inserted in the result tree.

An expression must match the X Path production Expr.

Expressions occur as the value of certain attributes on X SLT-defined elements and within curly bracesin
attribute value templ ates.

InXSLT, an outermost expression (i.e. an expression that isnot part of another expression) getsits context
asfollows:

« the context node comes from the current node

» thecontext position comesfrom the position of the current nodein the current nodelist; thefirst position
isl

« the context size comes from the size of the current node list

» the variable bindings are the bindings in scope on the element which has the attribute in which the
expression occurs (see § 11 — Variables and Parameters on page 41)

» the set of namespace declarations are those in scope on the element which has the attribute in which
the expression occurs; thisincludes the implicit declaration of the prefix xm required by thethe XML
Namespaces Recommendation [XML Nameg]; the default namespace (as declared by xm ns) is not
part of this set

» thefunction library consists of the core function library together with the additional functions defined
in § 12— Additional Functions on page 46 and extension functionsasdescribedin 8§ 14 — Extensions
on page 54 ; itisan error for an expression to include a call to any other function

Whitespace Stripping Page 13 of 86

http://www.w3.org/TR/xpath#NT-NameTest
http://www.w3.org/TR/xpath#NT-NameTest
http://www.w3.org/TR/xpath#NT-NameTest
http://www.w3.org/TR/xpath#NT-NameTest
http://www.w3.org/TR/xpath#node-tests
http://www.w3.org/TR/xpath#NT-NameTest
http://www.w3.org/TR/xpath#NT-NameTest
http://www.w3.org/TR/xpath#NT-Expr
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

5. Template Rules
5.1. Processing M odel

A list of source nodes is processed to create a result tree fragment. The result tree is constructed by pro-
cessing alist containing just the root node. A list of source nodesis processed by appending the result tree
structure created by processing each of the members of the list in order. A node is processed by finding
al the template rules with patterns that match the node, and choosing the best amongst them; the chosen
rule's template is then instantiated with the node as the current node and with the list of source nodes as
the current nodelist. A templatetypically containsinstructionsthat select an additional list of source nodes
for processing. The process of matching, instantiation and selection is continued recursively until no new
source nodes are selected for processing.

Implementations are free to process the source document in any way that produces the same result asif it
were processed using this processing model.

5.2. Patterns

Template rulesidentify the nodesto which they apply by using apattern. Aswell asbeing used in template
rules, patterns are used for numbering (see 8§ 7.7 — Numbering on page 32) and for declaring keys (see
§12.2 — Keys on page 47). A pattern specifies a set of conditions on a node. A node that satisfies the
conditions matches the pattern; a node that does not satisfy the conditions does not match the pattern. The
syntax for patternsis a subset of the syntax for expressions. In particular, location paths that meet certain
restrictions can be used as patterns. An expression that is also a pattern always evaluates to an object of
type node-set. A node matches a pattern if the node is amember of the result of evaluating the pattern as
an expression with respect to some possible context; the possible contexts are those whose context node
is the node being matched or one of its ancestors.

Here are some examples of patterns:

* par a matchesany par a element

e * matches any element

» chapter| appendi x matchesany chapt er element and any appendi x element
 olist/itemmatchesanyitemelementwithanol i st parent

» appendi x/ / par a matches any par a element with an appendi x ancestor element
* |/ matchesthe root node

e text () matchesany text node

e processing-instruction() matchesany processing instruction

* node() matches any node other than an attribute node and the root node

e id("W1") matchesthe element with unique ID W11

e paral 1] matchesany par a element that isthefirst par a child element of its parent

e *[position()=1 and sel f:: para] matchesany par a element that isthe first child element
of its parent

e parall ast()=1] matchesany par a element that isthe only par a child element of its parent

Page 14 of 86 Template Rules

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

e itens/iten]position()>1] matchesanyitemelement that hasait ens parent and that is
not thefirsti t emchild of its parent

* itenfposition() nod 2 = 1] would betruefor any i t emelement that is an odd-numbered
i t emchild of its parent.

 div[@l ass="appendi x"]// p matches any p element with adi v ancestor element that has a
cl ass attribute with value appendi x

@l ass matchesany cl ass attribute (not any element that hasacl ass attribute)
* @ matches any attribute

A pattern must match the grammar for Pattern. A Pattern isaset of location path patterns separated by
| . A location path pattern is a location path whose steps al use only thechi | d or att ri but e axes.
Although patterns must not use the descendant - or - sel f axis, patterns may usethe// operator as
well asthe/ operator. Location path patterns can also start with an id or key function call with aliteral
argument. Predicates in a pattern can use arbitrary expressions just like predicates in alocation path.

[1] Pattern ::= LocationPathPattern
| Pattern ‘| L ocationPathPattern

[2] LocationPathPattern ::= /' RelativePathPattern?
| IdKeyPattern (('/* | /") RelativePathPattern)?
| '//'? RelativePathPattern

[3] IdKeyPattern ::= 'id''(‘ Literal ')’
| 'key' ‘(" Literal ', Literal ')’

[4] RelativePathPattern ::= StepPattern

| RelativePathPattern '/* StepPattern
| RelativePathPattern '//* StepPattern

[5] StepPattern ::= ChildOrAttributeAxisSpecifier NodeTest Predicate*

[6] ChildOrAttributeAxisSpecifier AbbreviatedAxisSpecifier
| (child' | 'attribute’) "'

A pattern is defined to match a node if and only if there is possible context such that when the patternis
evaluated as an expression with that context, the node is amember of the resulting node-set. When anode
is being matched, the possible contexts have a context node that is the node being matched or any ancestor
of that node, and a context node list containing just the context node.

For example, p matches any p element, because for any p if the expression p is evaluated with the parent
of the p element as context the resulting node-set will contain that p element as one of its members.

Thismatches even ap element that isthe document element, since the document root is the parent of the document
element.

Although the semantics of patterns are specified indirectly in terms of expression evaluation, it is easy to
understand the meaning of a pattern directly without thinking in terms of expression evaluation. In apattern,
| indicates aternatives; a pattern with one or more | separated alternatives matches if any one of the
alternative matches. A pattern that consists of asequence of StepPatternsseparatedby/ or/ / ismatched
from right to left. The pattern only matches if the rightmost StepPatter n matches and a suitable element
matches the rest of the pattern; if the separator is/ then only the parent is a suitable element; if the sepa-
rator is/ / , then any ancestor is a suitable element. A StepPattern that uses the child axis matchesif the
NodeTest istrue for the node and the node is not an attribute node. A StepPattern that uses the attribute

Patterns Page 15 of 86

http://www.w3c.org/TR/xpath#function-id
http://www.w3.org/TR/xpath#NT-Literal
http://www.w3.org/TR/xpath#NT-Literal
http://www.w3.org/TR/xpath#NT-Literal
http://www.w3.org/TR/xpath#NT-NodeTest
http://www.w3.org/TR/xpath#NT-Predicate
http://www.w3.org/TR/xpath#NT-AbbreviatedAxisSpecifier
http://www.w3.org/TR/xpath#NT-NodeTest
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

axis matches if the NodeTest is true for the node and the node is an attribute node. When [] is present,
then thefirst PredicateExpr in a StepPatter n isevaluated with the node being matched as the context node
and the siblings of the context node that match the NodeT est asthe context node list, unless the node being
matched is an attribute node, in which case the context node list is all the attributes that have the same
parent as the attribute being matched and that match the NameTest.

For example
appendi x//ulist/iten]position()=1]
matches anode if and only if all of the following are true:

 theNodeTesti t emistrue for the node and the node is not an attribute; in other words the nodeis an
i t emelement

» evauating the PredicateExpr posi t i on() =1 with the node as context node and the siblings of the
node that arei t emelements as the context node list yields true

» the node has a parent that matches appendi x/ / ul i st ; thiswill be true if the parent isa ul i st
element that has an appendi x ancestor element.

5.3. Defining Template Rules

<l-- Category: top-level-elenment -->
<xsl:tenplate

match = pattern

name = gnhamne

priority = nunber

node = gnhane >

<l-- Content: (xsl:parant, tenplate) -->
</ xsl :tenpl at e>

A template rule is specified with the xs! : t enpl at e element. The mat ch attribute is a Pattern that
identifies the source node or nodes to which the rule applies. The mat ch attribute is required unless the
xsl : t enpl at e element has anane attribute (see § 6 — Named Templates on page 21). It isan error
for the value of the mat ch attribute to contain aVariableReference. The content of thexsl : t enpl at e
element is the template that is instantiated when the template ruleis applied.

For example, an XML document might contain:
This is an <enph>i nportant </ enph> point.

Thefollowing template rule matchesenph eementsand producesaf o: i nl i ne- sequence formatting
object with af ont - wei ght property of bol d.

<xsl :tenpl ate mat ch="enmph" >
<fo:inline-sequence font-weight="bol d">
<xsl : apply-tenpl ates/ >
</fo:inline-sequence>
</ xsl :tenpl at e>

Examplesinthisdocument usethef o: prefix for thenamespaceht t p: / / wwww. w3. or g/ 1999/ XSL/ For mat ,
which is the namespace of the formatting objects defined in [XSL].

Page 16 of 86 Template Rules

http://www.w3.org/TR/xpath#NT-NodeTest
http://www.w3.org/TR/xpath#NT-PredicateExpr
http://www.w3.org/TR/xpath#NT-NodeTest
http://www.w3.org/TR/xpath#NT-NameTest
http://www.w3.org/TR/xpath#NT-NodeTest
http://www.w3.org/TR/xpath#NT-PredicateExpr
http://www.w3.org/TR/xpath#NT-VariableReference
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Asdescribed next, thexsl : appl y-t enpl at es element recursively processesthe children of the source
element.

5.4. Applying Template Rules

<l-- Category: instruction -->

<xsl : appl y-tenpl at es

sel ect = node- set-expression

node = ghane >

<l-- Content: (xsl:sort | xsl:with-param* -->
</ xsl : appl y-t enpl at es>

This example creates ablock for achapt er element and then processes itsimmediate children.

<xsl:tenplate match="chapter">
<f o: bl ock>
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl :tenpl at e>

In the absence of a sel ect attribute, the xsl : appl y-t enpl at es instruction processes al of the
children of the current node, including text nodes. However, text nodes that have been stripped as specified
in § 3.4 —Whitespace Stripping on page 12 will not be processed. If stripping of whitespace nodes has
not been enabled for an element, then all whitespace in the content of the element will be processed as
text, and thus whitespace between child elementswill count in determining the position of a child element
as returned by the position function.

A sel ect attribute can be used to process nodes selected by an expression instead of processing al
children. Thevalue of thesel ect attributeisan expression. The expression must eval uate to a node-set.
The selected set of nodes is processed in document order, unless a sorting specification is present (see
§ 10— Sorting on page 39). Thefollowing example processesall of theaut hor children of theaut hor -
group:
<xsl:tenpl ate nmat ch="aut hor - gr oup" >
<fo:inline-sequence>
<xsl:apply-tenpl ates sel ect="aut hor"/>
</fo:inline-sequence>
</ xsl : tenpl at e>
Thefollowing example processesall of thegi ven- namesof theaut hor sthat arechildren of aut hor -
group:
<xsl:tenpl ate nmat ch="aut hor - group" >
<fo:inline-sequence>
<xsl :appl y-tenpl at es sel ect ="aut hor/ gi ven- nane"/ >
</fo:inline-sequence>
</ xsl :tenpl ate>

This example processes al of the headi ng descendant elements of the book element.

Applying Template Rules Page 17 of 86

http://www.w3c.org/TR/xpath#function-position
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<xsl:tenpl ate nmatch="book">
<f o: bl ock>
<xsl:apply-tenpl ates sel ect=".//headi ng"/>
</fo: bl ock>
</ xsl : tenpl at e>

It isalso possible to process elements that are not descendants of the current node. This example assumes
that adepart ment element has gr oup children and enpl oyee descendants. It finds an employee's
department and then processes the gr oup children of thedepar t nment .

<xsl : tenpl ate mat ch="enpl oyee" >
<f o: bl ock>
Enpl oyee <xsl: apply-tenpl ates sel ect ="nane"/> bel ongs to group
<xsl:apply-tenpl ates sel ect ="ancestor::departnent/group"/>
</ fo: bl ock>
</ xsl :tenpl at e>

Multiplexsl! : appl y-t enpl at es elements can be used within asingletemplateto do simplereordering.
The following example creates two HTML tables. The first table is filled with domestic sales while the
second tableisfilled with foreign sales.

<xsl:tenpl ate match="product">
<t abl e>
<xsl : appl y-tenpl at es sel ect ="sal es/ donestic"/>
</t abl e>
<t abl e>
<xsl :apply-tenpl ates sel ect ="sal es/foreign"/>
</t abl e>
</ xsl : tenpl at e>

|:| It is possible for there to be two matching descendants where one is a descendant of the other. This case is not
treated specially: both descendants will be processed as usual. For example, given a source document

<doc><di v><di v></ di v></ di v></ doc>
therule

<xsl:tenpl ate match="doc">
<xsl :apply-tenpl ates select=".//div"/>
</ xsl : tenpl at e>

will process both the outer di v and inner di v elements.

|:| Typically, xsl : appl y-t enpl at es isused to process only nodesthat are descendants of the current node. Such
useof xsl : appl y-t enpl at es cannot result in non-terminating processing loops. However, whenxsl : appl y-
t enpl at es isused to process elements that are not descendants of the current node, the possibility arises of non-
terminating loops. For example,

<xsl :tenpl ate match="fo0">
<xsl :apply-tenpl ates select="."/>
</ xsl : tenpl at e>

Page 18 of 86 Template Rules

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Implementations may be able to detect such loops in some cases, but the possibility exists that a stylesheet may
enter a non-terminating loop that an implementation is unable to detect. This may present a denial of service
security risk.

5.5. Conflict Resolution for Template Rules

It is possible for a source node to match more than one template rule. The template rule to be used is
determined as follows:

1. First, al matching template rules that have lower import precedence than the matching template rule
or rules with the highest import precedence are eliminated from consideration.

2. Next, all matching template rules that have lower priority than the matching template rule or rules
with the highest priority are eliminated from consideration. The priority of atemplate ruleis specified
by thepri ori ty attribute on the template rule. The value of this must be areal number (positive or
negative), matching the production Number with an optional leading minus sign (-). The default pri-
ority is computed as follows:

 If the pattern contains multiple alternatives separated by | , then it is treated equivalently to a set
of template rules, one for each alternative.

 If the pattern has the form of a QName preceded by a ChildOr AttributeAxisSpecifier or hasthe
formpr ocessi ng-i nstructi on(Literal) preceded by aChildOrAttributeAxisSpecifier,
then the priority isO.

 If the pattern has the form NCName : * preceded by a ChildOr AttributeAxisSpecifier, then the
priority is-0.25.

» Otherwisg, if the pattern consists of just aNodeTest preceded by aChildOr AttributeAxisSpecifier,
then the priority is-0.5.

e Otherwise, the priority is 0.5.

Thus, the most common kind of pattern (a pattern that tests for a node with a particular type and a
particular expanded-name) has priority 0. The next less specific kind of pattern (a pattern that tests
for anode with aparticul ar type and an expanded-name with a particular namespace URI) has priority
-0.25. Patterns less specific than this (patterns that just tests for nodes with particular types) have pri-
ority -0.5. Patterns more specific than the most common kind of pattern have priority 0.5.

Itisanerror if thisleaves morethan one matching templaterule. An XSLT processor may signal the error;
if it does not signal the error, it must recover by choosing, from amongst the matching template rules that
are |eft, the one that occurs last in the stylesheet.

5.6. Overriding Template Rules

<!-- Category: instruction -->
<xsl : apply-inports/>

A template rulethat isbeing used to override atemplate rulein an imported stylesheet (see §5.5—Conflict
Resolution for Template Rules on page 19) can use the xsl : appl y- i npor t s element to invoke the
overridden template rule.

Conflict Resolution for Template Rules Page 19 of 86

http://www.w3.org/TR/xpath#NT-Number
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/xpath#NT-Literal
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/xpath#NT-NodeTest
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

At any point in the processing of a stylesheet, there is a current template rule. Whenever atemplate rule
is chosen by matching a pattern, the template rule becomes the current template rule for the instantiation
of therule'stemplate. Whenan xsl : f or - each elementisinstantiated, the current template rule becomes
null for the instantiation of the content of the xsl : f or - each element.

xsl : appl y-i mport s processesthe current node using only template rules that were imported into the
stylesheet element containing the current template rule; the node is processed in the current template rule's
mode. Itisan error if xsl : appl y-i nmpor t s isinstantiated when the current template ruleis null.

For example, suppose the stylesheet doc. xs| contains atemplate rule for exanpl e elements:

<xsl :tenpl ate mat ch="exanpl e">
<pre><xsl : appl y-t enpl at es/ ></ pre>
</ xsl : tenpl at e>

Another stylesheet could import doc. xs| and modify the trestment of exanpl e elements as follows:

<xsl:inmport href="doc.xsl"/>

<xsl :tenpl ate mat ch="exanpl e">
<div style="border: solid red">
<xsl : appl y-imports/>
</ div>
</ xsl : tenpl at e>

The combined effect would be to transform an exanpl e into an element of the form:

<div style="border: solid red"><pre>...</pre></div>

5.7. Modes

Modes alow an element to be processed multiple times, each time producing a different result.

Both xsl : t enpl at e and xsl : appl y-t enpl at es have an optional node attribute. The value of
the mode attribute is a QName, which is expanded as described in § 2.4 — Qualified Names on page 6 .
If xsl : t enpl at e doesnot haveamat ch attribute, it must not have anode attribute. If anxsl : appl y-
t enpl at es element has anode attribute, then it applies only to those template rules from xsl : t em
pl at e elementsthat haveanode attributewiththesamevalue; if anxsl : appl y- t enpl at es element
doesnot haveanode attribute, then it appliesonly to thosetemplaterulesfromxsl : t enpl at e elements
that do not have anode attribute.

5.8. Built-in Template Rules

There is a built-in template rule to allow recursive processing to continue in the absence of a successful
pattern match by an explicit template rule in the stylesheet. This template rule applies to both element
nodes and the root node. The following shows the equivalent of the built-in template rule:

<xsl:tenplate match="*|/">
<xsl :appl y-tenpl at es/ >
</ xsl : tenpl at e>

Thereis also abuilt-in template rule for each mode, which allows recursive processing to continue in the
same mode in the absence of a successful pattern match by an explicit template rule in the stylesheet. This

Page 20 of 86 Template Rules

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

template rule applies to both element nodes and the root node. The following shows the equivalent of the
built-in template rule for mode m .

<xsl:tenplate match="*|/" node="nt>
<xsl : appl y-tenpl ates node="ni/>
</ xsl : tenpl at e>

Thereis also abuilt-in template rule for text and attribute nodes that copies text through:

<xsl:tenplate match="text()| @">
<xsl :val ue-of select="."/>
</ xsl :tenpl at e>

The built-in template rule for processing instructions and comments is to do nothing.
<xsl :tenpl ate mat ch="processi ng-i nstruction()|coment()"/>

The built-in template rule for namespace nodes is also to do nothing. There is no pattern that can match a
namespace node; so, the built-in template rule isthe only template rule that is applied for namespace nodes.

Thebuilt-intemplate rules aretreated asif they were imported implicitly before the stylesheet and so have
lower import precedence than all other template rules. Thus, the author can override a built-in template
rule by including an explicit template rule.

6. Named Templates

<l-- Category: instruction -->
<xsl:call-tenpl ate

name = gnane >

<l-- Content: xsl:wth-parant -->
</xsl:call-tenpl ate>

Templatescan beinvoked by name. Anxsl : t enpl at e element with anane attribute specifiesanamed
template. The value of the nane attributeisaQName, whichisexpanded asdescribedin § 2.4 —Qualified
Nameson page 6 . If an xsl : t enpl at e element has anane attribute, it may, but need not, also have
anmat ch attribute. An xsl : cal | -t enpl at e element invokes a template by name; it has a required
nane attribute that identifiesthetemplateto beinvoked. Unlikexsl : appl y-t enpl at es, xsl : cal | -
t enpl at e does not change the current node or the current node list.

Themat ch, node and pri ori ty attributeson an xsl : t enpl at e element do not affect whether the
template is invoked by an xsl :cal |l -tenpl ate element. Similarly, the name attribute on an
xsl : t enpl at e element doesnot affect whether thetemplateisinvoked by anxsl : appl y-t enpl at es
element.

It isan error if a stylesheet contains more than one template with the same name and same import prece-
dence.

7. Creating the Result Tree

This section describes instructions that directly create nodes in the result tree.

Built-in Template Rules Page 21 of 86

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

7.1. Creating Elements and Attributes

7.1.1. Literal Result Elements

In atemplate, an element in the stylesheet that does not belong to the XSLT namespace and that is not an
extension element (see § 14.1 — Extension Elements on page 54) isinstantiated to create an element node
with the same expanded-name. The content of the element is atemplate, which isinstantiated to give the
content of the created element node. The created element node will have the attribute nodes that were
present on the element node in the stylesheet tree, other than attributes with namesinthe XSLT namespace.

The created element node will also have a copy of the namespace nodes that were present on the element
node in the stylesheet tree with the exception of any namespace node whose string-value is the XSLT
namespace URI (ht t p: / / www. w3. or g/ 1999/ XSL/ Tr ansf or nm), anamespace URI declared asan
extension namespace (see § 14.1 — Extension Elements on page 54), or a namespace URI designated as
an excluded namespace. A namespace URI isdesignated as an excluded namespace by using anexcl ude-

resul t-prefixes attribute on an xsl : styl esheet element or an xsl : excl ude-resul t-

pr ef i xes attribute on aliteral result element. The value of both these attributesis awhitespace-separated
list of namespace prefixes. The namespace bound to each of the prefixes is designated as an excluded
namespace. Itisan error if thereisno namespace bound to the prefix on the element bearing theexcl ude-

resul t-prefixes or xsl:exclude-result-prefixes attribute. The default namespace (as
declared by xm ns) may be designated as an excluded namespace by including #def aul t inthelist of
namespace prefixes. The designation of a namespace as an excluded namespace is effective within the
subtree of the stylesheet rooted at the element bearing the excl ude-resul t-prefixes or
xsl: excl ude-resul t-prefixes atribute; asubtreerootedat anxsl : st yl esheet element does
not include any stylesheets imported or included by children of that xsl : st yl esheet element.

When a stylesheet uses a namespace declaration only for the purposes of addressing the source tree, specifying the
prefixintheexcl ude-resul t - pr ef i xes attribute will avoid superfluous namespace declarationsin the result
tree.

The value of an attribute of a literal result element is interpreted as an attribute value template: it can
contain expressions contained in curly braces ({ }).

A namespace URI in the stylesheet tree that is being used to specify anamespace URI in theresult treeis
caled aliteral namespace URI. This appliesto:

» the namespace URI in the expanded-name of aliteral result element in the stylesheet

» the namespace URI in the expanded-name of an attribute specified on a literal result element in the
stylesheet

» the string-value of a namespace node on aliteral result element in the stylesheet

<l-- Category: top-level-elenment -->
<xsl : namespace-al i as

styl esheet-prefix = prefix | "#default"
result-prefix = prefix | "#default" />

A stylesheet can use the xsl : nanespace- al i as element to declare that one namespace URI is an
alias for another namespace URI. When a litera namespace URI has been declared to be an alias for
another namespace URI, then the namespace URI in the result tree will be the namespace URI that the
literal namespace URI isan adiasfor, instead of theliteral namespace URI itself. Thexsl : nanmespace-

Page 22 of 86 Creating the Result Tree

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

al i as element declares that the namespace URI bound to the prefix specified by the st yl esheet -
pr ef i x attributeisan aiasfor the namespace URI bound to the prefix specified by ther esul t - pr ef i x
attribute. Thus, thest yl esheet - pr ef i x attribute specifies the namespace URI that will appear in the
stylesheet, andther esul t - pr ef i x attribute specifiesthe corresponding namespace URI that will appear
in the result tree. The default namespace (as declared by xm ns) may be specified by using #def aul t
instead of a prefix. If a namespace URI is declared to be an alias for multiple different namespace URISs,
then the declaration with the highest import precedenceisused. It isan error if thereis more than one such
declaration. An XSLT processor may signal the error; if it does not signal the error, it must recover by
choosing, from amongst the declarations with the highest import precedence, the one that occurs last in
the stylesheet.

When literal result elements are being used to create element, attribute, or namespace nodes that use the
XSLT namespace URI, the stylesheet must use an alias. For example, the stylesheet

<xsl : styl esheet
versi on="1. 0"
xm ns: xsl ="http://wwmw. w3. org/ 1999/ XSL/ Tr ansf or nt
xm ns: fo="http://ww. w3. org/ 1999/ XSL/ For mat "
xm ns: axsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or mAl i as" >

<xsl : namespace-al i as styl esheet-prefix="axsl" result-prefix="xsl"/>

<xsl:tenplate match="/">
<axsl : styl esheet >
<xsl :apply-tenpl ates/ >
</ axsl : styl esheet >
</ xsl :tenpl at e>

<xsl:tenpl ate nmat ch="bl ock">
<axsl:tenplate match="{.}">
<f o: bl ock><axsl : appl y-t enpl at es/ ></ f o: bl ock>
</ axsl:tenpl at e>
</ xsl : tenpl at e>

</ xsl : styl esheet >

will generate an XSL T stylesheet from a document of the form:

<el enent s>

<bl ock>p</ bl ock>
<bl ock>h1</ bl ock>
<bl ock>h2</ bl ock>
<bl ock>h3</ bl ock>
<bl ock>h4</ bl ock>
</ el enent s>

|:| It may be necessary also to use aliases for namespaces other than the XSLT namespace URI. For example, literal
result elements belonging to a namespace dealing with digital signatures might cause XSLT stylesheetsto be mis-

Creating Elements and Attributes Page 23 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

handled by general-purpose security software; using an alias for the namespace would avoid the possibility of such
mishandling.

7.1.2. Creating Elementswith xsl : el enent

<l-- Category: instruction -->
<xsl : el ement

nane = { ghane }

nanespace = { uri-reference }

use-attribute-sets = gnanes >

<l-- Content: tenplate -->

</ xsl : el ement >

Thexsl : el ement element allows an element to be created with acomputed name. The expanded-name
of the element to be created i s specified by arequired nane attribute and an optional nanmespace attribute.
The content of the xsl : el ement element is a template for the attributes and children of the created
element.

Thenane attribute isinterpreted as an attribute value template. It isan error if the string that results from
instantiating the attribute value template is not a QName. An XSLT processor may signal the error; if it
does not signal the error, then it must recover by making the the result of instantiating thexsl : el ermrent

element be the sequence of nodes created by instantiating the content of the xsl : el enent element,
excluding any initid attribute nodes. If thenanespace attributeisnot present then the QNameis expanded
into an expanded-name using the namespace declarations in effect for the xsl : el enent element,
including any default namespace declaration.

If thenanmespace attribute is present, then it also isinterpreted as an attribute value template. The string
that results from instantiating the attribute value template should be a URI reference. It is not an error if
the string is not a syntactically legal URI reference. If the string is empty, then the expanded-name of the
element has a null namespace URI. Otherwise, the string is used as the namespace URI of the expanded-
name of the element to be created. The local part of the QName specified by the nane attribute is used
asthelocal part of the expanded-name of the element to be created.

XSLT processors may make use of the prefix of the QName specified inthe nane attribute when selecting
the prefix used for outputting the created element as XML ; however, they are not required to do so.

7.1.3. Creating Attributeswith xsl : attri but e

<l-- Category:. instruction -->
<xsl:attribute

name = { gnane }

namespace = { uri-reference } >
<l-- Content: tenplate -->
</xsl:attribute>

Thexsl : attri but e element can be used to add attributes to result elements whether created by literal
result elements in the stylesheet or by instructions such as xsl : el enent . The expanded-name of the
attribute to be created is specified by arequired nane attribute and an optional nanespace attribute.
Instantiating an xsl : at t ri but e element adds an attribute node to the containing result element node.
The content of the xsl : attri but e element isatemplate for the value of the created attribute.

Page 24 of 86 Creating the Result Tree

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

The nane attribute isinterpreted as an attribute value template. It isan error if the string that results from
instantiating the attribute value template is not aQName or isthe string xm ns. An XSLT processor may
signal the error; if it does not signal the error, it must recover by not adding the attribute to the result tree.
If thenamespace attributeis not present, then the QName is expanded into an expanded-name using the
namespace declarationsin effect for thexsl : at t ri but e element, not including any default namespace
declaration.

If thenanespace attribute is present, then it also isinterpreted as an attribute value template. The string
that resultsfrom instantiating it should be aURI reference. Itisnot an error if the string is not asyntactically
legal URI reference. If the string is empty, then the expanded-name of the attribute has a null namespace
URI. Otherwise, the string is used asthe namespace URI of the expanded-name of the attribute to be created.
Thelocal part of the QName specified by the name attributeis used asthelocal part of the expanded-name
of the attribute to be created.

XSLT processors may make use of the prefix of the QName specified inthe nanre attribute when selecting
the prefix used for outputting the created attribute as XML ; however, they are not required to do so and,
if the prefix isxm ns, they must not do so. Thus, although it is not an error to do:

<xsl :attribute name="xm ns: xsl "
nanmespace="what ever">ht t p: / / www. w3. or g/ 1999/ XSL/ Tr ansf or nx/ xsl : attri but e>

it will not result in a namespace declaration being output.

Adding an attribute to an element replaces any existing attribute of that el ement with the same expanded-
name.

Thefollowing are al errors:

* Adding an attribute to an element after children have been added to it; implementations may either
signal the error or ignore the attribute.

* Adding an attribute to a node that is not an element; implementations may either signal the error or
ignore the attribute.

» Creating nodes other than text nodes during the instantiation of the content of thexsl : attri bute
element; implementations may either signal the error or ignore the offending nodes.

|:| When an xsl : at t ri but e contains a text node with a newline, then the XML output must contain a character
reference. For example,

<xsl :attribute name="a">x
y</xsl :attri bute>

will result in the output
a="x
 y"
(or with any equivalent character reference). The XML output cannot be

a="x
y"

Thisis because XML 1.0 requires newline characters in attribute values to be normalized into spaces but requires
character references to newline characters not to be normalized. The attribute values in the data model represent
the attribute value after normalization. If a newline occurring in an attribute value in the tree were output as a
newline character rather than as character reference, then the attribute value in the tree created by reparsing the
XML would contain a space not a newline, which would mean that the tree had not been output correctly.

Creating Elements and Attributes Page 25 of 86

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

7.1.4. Named Attribute Sets

<l-- Category: top-level-elenment -->
<xsl:attribute-set

name = gname

use-attribute-sets = gnanes >

<l-- Content: xsl:attribute* -->
</xsl:attribute-set>

Thexsl : attri but e- set element defines anamed set of attributes. The nanre attribute specifies the
name of the attribute set. The value of the nane attribute isa QName, which is expanded as described in
§2.4—Qualified Names on page 6 . The content of thexsl : at t ri but e- set element consists of zero
or morexsl : attri but e elementsthat specify the attributes in the set.

Attribute setsare used by specifyingause- at t ri but e- set s attributeonxsl : el enent , xsl : copy
(see 8§ 7.5 — Copying on page 29) or xsl : attri but e-set elements. The value of the use-
attribut e-sets attribute is a whitespace-separated list of names of attribute sets. Each name is
specified asa QName, which isexpanded as described in 8§ 2.4 — Qualified Names on page 6 . Specifying
ause-attri but e-set s attributeisequivalent to adding xsl : at t ri but e elementsfor each of the
attributes in each of the named attribute sets to the beginning of the content of the element with theuse-
attri but e- set s attribute, in the same order in which the names of the attribute sets are specified in
theuse-attri but e-sets atribute. It is an error if use of use-attri but e-set s attributes on
xsl :attribute-set elementscauses an attribute set to directly or indirectly use itself.

Attribute setscan also be used by specifyinganxsl : use- at tri but e- set s attributeon aliteral result
element. Thevalueof thexsl : use- attri but e- set s attributeisawhitespace-separated list of names
of attribute sets. The xsl :use-attri bute-sets attribute has the same effect as the use-
attri but e- set s attributeon xsl : el emrent with the additional rule that attributes specified on the
literal result element itself are treated asif they were specified by xsl : at t ri but e elements before any
actual xsl : attri but e elementsbut after any xsl : att ri but e elementsimplied by thexsl : use-
attri but e-set s attribute. Thus, for alitera result element, attributes from attribute setsnamed in an
xsl i use-attribute-sets attribute will be added first, in the order listed in the attribute; next,
attributes specified on the literal result element will be added; finally, any attributes specified by
xsl :attri but e elementswill be added. Since adding an attribute to an element replaces any existing
attribute of that element with the same name, this means that attributes specified in attribute sets can be
overridden by attributes specified on the literal result element itself.

Thetemplatewithineachxsl : attri but e elementinanxsl : attri but e- set elementisinstantiated
each time the attribute set is used; it isinstantiated using the same current node and current nodelist asis
used for instantiating the element bearing the use-attri but e-sets or xsl : use-attri bute-
set s attribute. However, it isthe position in the stylesheet of the xsl : at t ri but e element rather than
of the element bearing the use-attri but e-sets or xsl : use-attri but e- set s attribute that
determines which variable bindings are visible (see § 11 — Variables and Parameters on page 41); thus,
only variables and parameters declared by top-level xsl : vari abl e and xsl : par am elements are
visible.

The following example creates a named attribute setti t | e- st yl e and usesit in atemplate rule.

<xsl :tenpl at e mat ch="chapt er/ headi ng" >
<fo: bl ock quaddi ng="start" xsl:use-attribute-sets="title-style">
<xsl : appl y-tenpl at es/ >

Page 26 of 86 Creating the Result Tree

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ fo: bl ock>
</ xsl : tenpl at e>

<xsl:attribute-set name="title-style">
<xsl:attribute name="font-size">12pt</xsl:attribute>
<xsl:attribute name="font-wei ght">bol d</xsl :attri bute>
</xsl:attribute-set>

Multiple definitions of an attribute set with the same expanded-name are merged. An attribute from a
definition that has higher import precedence takes precedence over an attribute from a definition that has
lower import precedence. It is an error if there are two attribute sets that have the same expanded-name
and equal import precedence and that both contain the same attribute, unless there is a definition of the
attribute set with higher import precedence that also containsthe attribute. An XSLT processor may signal
the error; if it does not signal the error, it must recover by choosing from amongst the definitions that
specify the attribute that have the highest import precedence the one that was specified last in the stylesheet.
Where the attributes in an attribute set were specified is relevant only in merging the attributes into the
attribute set; it makes no difference when the attribute set is used.

7.2. Creating Text

A template can also contain text nodes. Each text node in atemplate remaining after whitespace has been
stripped as specified in § 3.4 — Whitespace Stripping on page 12 will create a text node with the same
string-value in the result tree. Adjacent text nodes in the result tree are automatically merged.

Notethat text is processed at thetree level. Thus, markup of & t ; inatemplate will be represented in the
stylesheet tree by atext node that includes the character <. This will create a text node in the result tree
that contains a < character, which will be represented by the markup & t ; (or an equivalent character
reference) when the result tree is externalized as an XML document (unless output escaping is disabled
asdescribed in § 16.4 — Disabling Output Escaping on page 61).

<l-- Category: instruction -->
<xsl : text
di sabl e- out put -escaping = "yes" | "no" >

<l-- Content: #PCDATA -->
</ xsl:text>

Literal data characters may also be wrapped in an xsl : t ext element. This wrapping may change what
whitespace characters are stripped (see § 3.4 —Whitespace Stripping on page 12) but does not affect how
the characters are handled by the XSLT processor thereafter.

|:| Thexm : 1 ang and xm : space attributes are not treated specially by XSLT. In particular,

» itistheresponsibility of the stylesheet author explicitly to generate any xm : | ang or xmi : space attributes
that are needed in the result;

o gpecifyinganxm : | ang or xm : space attribute on an element in the XSLT namespace will not cause any
xm : | ang or xm : space attributes to appear in the result.

Creating Text Page 27 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

7.3. Creating Processing I nstructions

<l-- Category: instruction -->
<xsl : processi ng-instruction
nane = { ncnane } >

<l-- Content: tenplate -->

</ xsl : processi ng-i nstruction>

Thexsl : processi ng-i nstructi on elementisinstantiated to create a processing instruction node.
The content of thexsl : processi ng-i nst ructi on element isatemplate for the string-value of the
processing instruction node. The xsl : processi ng-i nstructi on element has a required nane
attribute that specifies the name of the processing instruction node. The value of the nane attribute is
interpreted as an attribute value template.

For example, this

<xsl : processi ng-instruction name="xnl - styl esheet " >hr ef =" book. css"
type="text/css"</xsl:processing-instruction>

would create the processing instruction
<?xm - styl esheet href="book.css" type="text/css"?>

It isan error if the string that results from instantiating the nane attribute is not both an NCName and a
PlTarget. An XSLT processor may signa the error; if it does not signal the error, it must recover by not
adding the processing instruction to the result tree.

This means that xsl : processi ng-i nstructi on cannot be used to output an XML declaration. The
xsl : out put element should be used instead (see § 16 — Output on page 56).

Itisan error if instantiating the content of xsl : pr ocessi ng-i nst ruct i on creates nodes other than
text nodes. An XSLT processor may signal the error; if it does not signal the error, it must recover by
ignoring the offending nodes together with their content.

Itisan error if theresult of instantiating the content of thexsl : pr ocessi ng-i nstructi on contains
the string ?>. An XSLT processor may signal the error; if it does not signal the error, it must recover by
inserting a space after any occurrence of ? that isfollowed by a>.

7.4. Creating Comments

<l-- Category: instruction -->
<xsl : comrent >

<l-- Content: tenplate -->

</ xsl : conment >

The xsl : comment element is instantiated to create a comment node in the result tree. The content of
thexsl : comment element isatemplate for the string-value of the comment node.

For example, this
<xsl:coment>This file is automatically generated. Do not edit!</xsl:conment>

would create the comment

Page 28 of 86 Creating the Result Tree

http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/REC-xml#NT-PITarget
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<I--This file is automatically generated. Do not edit!-->

Itisan error if instantiating the content of xsl| : comrent creates nodes other than text nodes. An XSLT
processor may signal the error; if it does not signal the error, it must recover by ignoring the offending
nodes together with their content.

Itisan error if the result of instantiating the content of the xsl : comrent containsthe string - - or ends
with- . An XSLT processor may signal theerror; if it doesnot signal the error, it must recover by inserting
a space after any occurrence of - that isfollowed by another - or that ends the comment.

7.5. Copying
<l-- Category: instruction -->
<xsl : copy

use-attribute-sets = gnanes >
<l-- Content: tenplate -->
</ xsl : copy>

Thexsl : copy element provides an easy way of copying the current node. Instantiating the xsl : copy
element creates a copy of the current node. The namespace nodes of the current node are automatically
copied aswell, but the attributes and children of the node are not automatically copied. The content of the
xsl : copy element is a template for the attributes and children of the created node; the content is
instantiated only for nodes of typesthat can have attributes or children (i.e. root nodes and element nodes).

Thexsl : copy element may haveause- attri but e- set s attribute (see § 7.1.4 — Named Attribute
Setson page 26). Thisis used only when copying element nodes.

The root node is treated specially because the root node of the result tree is created implicitly. When the
current nodeistheroot node, xsl : copy will not create aroot node, but will just use the content templ ate.

For example, the identity transformation can be written using xsl : copy asfollows:

<xsl :tenpl ate match="@ | node()" >
<xsl : copy>
<xsl:apply-tenpl ates select="@| node()"/>
</ xsl : copy>
</ xsl :tenpl at e>

When the current node is an attribute, then if it would be an error to use xsl : at t ri but e to create an
attribute with the same name as the current node, then it isalso an error to use xsl : copy (see §7.1.3—
Creating Attributeswith xsl : at t ri but e on page24).

The following example shows how xmi : | ang attributes can be easily copied through from source to
result. If a stylesheet defines the following named template:

<xsl:tenpl ate nane="appl y-t enpl at es- copy-1ang">
<xsl:for-each select="@nl:|ang">
<xsl : copy/ >
</ xsl: for-each>
<xsl : appl y-tenpl at es/ >
</ xsl :tenpl at e>

then it can simply do

Copying Page 29 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<xsl:call-tenpl ate nanme="appl y-tenpl at es- copy- | ang"/ >
instead of
<xsl : appl y-tenpl at es/ >

when it wants to copy thexmi : | ang attribute.

7.6. Computing Generated Text

Within atemplate, the xsl : val ue- of element can be used to compute generated text, for example by
extracting text from the source tree or by inserting the value of avariable. Thexsl : val ue- of element
does this with an expression that is specified as the value of the sel ect attribute. Expressions can also
be used inside attribute values of literal result elements by enclosing the expression in curly braces ({ }).

7.6.1. Generating Text with xsl : val ue- of

<l-- Category: instruction -->

<xsl : val ue- of

sel ect = string-expression

di sabl e- out put-escaping = "yes" | "no" />

Thexsl : val ue- of dementisinstantiated to create atext nodeintheresult tree. Therequired sel ect

attribute is an expression; this expression is evaluated and the resulting object is converted to a string as
if by acall tothestring function. The string specifiesthe string-val ue of the created text node. If the string
isempty, no text node will be created. The created text node will be merged with any adjacent text nodes.

Thexsl : copy- of element can be used to copy a node-set over to the result tree without converting it
to astring. See §11.3 - Using Values of Variables and Parameters with xs| : copy- of on page43.

For example, thefollowing createsan HTML paragraph from aper son element with gi ven- nane and
fam | y- nane attributes. The paragraph will contain the value of the gi ven- nane attribute of the
current node followed by a space and the value of the f ami | y- name attribute of the current node.

<xsl : tenpl at e mat ch="person">
<p>
<xsl : val ue- of sel ect="@i ven-nane"/>
<xsl :text> </xsl:text>
<xsl : val ue-of select="@am | y-nane"/>
</ p>
</ xsl : tenpl at e>

For another example, the following creates an HTML paragraph from aper son element with gi ven-
nanme and f am | y- nanme children elements. The paragraph will contain the string-value of the first
gi ven- nane child element of the current node followed by a space and the string-value of the first
fam | y- name child element of the current node.

<xsl :tenpl ate mat ch="person">
<p>
<xsl : val ue- of sel ect ="gi ven- nane"/ >
<xsl :text> </xsl:text>
<xsl : val ue- of select="fam |ly-nanme"/>

Page 30 of 86 Creating the Result Tree

http://www.w3c.org/TR/xpath#function-string
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ p>
</ xsl : tenpl at e>

The following precedes each pr ocedur e element with a paragraph containing the security level of the
procedure. It assumes that the security level that applies to a procedure is determined by asecurity
attribute on the procedure element or on an ancestor element of the procedure. It also assumesthat if more
than one such element hasasecur i t y attribute then the security level is determined by the element that
is closest to the procedure.

<xsl:tenpl ate nmatch="procedure">
<f o: bl ock>
<xsl :val ue-of select="ancestor-or-self::*[@ecurity][1]/ @ecurity"/>
</ fo: bl ock>
<xsl : appl y-tenpl at es/ >
</ xsl : tenpl at e>

7.6.2. Attribute Value Templates

In an attribute value that isinterpreted as an attribute value template, such as an attribute of aliteral result
element, an expression can be used by surrounding the expression with curly braces ({ }). The attribute
value template is instantiated by replacing the expression together with surrounding curly braces by the
result of evaluating the expression and converting the resulting object to astring asif by acall to the string
function. Curly braces are not recognized in an attribute value in an XSL T stylesheet unless the attribute
is specifically stated to be one that is interpreted as an attribute value template; in an element syntax
summary, the value of such attributes is surrounded by curly braces.

|:| Not al attributes are interpreted as attribute value templates. Attributes whose value is an expression or pattern,
attributes of top-level elementsand attributesthat refer to named XSLT objectsare not interpreted as attribute value
templates. In addition, xm ns attributesare not interpreted as attribute val ue templ ates; it would not be conformant
with the XML Namespaces Recommendation to do this.

The following example creates an i ng result element from a phot ogr aph element in the source; the
value of the sr ¢ attribute of thei ng element is computed from the value of the i mage- di r variable
and the string-value of the hr ef child of the phot ogr aph element; the value of thewi dt h attribute of
thei ng element iscomputed from thevalue of thewi dt h attribute of thesi ze child of thephot ogr aph
element:

<xsl:variabl e name="i mage-dir">/i mages</ xsl : vari abl e>

<xsl : tenpl at e mat ch="phot ogr aph" >

</ xsl :tenpl at e>

With this source

<phot ogr aph>
<hr ef >headquarters. j pg</ href >
<si ze w dt h="300"/>

</ phot ogr aph>

the result would be

Computing Generated Text Page 31 of 86

http://www.w3c.org/TR/xpath#function-string
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<ing src="/images/ headquarters.jpg" w dth="300"/>

When an attribute value template is instantiated, a double left or right curly brace outside an expression
will be replaced by a single curly brace. It is an error if aright curly brace occurs in an attribute value
template outside an expression without being followed by a second right curly brace. A right curly brace
inside a Literal in an expression is not recognized as terminating the expression.

Curly braces are not recognized recursively inside expressions. For example:

isnot allowed. Instead, use smply:

7.7. Numbering

<l-- Category: instruction -->

<xsl : nunber

level = "single" | "nultiple"” | "any"

count = pattern

from= pattern

val ue = nunber - expressi on

format = { string }

lang = { nntoken }

letter-value = { "al phabetic" | "traditional" }
groupi ng-separator = { char }

groupi ng-si ze = { nunber } />

The xsl : nunber element is used to insert a formatted number into the result tree. The number to be
inserted may be specified by an expression. Theval ue attribute contains an expression. The expression
is evaluated and the resulting object is converted to a number asif by a call to the number function. The
number is rounded to an integer and then converted to a string using the attributes specified in §7.7.1 —
Number to String Conversion Attributes on page 34 ; in this context, the value of each of these attributes
isinterpreted as an attribute value template. After conversion, the resulting string is inserted in the result
tree. For example, the following example numbers a sorted list:

<xsl:tenplate match="itens">
<xsl:for-each select="itenl>
<xsl:sort select="."/>
<p>
<xsl :nunber val ue="position()" format="1. "/>
<xsl :val ue-of select="."/>
</ p>
</ xsl : for-each>
</ xsl : tenpl at e>

If noval ue attribute is specified, thenthexsl : nunmber element inserts anumber based on the position
of the current node in the source tree. The following attributes control how the current nodeis to be num-
bered:

Page 32 of 86 Creating the Result Tree

http://www.w3.org/TR/xpath#NT-Literal
http://www.w3c.org/TR/xpath#function-number
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Thel evel attribute specifies what levels of the source tree should be considered; it has the values
singl e,mul tipl e orany. Thedefaultissi ngl e.

Thecount attribute isapattern that specifies what nodes should be counted at those levels. If count
attribute is not specified, then it defaults to the pattern that matches any node with the same node type
as the current node and, if the current node has an expanded-name, with the same expanded-name as
the current node.

Thef r omattribute is a pattern that specifies where counting starts.

In addition, the attributes specified in § 7.7.1 — Number to String Conversion Attributes on page 34 are
used for number to string conversion, asin the case when theval ue attribute is specified.

Thexsl : nunber element first constructsalist of positiveintegersusing thel evel ,count andfrom
attributes:

When | evel ="si ngl e", it goes up to the first node in the ancestor-or-self axis that matches the
count pattern, and constructsalist of length one containing one plusthe number of preceding siblings
of that ancestor that match the count pattern. If there is no such ancestor, it constructs an empty list.
If thef r omattributeis specified, then the only ancestorsthat are searched are those that are descendants
of the nearest ancestor that matches the f r ompattern. Preceding siblings has the same meaning here
aswith the pr ecedi ng- si bl i ng axis.

Whenl evel ="mul ti pl e",itconstructsalist of all ancestors of the current node in document order
followed by the element itself; it then selects from the list those nodes that match the count pattern;
it then maps each node in the list to one plus the number of preceding siblings of that node that match
thecount pattern. If thef r omattributeis specified, then the only ancestorsthat are searched arethose
that are descendants of the nearest ancestor that matches the f r ompattern. Preceding siblings has the
same meaning here aswith the pr ecedi ng- si bl i ng axis.

When| evel =" any", it constructsalist of length one containing the number of nodes that match the
count pattern and belong to the set containing the current node and all nodes at any level of the doc-
ument that are before the current nodein document order, excluding any namespace and attribute nodes
(in other wordsthe union of the membersof thepr ecedi ng andancest or - or - sel f axes). If the
f r omattribute is specified, then only nodes after the first node before the current node that match the
f r ompattern are considered.

The list of numbers is then converted into a string using the attributes specified in § 7.7.1 — Number to
String Conversion Attributes on page 34 ; in this context, the value of each of these attributesisinterpreted
as an attribute value template. After conversion, the resulting string isinserted in the result tree.

The following would number the itemsin an ordered list:

<xsl:tenplate match="ol /item >

<f o: bl ock>
<xsl : nunber/><xsl :text>. </xsl:text><xsl:apply-tenplates/>
</ fo: bl ock>

<xsl :tenpl at e>

The following two ruleswould number t i t | e elements. Thisisintended for adocument that contains a
sequence of chapters followed by a sequence of appendices, where both chapters and appendices contain
sections, which in turn contain subsections. Chapters are numbered 1, 2, 3; appendices are numbered A,
B, C; sectionsin chapters are numbered 1.1, 1.2, 1.3; sections in appendices are numbered A.1, A.2, A.3.

Numbering Page 33 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<xsl:tenplate match="title">
<f o: bl ock>
<xsl:nunber |evel ="nultiple"
count ="chapt er | secti on| subsecti on"
format="1.1 "/>
<xsl:apply-tenpl ates/>
</ fo: bl ock>
</ xsl :tenpl at e>

<xsl:tenplate match="appendi x//title" priority="1">
<f o: bl ock>
<xsl : nunber | evel ="nul tiple"
count =" appendi x| secti on| subsecti on"
format="A. 1 "/>
<xsl : appl y-tenpl ates/ >
</fo: bl ock>
</ xsl : tenpl at e>

The following example numbers notes sequentially within a chapter:

<xsl:tenplate match="note">
<f o: bl ock>
<xsl : number | evel ="any" fronm="chapter" format="(1) "/>
<xsl:apply-tenpl ates/>
</ fo: bl ock>
</ xsl :tenpl at e>

The following example would number H4 elementsin HTML with athree-part label:

<xsl :tenpl ate mat ch="H4">
<f o: bl ock>
<xsl : nunber | evel ="any" from"Hl" count="H2"/>
<xsl:text>. </xsl:text>
<xsl : nunber |evel ="any" from="H2" count ="H3"/>
<xsl:text>. </xsl:text>
<xsl : nunber |evel ="any" from="H3" count="H4"/>
<xsl:text> </xsl:text>
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl : tenpl at e>

7.7.1. Number to String Conversion Attributes

The following attributes are used to control conversion of alist of numbersinto astring. The numbers are
integers greater than 0. The attributes are all optional.

The main attributeisf or mat . The default value for thef or mat attributeis1. Thef or mat attributeis
split into a sequence of tokens where each token is a maximal sequence of alphanumeric characters or a
maximal sequence of non-a phanumeric characters. Alphanumeric means any character that hasaUnicode

Page 34 of 86 Creating the Result Tree

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

category of Nd, NI, No, Lu, LI, Lt, Lmor Lo. The aphanumeric tokens (format tokens) specify the format
to be used for each number in thelist. If the first token is a non-al phanumeric token, then the constructed
string will start with that token; if the last token is non-alphanumeric token, then the constructed string
will end with that token. Non-alphanumeric tokens that occur between two format tokens are separator
tokensthat are used to join numbersin thelist. The nth format token will be used to format the nth number
inthelist. If there are more numbers than format tokens, then the last format token will be used to format
remaining numbers. If there are no format tokens, then aformat token of 1 isused to format all numbers.
Theformat token specifies the string to be used to represent the number 1. Each number after the first will
be separated from the preceding number by the separator token preceding the format token used to format
that number, or, if there are no separator tokens, then by . (aperiod character).

Format tokens are a superset of the allowed values for the t ype attribute for the OL element in HTML
4.0 and areinterpreted as follows:

* Any token wherethelast character has adecimal digit value of 1 (as specified in the Unicode character
property database), and the Unicode value of preceding charactersis one less than the Unicode value
of the last character generates a decimal representation of the number where each number is at least as

long astheformat token. Thus, aformat token 1 generatesthesequencel 2 ... 10 11 12 ...,
and aformat token 01 generatesthe sequence01 02 ... 09 10 11 12 ... 99 100 101.
» A format token A generatesthesequenceA B C ... Z AA AB AC.. ..
» A format token a generatesthesequencea b ¢ ... z aa ab ac....
* A formattokeni generatesthesequencei ii iii iv v vi vii viii ix x
o A formattoken| generatesthesequencel 1 111 IV V VI VII VIII IXX....

» Any other format token indicates anumbering sequencethat startswith that token. If animplementation
does not support a numbering sequence that starts with that token, it must use a format token of 1.

When numbering with an alphabetic sequence, the | ang attribute specifies which language's alphabet is
to be used; it hasthe samerange of valuesasxmi : | ang [XML];if nol ang vaueis specified, thelanguage
should be determined from the system environment. I mplementers should document for which languages
they support numbering.

|:| Implementers should not make any assumptions about how numbering works in particular languages and should
properly research the languages that they wish to support. The numbering conventions of many languages are very
different from English.

Thel et t er-val ue attribute disambiguates between numbering sequences that use letters. In many
languages there are two commonly used numbering sequences that use letters. One numbering sequence
assigns numeric valuesto lettersin al phabetic sequence, and the other assigns numeric valuesto each letter
in some other manner traditional in that language. In English, these would correspond to the numbering
sequences specified by the format tokensa and i . In some languages, the first member of each sequence
is the same, and so the format token alone would be ambiguous. A value of al phabet i ¢ specifies the
alphabetic sequence; avalue of t radi ti onal specifies the other sequence. If the |l ett er - val ue
attribute is not specified, then it is implementation-dependent how any ambiguity is resolved.

|:| Itispossiblefor two conforming XSLT processors not to convert anumber to exactly the same string. Some XSLT
processors may not support some languages. Furthermore, there may be variations possiblein the way conversions
are performed for any particular language that are not specifiable by the attributeson xsl : nunber . Futureversions
of XSLT may provide additional attributesto provide control over these variations. |mplementations may also use
implementati on-specific namespaced attributes on xsl : nunber for this.

Numbering Page 35 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Thegr oupi ng- separ at or attribute gives the separator used as a grouping (e.g. thousands) separator
in decima numbering sequences, and the optional gr oupi ng- si ze specifies the size (normally 3) of
the grouping. For example, gr oupi ng- separ at or =", " andgr oupi ng- si ze="3" would produce
numbers of the form 1, 000, 000. If only one of the gr oupi ng- separ at or and gr oupi ng- si ze
attributes is specified, then it isignored.

Here are some examples of conversion specifications:
o format="8ア" specifies Katakana numbering
o format="イ " specifies Katakana numbering in the “iroha” order

o format="8๑ " specifies numbering with Thai digits

o format="8א" |etter-value="traditional" specifies“traditional” Hebrew num-
bering

o format="ა" |etter-value="traditional" specifies Georgian numbering

o format="α" |etter-val ue="traditional" specifies”classica” Greek numbering

o format="а" |letter-value="traditional" specifiesOld Savic numbering

8. Repetition

<l-- Category: instruction -->

<xsl : for-each

sel ect = node- set-expression >

<l-- Content: (xsl:sort*, tenplate) -->
</ xsl : for-each>

When the result has a known regular structure, it is useful to be able to specify directly the template for
selected nodes. Thexsl : f or - each instruction contains atemplate, which isinstantiated for each node
selected by the expression specified by the sel ect attribute. The sel ect attribute is required. The
expression must evaluate to a node-set. The template is instantiated with the selected node as the current
node, and with alist of all of the selected nodes asthe current nodelist. The nodes are processed in document
order, unless a sorting specification is present (see § 10 — Sorting on page 39).

For example, given an XML document with this structure

<cust oner s>

<cust omner >
<nane>. .. </ nane>
<order>...</order>
<order>...</order>

</ cust oner >

<cust omner >
<nane>. .. </ nane>
<order>...</order>
<order>...</order>

Page 36 of 86 Repetition

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ cust oner >
</ cust oner s>

thefollowing would createan HTML document containing atablewith arow for eachcust omer element

<xsl :tenplate match="/">
<ht m >
<head>
<title>Custonmers</title>
</ head>
<body>
<t abl e>
<t body>
<xsl: for-each sel ect="cust omers/custoner">
<tr>
<t h>
<xsl : appl y-tenpl ates sel ect ="nane"/ >
</th>
<xsl:for-each sel ect="order">
<t d>
<xsl : appl y-tenpl at es/ >
</td>
</ xsl : for-each>
</tr>
</ xsl : for-each>
</ t body>
</t abl e>
</ body>
</htm >
</ xsl : tenpl at e>

9. Conditional Processing

There are two instructions in XSLT that support conditional processing in a template: xsl : i f and
xsl : choose. The xsl :if instruction provides simple if-then conditionality; the xsl : choose
instruction supports selection of one choice when there are severa possibilities.

9.1. Conditional Processing with xsl : i f

<l-- Category: instruction -->
<xsl:if

test = bool ean- expression >
<l-- Content: tenplate -->
</xsl:if>

Conditional Processing with xsl @i f Page 37 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Thexsl : i f element hasat est attribute, which specifies an expression. The content isatemplate. The
expression is evaluated and the resulting object is converted to a boolean as if by a call to the boolean
function. If the result istrue, then the content template is instantiated; otherwise, nothing is created. In the
following example, the namesin a group of names are formatted as a comma separated list:

<xsl :tenpl ate mat ch="nanel i st/ nanme" >

<xsl : appl y-tenpl ates/ >

<xsl:if test="not(position()=last())"> </xsl:if>
</ xsl : tenpl at e>

The following colors every other table row yellow:

<xsl:tenplate match="iten>
<tr>
<xsl:if test="position() nod 2 = 0">
<xsl:attribute name="bgcol or">yel | ow</ xsl :attri bute>
</xsl:if>
<xsl :apply-tenpl ates/ >
</tr>

</ xsl :tenpl at e>

9.2. Conditional Processing with xsl : choose

<l-- Category: instruction -->
<xsl : choose>
<I-- Content: (xsl|l:when+, xsl:otherw se?) -->

</ xsl : choose>

<xsl : when

test = bool ean- expressi on >
<l-- Content: tenplate -->
</ xsl : when>

<xsl: ot herw se>
<l-- Content: tenplate -->
</ xsl : ot herw se>

Thexsl : choose element selects one among anumber of possible alternatives. It consists of a sequence
of xsl : when elements followed by an optional xsl : ot her wi se element. Each xsl : when element
has a single attribute, t est, which specifies an expression. The content of the xsl : when and
xsl : ot herw se elements is a template. When an xsl : choose element is processed, each of the
xsl : when elementsistested in turn, by evaluating the expression and converting the resulting object to
aboolean as if by acall to the boolean function. The content of the first, and only the first, xsl : when
element whose test istrue isinstantiated. If no xsl : when istrue, the content of the xsl : ot her wi se
element isinstantiated. If no xsl : when element is true, and no xsl : ot her wi se element is present,
nothing is created.

Page 38 of 86 Conditional Processing

http://www.w3c.org/TR/xpath#function-boolean
http://www.w3c.org/TR/xpath#function-boolean
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

The following example enumerates items in an ordered list using arabic numerals, letters, or roman
numerals depending on the depth to which the ordered lists are nested.

<xsl:tenplate match="orderedlist/listiteni>
<fo:list-itemindent-start="2pi"'>
<fo:list-iteml abel >
<xsl:vari abl e nane="1evel "
sel ect ="count (ancestor::orderedlist) nod 3"/>
<xsl : choose>
<xsl :when test="$l evel =1' >
<xsl :nunber format="i"/>
</ xsl : when>
<xsl : when test="$l evel =2' >
<xsl :nunber format="a"/>
</ xsl : when>
<xsl : ot herwi se>
<xsl : nunber format="1"/>
</ xsl : ot herw se>
</ xsl : choose>
<xsl:text> </xsl:text>
</fo:list-item]l abel >
<fo:list-item body>
<xsl : appl y-tenpl ates/ >
</fo:list-item body>
</[fo:list-itenr
</ xsl :tenpl at e>

10. Sorting

<xsl :sort
sel ect = string-expression
lang = { nntoken }

data-type = { "text" | "nunber" | gnane-but-not-ncnane }
order = { "ascending" | "descending" }
case-order = { "upper-first" | "lower-first" } />

Sorting is specified by adding xsl : sort elements as children of an xsl : appl y-t enpl ates or
xsl : f or - each element. Thefirstxsl : sort child specifiesthe primary sort key, thesecondxsl : sort
child specifiesthe secondary sort key and soon. Whenanxsl : appl y-t enpl at es orxsl : f or - each
element has one or more xsl : sort children, then instead of processing the selected nodes in document
order, it sortsthe nodes according to the specified sort keys and then processes them in sorted order. When
used in xsl : f or - each, xsl : sort elements must occur first. When a template is instantiated by
xsl :appl y-tenpl at es and xsl : f or - each, the current node list list consists of the complete list
of nodes being processed in sorted order.

Conditional Processing with xsl : choose Page 39 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

xsl :sort hasasel ect attribute whose value is an expression. For each node to be processed, the
expression is evaluated with that node as the current node and with the complete list of nodes being pro-
cessed in unsorted order asthe current node list. The resulting object is converted to astring asif by acall
to the string function; this string is used as the sort key for that node. The default value of the sel ect
attributeis . , which will cause the string-value of the current node to be used as the sort key.

This string serves as a sort key for the node. Thefollowing optional attributeson xsl : sort control how
thelist of sort keysare sorted; the values of al of these attributes are interpreted as attribute val ue templ ates.

» order specifieswhether the strings should be sorted in ascending or descending order; ascendi ng
specifies ascending order; descendi ng specifies descending order; the default isascendi ng

» | ang specifies the language of the sort keys; it has the same range of valuesasxm : | ang [XML];
if nol ang value is specified, the language should be determined from the system environment

« dat a-t ype specifies the data type of the strings; the following values are allowed:

- text specifiesthat the sort keys should be sorted |exicographically in the culturally correct manner
for the language specified by | ang

- nunber specifies that the sort keys should be converted to numbers and then sorted according to
the numeric value; the sort key is converted to a number asif by acall to the number function; the
| ang attribute isignored

- aQNamewith aprefix isexpanded into an expanded-name asdescribed in § 2.4 —Qualified Names
on page 6 ; the expanded-name identifies the data-type; the behavior in this case is not specified
by this document

The default valueist ext .

The XSL Working Group plansthat future versions of XSLT will leverage XML Schemasto define further
values for this attribute.

e case-order has the value upper-first or | ower-first; this applies when dat a-
type="t ext", and specifiesthat upper-caseletters should sort before lower-case letters or vice-versa
respectively. For example, if | ang="en" ,then A a B b aresorted withcase- or der =" upper -
first" anda A b Baesortedwithcase- order ="| ower - first".Thedefault valueislanguage
dependent.

|:| Itis possible for two conforming XSLT processors not to sort exactly the same. Some XSLT processors may nhot
support some languages. Furthermore, there may be variations possible in the sorting of any particular language
that are not specified by the attributes on xsl : sor t , for example, whether Hiragana or Katakana is sorted first
in Japanese. Future versions of XSLT may provide additional attributes to provide control over these variations.
Implementations may also use implementation-specific namespaced attributes on xsl : sort for this.

|:| It is recommended that implementers consult [UNICODE TR10] for information on internationalized sorting.

The sort must be stable: in the sorted list of nodes, any sub list that has sort keys that all compare equal
must be in document order.

For example, suppose an employee database has the form
<enpl oyees>

<enpl oyee>

Page 40 of 86 Sorting

http://www.w3c.org/TR/xpath#function-string
http://www.w3c.org/TR/xpath#function-number
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<nane>
<gi ven>Janes</ gi ven>
<fam | y>d ark</fam | y>
</ nane>

</ enpl oyee>
</ enpl oyees>

Then alist of employees sorted by name could be generated using:

<xsl:tenpl ate nmatch="enpl oyees" >

<xsl : appl y-tenpl ates sel ect ="enpl oyee" >
<xsl:sort select="name/famly"/>
<xsl :sort sel ect ="nane/ gi ven"/>
</ xsl : appl y-t enpl at es>
</ ul >
</ xsl : tenpl at e>

<xsl:tenpl ate nat ch="enpl oyee" >

<xsl : val ue- of sel ect ="nane/ gi ven"/>
<xsl:text> </xsl:text>
<xsl :val ue-of select="nanme/fanm|y"/>

</ xsl :tenpl at e>

11. Variables and Parameters

<l-- Category: top-level-elenment -->
<l-- Category: instruction -->

<xsl :vari abl e

name = gname

sel ect = expression >

<l-- Content: tenplate -->

</ xsl :vari abl e>

<l-- Category: top-level-elenment -->
<xsl : param

name = gnamne

sel ect = expression >

<l-- Content: tenplate -->

</ xsl : par anp

A variable is a name that may be bound to a value. The value to which a variable is bound (the value of
thevariable) can be an object of any of thetypesthat can bereturned by expressions. There aretwo elements

Page 41 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

that can be used to bind variables: xsl : vari abl e and xsl : par am The difference is that the value
specifiedonthexsl : par amvariableisonly adefault valuefor the binding; when the template or stylesheet
withinwhichthexsl : par amelement occursisinvoked, parameters may be passed that are used in place
of the default values.

Bothxsl : vari abl e and xsl : par amhave arequired nane attribute, which specifiesthe name of the
variable. Thevalue of the name attributeisa QName, whichisexpanded as described in §2.4—Qualified
Nameson page 6 .

For any use of these variable-binding elements, there is a region of the stylesheet tree within which the
binding is visible; within this region, any binding of the variable that was visible on the variable-binding
element itself is hidden. Thus, only the innermost binding of a variable is visible. The set of variable
bindingsin scope for an expression consists of those bindings that are visible at the point in the stylesheet
where the expression occurs.

11.1. Result Tree Fragments

Variablesintroduce an additional data-typeinto the expression language. Thisadditional datatypeiscalled
result tree fragment. A variable may be bound to a result tree fragment instead of one of the four basic
XPath data-types (string, number, boolean, node-set). A result tree fragment represents a fragment of the
result tree. A result tree fragment istreated equivalently to anode-set that contains just asingle root node.
However, the operations permitted on aresult tree fragment are a subset of those permitted on a node-set.
An operation is permitted on aresult tree fragment only if that operation would be permitted on a string
(the operation on the string may involve first converting the string to a number or boolean). In particular,
itisnot permittedto usethe/ ,// ,and[] operatorson result tree fragments. When a permitted operation
is performed on aresult tree fragment, it is performed exactly asit would be on the equivalent node-set.

When a result tree fragment is copied into the result tree (see § 11.3 — Using Values of Variables and
Parameterswith xsl : copy- of on page43), then all the nodesthat are children of the root node in the
equivalent node-set are added in sequence to the result tree.

Expressions can only return values of type result tree fragment by referencing variables of type result tree
fragment or calling extension functionsthat return aresult tree fragment or getting asystem property whose
valueisaresult tree fragment.

11.2. Values of Variables and Parameters
A variable-binding element can specify the value of the variable in three alternative ways.

» If the variable-binding element has a sel ect attribute, then the value of the attribute must be an
expression and the value of the variableisthe object that results from evaluating the expression. In this
case, the content must be empty.

» If thevariable-binding element does not have asel ect attribute and has non-empty content (i.e. the
variable-binding element has one or more child nodes), then the content of the variabl e-binding element
specifies the value. The content of the variable-binding element is atemplate, which isinstantiated to
give the value of the variable. The value is a result tree fragment equivalent to a node-set containing
just asingleroot node having as children the sequence of nodes produced by instantiating the template.
The base URI of the nodesin the result tree fragment is the base URI of the variable-binding element.

It isan error if amember of the sequence of nodes created by instantiating the template is an attribute
node or a namespace node, since aroot hode cannot have an attribute node or a namespace node as a

Page 42 of 86 Variables and Parameters

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

child. An XSLT processor may signal the error; if it does not signal the error, it must recover by not
adding the attribute node or namespace node.

 If thevariable-binding element has empty content and doesnot haveasel ect attribute, thenthevalue
of the variable is an empty string. Thus

<xsl :vari abl e nane="x"/>
isequivalent to

<xsl:variabl e nane="x" select=""""/>

|:| When avariable is used to select nodes by position, be careful not to do:

<xsl:vari abl e nane="n">2</xsl : vari abl e>

<xsl :val ue-of select="iten{$n]"/>

Thiswill output the value of the first item element, because the variable n will be bound to aresult tree fragment,
not a number. Instead, do either

<xsl:variabl e nane="n" select="2"/>

<xsl :val ue-of select="iten{$n]"/>
or

<xsl :vari abl e nane="n">2</xsl : vari abl e>

<xsl : val ue-of sel ect="itenposition()=$n]"/>

|:| One convenient way to specify the empty node-set as the default value of a parameter is:

<xsl : param nanme="x" select="/.."/>

11.3. Using Values of Variables and Parameterswith xsl : copy- of

<l-- Category: instruction -->
<xsl : copy- of
sel ect = expression />

Thexsl : copy- of element can be used to insert aresult tree fragment into the result tree, without first
converting itto astring asxsl : val ue- of does(see § 7.6.1 — Generating Text with xsl : val ue- of
on page 30). The required sel ect attribute contains an expression. When the result of evaluating the
expression is a result tree fragment, the complete fragment is copied into the result tree. When the result
isanode-set, al the nodesin the set are copied in document order into the result tree; copying an element
node copies the attribute nodes, namespace nodes and children of the element node as well as the element
nodeitself; aroot node is copied by copying its children. When the result is neither anode-set nor aresult
tree fragment, theresult isconverted to astring and then inserted into the result tree, aswith xsl : val ue-
of .

Using Values of Variablesand Parameterswith xsl : copy- of Page 43 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

11.4. Top-level Variables and Parameters

Both xsl : vari abl e and xsl : par amare allowed as top-level elements. A top-level variable-binding
element declares a global variable that is visible everywhere. A top-level xsl : par amelement declares
a parameter to the stylesheet; XSLT does not define the mechanism by which parameters are passed to
the stylesheet. It isan error if a stylesheet contains more than one binding of atop-level variable with the
same name and same import precedence. At the top-level, the expression or template specifying the variable
valueis evaluated with the same context as that used to process the root node of the source document: the
current node is the root node of the source document and the current node list is alist containing just the
root node of the source document. If the template or expression specifying the value of a global variable
x references aglobal variabley, then the value for y must be computed before the value of x. Itisan error
if itisimpossibleto dothisfor all global variable definitions; in other words, itisan error if the definitions
arecircular.

This example declares a global variable par a- f ont - si ze, which it references in an attribute value
template.

<xsl :vari abl e name="para-font-size">12pt </ xsl : vari abl e>

<xsl :tenpl ate mat ch="para">
<fo: bl ock font-size="{$para-font-size}">
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl : tenpl at e>

11.5. Variables and Parameterswithin Templates

As well as being allowed at the top-level, both xsl : vari abl e and xsl : par amare aso alowed in
templates. xsl : vari abl e isalowed anywhere within atemplate that an instruction is allowed. In this
case, the binding is visible for all following siblings and their descendants. Note that the binding is not
visiblefor the xsl : vari abl e element itself. xs| : par amis allowed as a child at the beginning of an
xsl : t enpl at e element. In this context, the binding is visible for all following siblings and their
descendants. Note that the binding is not visible for the xsl : par amelement itself.

A binding shadows another binding if the binding occurs at a point where the other binding isvisible, and
the bindings have the same name. It is an error if a binding established by an xsl : vari abl e or
xsl : par amelement within a template shadows another binding established by an xsl : vari abl e or
xsl : par am element also within the template. It is not an error if a binding established by an
xsl :vari abl e or xsl : par amelement in a template shadows another binding established by an
xsl :vari abl e or xsl : par amtop-level element. Thus, the following is an error:

<xsl:tenpl ate nane="foo">
<xsl : param nane="x" select="1"/>

<xsl :vari abl e nanme="x" sel ect="2"/>
</ xsl :tenpl at e>

However, the following is allowed:

<xsl : param nane="x" sel ect="1"/>
<xsl:tenpl ate nane="foo">

Page 44 of 86 Variables and Parameters

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<xsl :variabl e name="x" select="2"/>
</ xsl : tenpl at e>

|:| The nearest equivalent in Javato an xsl : vari abl e element in atemplate is afina loca variable declaration
with aninitializer. For example,

<xsl:variabl e name="x" sel ect=""'value'"/>

has similar semantics to

final Object x = "val ue";

XSLT does not provide an equivalent to the Java assignment operator
x = "val ue";

because thiswould make it harder to create an implementation that processes a document other than in abatch-like
way, starting at the beginning and continuing through to the end.

11.6. Passing Parametersto Templates

<xsl : wi t h- param

name = gname

sel ect = expression >

<l-- Content: tenplate -->
</ xsl :wi t h-paran

Parameters are passed to templates using the xsl : wi t h- par amelement. The required nane attribute
specifies the name of the parameter (the variabl e the value of whose binding is to be replaced). The value
of the nane attribute isa QName, which is expanded as described in § 2.4 — Qualified Names on page 6
.Xsl :wi t h- par amis alowed within both xsl : cal | -t enpl at e and xsl : appl y-t enpl at es.
The value of the parameter is specified in the same way as for xsl : vari abl e and xsl : par am The
current node and current node list used for computing the value specified by xsl : wi t h- par amelement
is the same as that used for the xsl : appl y-t enpl at es or xsl : cal | -t enpl at e element within
which it occurs. It is not an error to pass a parameter x to atemplate that does not have an xsl : par am
element for x; the parameter is simply ignored.

This example defines a named template for anunber ed- bl ock with an argument to control the format
of the number.

<xsl : tenpl at e nane="nunber ed- bl ock" >
<xsl:param nane="format">1. </xsl:paranp
<f o: bl ock>
<xsl : nunber format="{$fornat}"/>
<xsl :apply-tenpl ates/ >
</ fo: bl ock>
</ xsl :tenpl at e>

<xsl:tenplate match="ol//ol/li">

<xsl :cal |l -tenpl at e name="nunber ed- bl ock" >
<xsl :wi t h- param nane="format">a. </xsl:with-paranr

Passing Par ametersto Templates Page 45 of 86

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ xsl:call-tenpl ate>
</ xsl : tenpl at e>

12. Additional Functions

This section describes X SL T-specific additions to the core X Path function library. Some of these additional
functions also make use of information specified by top-level elementsin the stylesheet; this section also
describes these elements.

12.1. Multiple Sour ce Documents
Function: node-set document(object, node-set?)
The document function allows access to XML documents other than the main source document.

When the document function has exactly one argument and the argument is a node-set, then the result is
the union, for each node in the argument node-set, of the result of calling the document function with the
first argument being the string-value of the node, and the second argument being a node-set with the node
asits only member. When the document function has two arguments and the first argument is a node-set,
then the result is the union, for each node in the argument node-set, of the result of calling the document
function with the first argument being the string-value of the node, and with the second argument being
the second argument passed to the document function.

When the first argument to the document function is not a node-set, the first argument is converted to a
string asif by acall to the string function. Thisstring istreated as a URI reference; the resource identified
by the URI isretrieved. The data resulting from the retrieval action is parsed asan XML document and a
tree is constructed in accordance with the data model (see § 3 — Data Model on page 11). If thereisan
error retrieving the resource, then the XSLT processor may signal an error; if it does not signal an error,
it must recover by returning an empty node-set. One possible kind of retrieval error isthat the XSLT pro-
cessor does not support the URI scheme used by the URI. An XSLT processor is not required to support
any particular URI schemes. The documentation for an XSLT processor should specify which URI schemes
the XSLT processor supports.

If the URI reference does not contain a fragment identifier, then a node-set containing just the root node
of the document is returned. If the URI reference does contain a fragment identifier, the function returns
anode-set containing the nodes in the tree identified by the fragment identifier of the URI reference. The
semantics of the fragment identifier is dependent on the mediatype of the result of retrieving the URI. If
thereis an error in processing the fragment identifier, the XSLT processor may signal the error; if it does
not signal the error, it must recover by returning an empty node-set. Possible errors include:

» Thefragment identifier identifies something that cannot be represented by an XSLT node-set (such as
arange of characters within atext node).

» The XSLT processor does not support fragment identifiers for the media-type of the retrieval result.
An XSLT processor is not required to support any particular media types. The documentation for an
XSLT processor should specify for which mediatypesthe XSLT processor supportsfragment identifiers.

The data resulting from the retrieval action is parsed as an XML document regardless of the media type
of theretrieval result; if thetop-level mediatypeist ext , thenit isparsed in the sameway asif the media
type were t ext / xm ; otherwise, it is parsed in the same way as if the media type were appl i ca-
tion/xm.

Page 46 of 86 Additional Functions

http://www.w3c.org/TR/xpath#function-string
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Sincethereisnotop-level xm mediatype, datawith amediatypeother thant ext / xm orappl i cati on/ xm
may in fact be XML.

The URI reference may be relative. The base URI (see § 3.2 —Base URI on page 11) of the nodein the
second argument node-set that isfirst in document order is used as the base URI for resolving the relative
URI into an absolute URI. If the second argument is omitted, then it defaults to the node in the stylesheet
that contains the expression that includes the call to the document function. Note that a zero-length URI
reference is areference to the document relative to which the URI reference is being resolved; thusdoc-

urment ("") refersto the root node of the stylesheet; the tree representation of the stylesheet is exactly
the same asif the XML document containing the stylesheet was the initial source document.

Two documents are treated as the same document if they are identified by the same URI. The URI used
for the comparison is the absolute URI into which any relative URI was resolved and does not include any
fragment identifier. One root node is treated as the same node as another root node if the two nodes are
from the same document. Thus, the following expression will always be true:

gener at e-i d(docunent ("foo. xm ")) =generat e-i d(docunent ("foo.xm "))

Thedocument function givesriseto the possibility that a node-set may contain nodes from more than one
document. With such a node-set, the relative document order of two nodes in the same document is the
normal document order defined by XPath [XPath]. The relative document order of two nodesin different
documentsis determined by an implementation-dependent ordering of the documents containing the two
nodes. There are no constraints on how the implementation orders documents other than that it must do
so consistently: an implementation must always use the same order for the same set of documents.

12.2. Keys

Keys provide a way to work with documents that contain an implicit cross-reference structure. The | D,
| DREF and | DREFS attribute typesin XML provide amechanism to allow XML documentsto maketheir
cross-reference explicit. XSLT supportsthisthrough the XPath id function. However, this mechanism has
anumber of limitations:

» |D attributes must be declared as such inthe DTD. If an ID attribute is declared as an I D attribute only
in the external DTD subset, then it will be recognized as an ID attribute only if the XML processor
reads the external DTD subset. However, XML does not require XML processors to read the external
DTD, and they may well choose not to do so, especialy if the document is declared st an-
dal one="yes".

» A document can contain only asingle set of unique IDs. There cannot be separate independent sets of
unique IDs.

» ThelD of an element can only be specified in an attribute; it cannot be specified by the content of the
element, or by achild element.

* AnID isconstrained to be an XML name. For example, it cannot contain spaces.
» An element can have at most one ID.
» At most one element can have a particular ID.

Because of these limitations XML documents sometimes contain a cross-reference structure that is not
explicitly declared by |D/IDREF/IDREFS attributes.

Keys Page 47 of 86

http://www.w3c.org/TR/xpath#function-id
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

A key isatriple containing:

1. the node which has the key

2. the name of the key (an expanded-name)
3. thevalue of the key (astring)

A stylesheet declares a set of keysfor each document using the xsl : key element. When this set of keys
contains a member with node x, name y and value z, we say that node x has a key with namey and value
z

Thus, akey isakind of generalized ID, which is not subject to the same limitations as an XML ID:
» Keysaredeclared in the stylesheet using xsl : key elements.

» A key has aname as well as avalue; each key name may be thought of as distinguishing a separate,
independent space of identifiers.

» Thevalue of anamed key for an element may be specified in any convenient place; for example, in an
attribute, in a child element or in content. An XPath expression is used to specify where to find the
value for a particular named key.

» Thevaue of akey can be an arbitrary string; it is not constrained to be a name.
» Therecan be multiplekeysin adocument with the same node, same key name, but different key values.

» Therecan be multiplekeysin adocument with the same key name, samekey value, but different nodes.

<l-- Category: top-level-elenment -->
<xsl : key

name = gname

mat ch = pattern

use = expression />

The xsl : key element is used to declare keys. The nane attribute specifies the name of the key. The
value of the name attribute is a QName, which is expanded as described in § 2.4 — Qualified Names on
page 6 . The mat ch attribute is a Pattern; an xsl : key element gives information about the keys of
any node that matches the pattern specified in the match attribute. The use attribute is an expression
specifying the values of the key; the expression is evaluated once for each node that matches the pattern.
If the result is a node-set, then for each node in the node-set, the node that matches the pattern has a key
of the specified name whose value is the string-value of the node in the node-set; otherwise, the result is
converted to a string, and the node that matches the pattern has a key of the specified name with value
equal to that string. Thus, a node x has a key with namey and value z if and only if thereisan xsl : key
element such that:

» X matchesthe pattern specified in the mat ch attribute of the xsl : key element;
» thevalue of the nane attribute of the xsl : key element isequal toy; and

» when the expression specified in the us e attribute of the xsl : key element is evaluated with x asthe
current node and with anode list containing just x as the current node list resulting in an object u, then
either zis equal to the result of converting u to astring as if by a call to the string function, or uisa
node-set and z is equal to the string-value of one or more of the nodesin u.

Page 48 of 86 Additional Functions

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3c.org/TR/xpath#function-string
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Note also that there may be more than one xsl : key element that matches a given node; all of the
matching xsl : key elements are used, even if they do not have the same import precedence.

Itisan error for the value of either theuse attribute or the mat ch attribute to contain a\VariableReference.

Function: node-set key(string, object)

The key function does for keys what the id function does for 1Ds. The first argument specifies the name
of the key. The value of the argument must be a QName, which is expanded as described in § 2.4 —
Qualified Names on page 6 . When the second argument to the key function is of type node-set, then the
result is the union of the result of applying the key function to the string value of each of the nodes in the
argument node-set. When the second argument to key is of any other type, the argument is converted to a
string asif by acall to the string function; it returns anode-set containing the nodes in the same document
as the context node that have a value for the named key equal to this string.

For example, given a declaration
<xsl: key nanme="i dkey" match="div" use="@d"/>

an expression key("i dkey", @ ef) will return the same node-set asi d(@ ef) , assuming that the
only 1D attribute declared in the XML source document is:

<I ATTLI ST div id | D #l MPLI ED>
and that ther ef attribute of the current node contains no whitespace.
Suppose a document describing afunction library usesapr ot ot ype element to define functions

<prototype nane="key" return-type="node-set">
<arg type="string"/>

<arg type="object"/>

</ pr ot ot ype>

and af unct i on element to refer to function names
<functi on>key</functi on>
Then the stylesheet could generate hyperlinks between the references and definitions as follows:

<xsl: key nanme="func" mat ch="prototype" use="@ane"/>

<xsl :tenpl ate mat ch="functi on">

<xsl :apply-tenpl ates/ >
</ a>
</ b>
</ xsl : tenpl at e>

<xsl:tenpl ate mat ch="prot ot ype">

<p>
Function:

Keys Page 49 of 86

http://www.w3.org/TR/xpath#NT-VariableReference
http://www.w3c.org/TR/xpath#function-id
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3c.org/TR/xpath#function-string
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ a></ p>
</ xsl : tenpl at e>

The key can be used to retrieve a key from a document other than the document containing the context
node. For example, suppose a document contains bibliographic references in the form
<bi br ef >XSLT</ bi br ef >, andthereisaseparate XML document bi b. xm containing abibliographic
database with entries in the form:

<entry name="XSLT">...</entry>
Then the stylesheet could use the following to transform the bi br ef elements:

<xsl : key name="bi b" match="entry" use="@.ane"/>

<xsl :tenpl ate mat ch="bi bref">
<xsl:vari abl e nane="nane" select="."/>
<xsl:for-each sel ect ="document (' bi b. xm"')">
<xsl:apply-tenpl ates sel ect ="key(' bi b', $nane) "/ >
</ xsl : for-each>
</ xsl : tenpl at e>

12.3. Number Formatting
Function: string format-number(number, string, string?)

Theformat-number function convertsitsfirst argument to a string using the format pattern string specified
by the second argument and the decimal-format named by the third argument, or the default decimal-format,
if thereis no third argument. The format pattern string isin the syntax specified by the JIDK 1.1 Decimal-
Format class. The format pattern string is in a localized notation: the decimal-format determines what
characters have a special meaning in the pattern (with the exception of the quote character, which is not
localized). The format pattern must not contain the currency sign (#x00A4); support for this feature was
added after theinitial release of JDK 1.1. The decimal-format name must be a QName, which is expanded
as described in § 2.4 — Qualified Names on page 6 . It is an error if the stylesheet does not contain a
declaration of the decimal-format with the specified expanded-name.

|:| Implementations are not required to use the JDK 1.1 implementation, nor are implementations required to be
implemented in Java.

|:| Stylesheets can use other facilitiesin X Path to control rounding.

Page 50 of 86 Additional Functions

http://java.sun.com/products/jdk/1.1/docs/api/java.text.DecimalFormat.html
http://java.sun.com/products/jdk/1.1/docs/api/java.text.DecimalFormat.html
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<l-- Category: top-level-elenment -->
<xsl : deci mal - f or mat

name = gname

deci mal - separator = char

gr oupi ng- separator = char
infinity = string

m nus-sign = char

NaN = string

percent = char

per-nille = char

zero-digit = char

digit = char
pattern-separator = char />

Thexsl : deci mal - f or mat element declares a decimal-format, which controls the interpretation of a
format pattern used by the format-number function. If thereisanane attribute, then the element declares
anamed decimal-format; otherwise, it declaresthe default decimal-format. The value of the nare attribute
is a QName, which is expanded as described in 8§ 2.4 — Qualified Names on page 6 . It is an error to
declare either the default decimal-format or a decimal-format with a given name more than once (even
with different import precedence), unlessit is declared every time with the same value for all attributes
(taking into account any default values).

The other attributeson xsl : deci mal - f or mat correspond to the methods on the JDK 1.1 Decimal For-
matSymbols class. For each get /set method pair there is an attribute defined for the xsl : deci mal -
f or mat element.

The following attributes both control the interpretation of characters in the format pattern and specify
characters that may appear in the result of formatting the number:

» deci nmal - separ at or specifies the character used for the decimal sign; the default value is the
period character (.)

e groupi ng-separ at or gpecifies the character used as a grouping (e.g. thousands) separator; the
default value is the comma character (,)

» percent specifiesthe character used as a percent sign; the default value is the percent character (%

» per-ml | e specifiesthe character used asaper mille sign; the default value isthe Unicode per-mille
character (#x2030)

» zero-digit specifiesthe character used as the digit zero; the default value is the digit zero (0)
The following attributes control the interpretation of characters in the format pattern:

» digit specifiesthe character used for a digit in the format pattern; the default value is the number
sign character (#)

e pattern-separator specifiesthe character used to separate positive and negative sub patternsin
a pattern; the default value is the semi-colon character (;)

Thefollowing attributes specify characters or stringsthat may appear in the result of formatting the number:
* infinity specifiesthe string used to represent infinity; the default value isthe string | nfi ni ty
* NaN specifies the string used to represent the NaN value; the default value is the string NaN

Number Formatting Page 51 of 86

http://www.w3.org/TR/REC-xml-names#NT-QName
http://java.sun.com/products/jdk/1.1/docs/api/java.text.DecimalFormatSymbols.html
http://java.sun.com/products/jdk/1.1/docs/api/java.text.DecimalFormatSymbols.html
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

* m nus- si gn specifiesthe character used as the default minus sign; the default value is the hyphen-
minus character (- , #x2D)

12.4. Miscellaneous Additional Functions

Function: node-set current()

The current function returns a node-set that has the current node as its only member. For an outermost
expression (an expression not occurring within another expression), the current node is always the same
as the context node. Thus,

<xsl :val ue-of select="current()"/>

means the same as

<xsl :val ue-of select="."/>

However, within square brackets the current node is usually different from the context node. For example,
<xsl:apply-tenpl ates select="//gl ossary/iten] @anme=current()/ @ef]"/>

will processall i t emelementsthat haveagl ossar y parent element and that have anane attribute with
value equal to the value of the current node'sr ef attribute. Thisis different from

<xsl :apply-tenpl ates select="//glossary/iten] @ane=./ @ef]"/>
which means the same as
<xsl:apply-tenpl ates select="//gl ossary/iten] @ame=@ef]"/>

and so would process all i t emelements that have a gl ossary parent element and that have a nane
attribute and ar ef attribute with the same value.

It isan error to use the current function in a pattern.
Function: string unparsed-entity-uri(string)

Theunparsed-entity-uri returnsthe URI of the unparsed entity with the specified namein the same document
as the context node (see § 3.3 — Unparsed Entities on page 12). It returns the empty string if thereis no
such entity.

Function: string generate-id(node-set?)

The generate-id function returns a string that uniquely identifies the node in the argument node-set that
isfirst in document order. The unique identifier must consist of ASCII alphanumeric characters and must
start with an alphabetic character. Thus, the string is syntactically an XML name. An implementation is
free to generate an identifier in any convenient way provided that it always generates the same identifier
for the same node and that different identifiers are aways generated from different nodes. An implemen-
tation is under no obligation to generate the same identifiers each time a document is transformed. There
is no guarantee that a generated unique identifier will be distinct from any unique 1Ds specified in the
source document. If the argument node-set is empty, the empty string is returned. If the argument is
omitted, it defaults to the context node.

Function: object system-property(string)

The argument must evaluate to a string that is a QName. The QName is expanded into a name using the
namespace declarations in scope for the expression. The system-property function returns an object rep-

Page 52 of 86 Additional Functions

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

resenting the value of the system property identified by the name. If thereis no such system property, the
empty string should be returned.

Implementations must provide the following system properties, which are al in the XSLT namespace:

- xsl : versi on, anumber giving the version of XSLT implemented by the processor; for XSLT pro-
cessors implementing the version of XSLT specified by this document, this is the number 1.0

- xsl : vendor, astring identifying the vendor of the XSLT processor

- xsl :vendor - ur| , astring containing aURL identifying the vendor of the XSLT processor; typically
thisisthe host page (home page) of the vendor's Web site.

13. M essages

<l-- Category: instruction -->
<xsl : message

terninate = "yes" | "no" >

<l-- Content: tenplate -->
</ xsl : message>

Thexsl : message instruction sends a message in away that is dependent on the XSL T processor. The
content of thexsl : message ingructionisatemplate. Thexsl : nessage isinstantiated by instantiating
the content to create an XML fragment. This XML fragment is the content of the message.

|:| An XSLT processor might implement xsl : message by popping up an alert box or by writing to alog file.

If the t er mi nat e attribute has the value yes, then the XSLT processor should terminate processing
after sending the message. The default valueis no.

One convenient way to do localization is to put the localized information (message text, etc.) in an XML
document, which becomes an additional input file to the stylesheet. For example, suppose messagesfor a
language L arestoredinan XML filer esources/ L. xn intheform:

<messages>
<message name="probl ent >A probl em was det ect ed. </ nessage>
<nessage name="error">An error was detected. </ nessage>

</ messages>

Then a stylesheet could use the following approach to localize messages:

<xsl : param nane="I| ang" sel ect="en"/>
<xsl:vari abl e nanme="nessages”
sel ect ="docunent (concat (' resources/', $lang, '.xm"'))/nessages"/>

<xsl :tenpl ate nanme="1ocal i zed- nessage" >
<xsl : par am nane="name"/ >
<xsl : nmessage>
<xsl : val ue- of sel ect =" $nessages/ nessage[@ane=$nane] "/ >
</ xsl : message>
</ xsl : tenpl ate>

Miscellaneous Additional Functions Page 53 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<xsl : tenpl at e nanme="pr obl ent' >
<xsl:cal |l -tenpl ate name="1ocal i zed- mressage"/ >
<xsl : wi t h- par am nane="nane" >pr obl enx/ xsl : wi t h- par an>
</ xsl :cal |l -tenpl at e>
</ xsl :tenpl at e>

14. Extensions

XSLT alows two kinds of extension, extension el ements and extension functions.

Thisversion of XSLT doesnot provide amechanism for defining implementations of extensions. Therefore,
an XSLT stylesheet that must be portable between XSLT implementations cannot rely on particular
extensions being available. XSLT provides mechanisms that allow an XSLT stylesheet to determine
whether the XSLT processor by which it is being processed has implementations of particular extensions
available, and to specify what should happen if those extensions are not available. If an XSLT stylesheet
is careful to make use of these mechanisms, it is possible for it to take advantage of extensions and till
work with any XSLT implementation.

14.1. Extension Elements

The element extension mechanism allows namespaces to be designated as extension hamespaces. When
a namespace is designated as an extension hamespace and an element with a name from that namespace
occurs in atemplate, then the element is treated as an instruction rather than as a literal result element.
The namespace determines the semantics of the instruction.

Since an element that isa child of an xsl : st yl esheet element isnot occurring in a template, non-XSLT top-
level elements are not extension elements as defined here, and nothing in this section appliesto them.

A namespace is designated as an extension namespace by using an ext ensi on- el enent - pr ef i xes
attribute on an xsl : st yl esheet element or an xsl : ext ensi on- el ement - pr ef i xes attribute
on aliteral result element or extension element. The value of both these attributesis awhitespace-separated
list of namespace prefixes. The namespace bound to each of the prefixes is designated as an extension
namespace. It isan error if thereis no namespace bound to the prefix on the element bearing the ext en-

si on-el ement - prefi xes or xsl:extension-el ement - prefixes attribute. The default
namespace (asdeclared by xm ns) may be designated as an extension namespace by including #def aul t

in the list of namespace prefixes. The designation of a hamespace as an extension namespace is effective
within the subtree of the stylesheet rooted at the element bearing theext ensi on- el ement - pr ef i xes
orxsl : ext ensi on- el enment - pr ef i xes attribute; asubtreerootedat anxsl : st yl esheet element
does not include any stylesheets imported or included by children of that xsl : st yl esheet element.

If the XSLT processor does not have an implementation of a particular extension element available, then
the element-available function must return false for the name of the element. When such an extension
element is instantiated, then the XSLT processor must perform fallback for the element as specified in
8 15 — Fallback on page 55 . An XSLT processor must not signal an error merely because a template
contains an extension element for which no implementation is available.

If the XSLT processor has an implementation of a particular extension element available, then theelement-
available function must return true for the name of the element.

Page 54 of 86 Extensions

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

14.2. Extension Functions

If a FunctionName in a FunctionCall expression is not an NCName (i.e. if it contains a colon), then it is
treated as a call to an extension function. The FunctionName is expanded to a name using the namespace
declarations from the evaluation context.

If the XSLT processor does not have an implementation of an extension function of a particular name
available, thenthefunction-available function must return false for that name. If such an extension function
occurs in an expression and the extension function is actually caled, the XSLT processor must signal an
error. An XSLT processor must not signal an error merely because an expression contains an extension
function for which no implementation is available.

If the XSLT processor has an implementation of an extension function of a particular name available, then
the function-available function must return true for that name. If such an extension is called, then the
XSLT processor must call the implementation passing it the function call arguments; the result returned
by the implementation is returned as the result of the function call.

15. Fallback

<l-- Category: instruction -->
<xsl : fal | back>

<l-- Content: tenplate -->

</ xsl:fall back>

Normally, instantiating an xsl : f al | back element does nothing. However, when an XSLT processor
performs fallback for an instruction element, if the instruction element hasone or morexsl : f al | back
children, then the content of each of thexsl : f al | back children must be instantiated in sequence; oth-
erwise, an error must be signaled. The content of an xsl : f al | back element is atemplate.

Thefollowing functionscan beused withthexsl : choose andxsl : i f instructionsto explicitly control
how a stylesheet should behave if particular elements or functions are not available.

Function: boolean element-available(string)

The argument must evaluate to a string that isa QName. The QName is expanded into an expanded-name
using the namespace declarationsin scope for the expression. The element-available function returnstrue
if and only if the expanded-name is the name of an instruction. If the expanded-name has a namespace
URI equa tothe XSLT namespace URI, then it refersto an element defined by XSLT. Otherwise, it refers
to an extension element. If the expanded-name has a null namespace URI, the element-available function
will return false.

Function: boolean function-available(string)

The argument must evaluate to a string that isa QName. The QName is expanded into an expanded-name
using the namespace declarations in scope for the expression. Thefunction-available function returnstrue
if and only if the expanded-name is the name of a function in the function library. If the expanded-name
has a non-null namespace URI, then it refers to an extension function; otherwise, it refers to a function
defined by XPath or XSLT.

Extension Functions Page 55 of 86

http://www.w3.org/TR/xpath#NT-FunctionName
http://www.w3.org/TR/xpath#NT-FunctionCall
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/xpath#NT-FunctionName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

16. Output

<l-- Category: top-level-elenment -->
<xsl : out put
method = "xm" | "htm" | "text" | gnane-but-not-ncnane

version = nmntoken

encodi ng = string
omt-xm-declaration = "yes" | "no
st andal one = "yes" | "no
doctype-public = string
doct ype-system = string
cdat a- section-el enments = gnanes
i ndent = "yes" | "no"

nmedi a-type = string />

An XSLT processor may output the result tree as a sequence of bytes, although it is not required to be able
to do so (see § 17 — Conformance on page 62). The xsl : out put element allows stylesheet authors to
specify how they wish the result tree to be output. If an XSLT processor outputs the result tree, it should
do so as specified by the xsl : out put element; however, it is not required to do so.

Thexsl : out put element isonly allowed as atop-level element.

The met hod attribute on xsl : out put identifies the overal method that should be used for outputting
theresult tree. The value must be a QName. If the QName does hot have aprefix, then it identifiesamethod
specified in this document and must be one of xm , ht ml or t ext . If the QName has a prefix, then the
QName is expanded into an expanded-name as described in § 2.4 — Qualified Names on page 6 ; the
expanded-name identifies the output method; the behavior in this case is not specified by this document.

The default for the net hod attribute is chosen as follows. If
» theroot node of the result tree has an element child,

» the expanded-name of the first element child of the root node (i.e. the document element) of the result
tree haslocal part ht m (in any combination of upper and lower case) and anull namespace URI, and

» any text nodes preceding thefirst element child of theroot node of the result tree contain only whitespace
characters,

then the default output method is ht i ; otherwise, the default output method isxni . The default output
method should be used if there are no xsl : out put elements or if none of the xsl : out put elements
specifiesavalue for the met hod attribute.

The other attributeson xs| : out put provide parameters for the output method. The following attributes
are allowed:

e ver si on specifiesthe version of the output method

* i ndent specifies whether the XSLT processor may add additional whitespace when outputting the
result tree; the value must beyes or no

» encodi ng specifies the preferred character encoding that the XSLT processor should use to encode
sequences of characters as sequences of bytes; the value of the attribute should be treated case-insensi-
tively; thevalue must contain only charactersin the range#x21 to #x7E (i.e. printable ASCI| characters);

Page 56 of 86 Output

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

thevalue should either beachar set registered with the Internet Assigned Numbers Authority [IANA],
[RFC2278] or start with X-

* nedi a-t ype specifies the media type (MIME content type) of the data that results from outputting
the result tree; the char set parameter should not be specified explicitly; instead, when the top-level
media type ist ext, achar set parameter should be added according to the character encoding
actually used by the output method

» doct ype- syst emspecifies the system identifier to be used in the document type declaration
» doctype- publ i c specifiesthe public identifier to be used in the document type declaration

e omt-xm -decl ar ati on specifieswhether the XSLT processor should output an XML declaration;
the value must beyes or no

» st andal one specifieswhether the XSLT processor should output astandal one document declaration;
the value must beyes or no

e cdat a-section-el ement s specifies a list of the names of elements whose text node children
should be output using CDATA sections

The detailed semantics of each attribute will be described separately for each output method for which it
isapplicable. If the semantics of an attribute are not described for an output method, then it isnot applicable
to that output method.

A stylesheet may contain multiplexsl : out put elementsand may include or import stylesheetsthat also
containxsl : out put elements. All thexsl : out put elementsoccurring in astylesheet are merged into
asingleeffectivexsl : out put element. For thecdat a- secti on- el enment s attribute, the effective
value is the union of the specified values. For other attributes, the effective value is the specified value
with the highest import precedence. It isan error if there is more than one such value for an attribute. An
XSLT processor may signal the error; if it does not signal the error, if should recover by using the value
that occurs last in the stylesheet. The values of attributes are defaulted after the xsl : out put elements
have been merged; different output methods may have different default values for an attribute.

16.1. XML Output Method

The xm output method outputs the result tree as a well-formed XML externa general parsed entity. If
the root node of the result tree has a single element node child and no text node children, then the entity
should also be awell-formed XML document entity. When the entity is referenced within atrivial XML
document wrapper like this

<I DOCTYPE doc [
<IENTITY e SYSTEM "entity-URI ">
1>

<doc>&e; </ doc>

where entity-URl isaURI for the entity, then the wrapper document as a whole should be awell-
formed XML document conforming to the XML Namespaces Recommendation [XML Names). In addition,
the output should be such that if a new tree was constructed by parsing the wrapper as an XML document
asspecifiedin § 3—DataModel on page 11, and then removing the document element, making its children
instead be children of theroot node, then the new tree would be the same asthe resullt tree, with the following
possible exceptions:

» The order of attributes in the two trees may be different.

XML Output Method Page 57 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

» The new tree may contain namespace nodes that were not present in the result tree.

An XSLT processor may need to add namespace declarations in the course of outputting the result tree as
XML.

If the XSLT processor generated adocument type declaration because of thedoct ype- syst emattribute,
then the above requirements apply to the entity with the generated document type declaration removed.

Thever si on attribute specifiesthe version of XML to be used for outputting the result tree. If the XSLT
processor does not support thisversion of XML, it should use aversion of XML that it does support. The
version output inthe XML declaration (if an XML declaration is output) should correspond to the version
of XML that the processor used for outputting the result tree. The value of thever si on attribute should
match the VersionNum production of the XML Recommendation [XML]. The default valueis 1. 0.

Theencodi ng attribute specifies the preferred encoding to use for outputting the result tree. XSLT pro-
cessors are required to respect values of UTF- 8 and UTF- 16. For other values, if the XSLT processor
does not support the specified encoding it may signal an error; if it does not signal an error it should use
UTF- 8 or UTF- 16 instead. The XSLT processor must hot use an encoding whose name does not match
the EncName production of the XML Recommendation [XML]. If no encodi ng attribute is specified,
thenthe XSL T processor should use either UTF- 8 or UTF- 16. It ispossiblethat the result tree will contain
acharacter that cannot be represented in the encoding that the XSLT processor is using for output. In this
case, if the character occursin a context where XML recognizes character references (i.e. in the value of
an attribute node or text node), then the character should be output as a character reference; otherwise (for
example if the character occursin the name of an element) the XSLT processor should signal an error.

If thei ndent attribute hasthevalueyes, thenthexn output method may output whitespacein addition
to the whitespacein the result tree (possibly based on whitespace stripped from either the source document
or the stylesheet) in order to indent the result nicely; if thei ndent attribute has the value no, it should
not output any additional whitespace. The default value is no. The xml output method should use an
algorithm to output additional whitespace that ensures that the result if whitespace were to be stripped
from the output using the process described in § 3.4 — Whitespace Stripping on page 12 with the set of
whitespace-preserving elements consisting of just xsl :t ext would be the same when additional
whitespace is output as when additional whitespace is not outpui.

|:| Itisusualy not safeto usei ndent =" yes" with document types that include element types with mixed content.

The cdat a- secti on- el enent s attribute contains a whitespace-separated list of QNames. Each
OName is expanded into an expanded-name using the namespace declarations in effect on the
xsl : out put elementinwhichthe QName occurs; if thereisadefault namespace, it isused for QNames
that do not have aprefix. The expansion isperformed before the merging of multiplexsl : out put elements
into a single effective xsl : out put element. If the expanded-name of the parent of a text node is a
member of the list, then the text node should be output as a CDATA section. For example,

<xsl :out put cdata-section-el enments="exanpl e"/>
would cause aliteral result element written in the stylesheet as
<exanpl e>&l t ; f oo></ exanpl e>

or as

<exanpl e><! [CDATA| <f 00>]] ></ exanpl e>

Page 58 of 86 Output

http://www.w3.org/TR/REC-xml#NT-VersionNum
http://www.w3.org/TR/REC-xml#NT-EncName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

to be output as
<exanpl e><! [CDATA[<f 00>]] ></ exanpl e>

If the text node contains the sequence of characters]] >, then the currently open CDATA section should
be closed following the]] and anew CDATA section opened before the >. For example, aliteral result
element written in the stylesheet as

<exanpl e>]] > ; </ exanpl e>
would be output as
<exanpl e><! [CDATA[]]]] ><! [CDATA[>]] ></ exanpl e>

If the text node contains a character that is not representable in the character encoding being used to output
theresult tree, then the currently open CDATA section should be closed before the character, the character
should be output using a character reference or entity reference, and a new CDATA section should be
opened for any further characters in the text node.

CDATA sections should not be used except for text nodesthat thecdat a- sect i on- el enent s attribute
explicitly specifies should be output using CDATA sections.

The xm output method should output an XML declaration unless the oni t - xni - decl arati on
attribute hasthevalueyes. The XML declaration should include both version information and an encoding
declaration. If thest andal one attributeis specified, it should include a standal one document declaration
with the same value as the value as the value of the st andal one attribute. Otherwise, it should not
include a standal one document declaration; this ensures that it is both a XML declaration (allowed at the
beginning of a document entity) and a text declaration (allowed at the beginning of an external general
parsed entity).

If thedoct ype- syst emattribute is specified, the xm output method should output a document type
declaration immediately before the first element. The name following <! DOCTYPE should be the name
of thefirst element. If doct ype- publ i c attributeis also specified, then thexm output method should
output PUBLI Cfollowed by the publicidentifier and then the system identifier; otherwise, it should output
SYSTEMfollowed by the system identifier. Theinternal subset should beempty. Thedoct ype- publ i c
attribute should be ignored unlessthe doct ype- syst emattribute is specified.

Themedi a-t ype attribute is applicable for the xml output method. The default value for the nedi a-
t ype attributeist ext / xm .

16.2. HTML Output Method
Theht m output method outputs the result tree as HTML ; for example,

<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put met hod="htm "/ >

<xsl:tenplate match="/">
<htm >
<xsl : appl y-tenpl at es/ >
</htm >
</ xsl :tenpl at e>

HTML Output Method Page 59 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ xsl : styl esheet >

Thever si on attributeindicates the version of the HTML. The default valueis4. 0, which specifiesthat
the result should be output as HTML conforming to the HTML 4.0 Recommendation [HTML].

The ht M output method should not output an element differently from the xm output method unless
the expanded-name of the element has a null hamespace URI; an element whose expanded-name has a
non-null namespace URI should be output as XML. If the expanded-name of the element has a null
namespace URI, but thelocal part of the expanded-nameis not recognized asthe name of an HTML element,
the element should output in the same way as a non-empty, inline element such asspan.

The ht Ml output method should not output an end-tag for empty elements. For HTML 4.0, the empty
elements are ar ea, base, basefont, br, col ,frane, hr,ing,input,isindex,link, nmeta
and par am For example, an element written as<br / > or
</ br > in the stylesheet should be output
as
.

Theht m output method should recogni ze the names of HTML elementsregardless of case. For example,
elements named br , BRor Br should all be recognized asthe HTML br element and output without an
end-tag.

Theht m output method should not perform escaping for the content of thescr i pt andst yl e elements.
For example, aliteral result element written in the stylesheet as

<script>f (a &t; b) foo()</script>

or

<script><![CDATA[if (a < b) foo()]]></script>

should be output as

<script>f (a < b) foo()</script>

Theht M output method should not escape < characters occurring in attribute val ues.

If thei ndent attribute hasthevalueyes, thentheht m output method may add or remove whitespace
asit outputstheresult tree, solong asit does not change how an HTML user agent would render the output.
The default valueisyes.

Theht m output method should escape hon-ASCII charactersin URI attribute values using the method
recommended in Section B.2.1 of the HTML 4.0 Recommendation.

Theht ml output method may output a character using a character entity reference, if one is defined for
it in the version of HTML that the output method is using.

Theht M output method should terminate processing instructions with > rather than ?>.

The ht M output method should output boolean attributes (that is attributes with only a single allowed
value that is equal to the name of the attribute) in minimized form. For example, a start-tag written in the
stylesheet as

<OPTI ON sel ect ed="sel ect ed" >

should be output as

Page 60 of 86 Output

http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.2.1
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<OPTI ON sel ect ed>

The ht M output method should not escape a & character occurring in an attribute value immediately
followed by a{ character (see Section B.7.1 of the HTML 4.0 Recommendation). For example, a start-
tag written in the stylesheet as

<BODY bgcol or =" &np; {{randonr bg}};" >
should be output as
<BODY bgcol or ="' & randonr bg}; ' >

Theencodi ng attribute specifies the preferred encoding to be used. If thereisa HEAD element, then the
ht m output method should add a META element immediately after the start-tag of the HEAD element
specifying the character encoding actually used. For example,

<HEAD>
<META htt p-equi v="Cont ent - Type" content="text/htm ; charset=EUC JP">

Itis possible that the result tree will contain a character that cannot be represented in the encoding that the
XSLT processor isusing for output. Inthiscase, if the character occursin acontext where HTML recognizes
character references, then the character should be output as a character entity reference or decimal numeric
character reference; otherwise (for example, inascri pt orst yl e element or inacomment), the XSLT
processor should signal an error.

If thedoct ype- publ i ¢ or doct ype- syst emattributes are specified, then the ht m output method
should output a document type declaration immediately before the first element. The name following
<! DOCTYPE should be HTML or ht ml . If thedoct ype- publ i ¢ attribute is specified, then the output
method should output PUBLI C followed by the specified public identifier; if the doct ype- system
attributeis also specified, it should also output the specified system identifier following the public identifier.
If thedoct ype- syst emattributeisspecified but thedoct ype- publ i ¢ attributeisnot specified, then
the output method should output SYSTEMfollowed by the specified system identifier.

Theredi a- t ype attributeisapplicablefor theht m output method. The default valueist ext / ht m .

16.3. Text Output Method

Thet ext output method outputs the result tree by outputting the string-value of every text node in the
result tree in document order without any escaping.

Thenedi a- t ype attributeisapplicablefor thet ext output method. The default valuefor the nedi a-
t ype attributeist ext / pl ai n.

The encodi ng attribute identifies the encoding that the t ext output method should use to convert
sequences of characters to sequences of bytes. The default is system-dependent. If the result tree contains
a character that cannot be represented in the encoding that the XSLT processor is using for output, the
XSLT processor should signal an error.

16.4. Disabling Output Escaping

Normally, the xm output method escapes & and < (and possibly other characters) when outputting text
nodes. This ensures that the output is well-formed XML. However, it is sometimes convenient to be able
to produce output that isalmost, but not quite well-formed XML ; for example, the output may includeill-

Text Output Method Page 61 of 86

http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.7.1.1
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

formed sections which are intended to be transformed into well-formed XML by a subsequent non-XML
aware process. For this reason, XSLT provides a mechanism for disabling output escaping. An
xsl :val ue-of or xsl:text element may have a di sabl e- out put - escapi ng attribute; the
allowed values are yes or no; the default is no; if the value is yes, then a text node generated by
instantiating the xsl : val ue- of or xsl : t ext element should be output without any escaping. For
example,

<xsl:text disabl e-output-escapi ng="yes">& t; </xsl:text>
should generate the single character <.

It isan error for output escaping to be disabled for atext node that is used for something other than atext
nodeintheresult tree. Thus, itisan error to disable output escaping for anxsl : val ue- of orxsl : t ext
element that is used to generate the string-value of acomment, processing instruction or attribute node; it
isalso an error to convert aresult tree fragment to anumber or astring if the result tree fragment contains
atext node for which escaping was disabled. In both cases, an XSLT processor may signal the error; if it
does not signal the error, it must recover by ignoring the di sabl e- out put - escapi ng attribute.

Thedi sabl e- out put - escapi ng attribute may be used withtheht m output method aswell aswith
thexm output method. Thet ext output method ignoresthedi sabl e- out put - escapi ng attribute,
since it does not perform any output escaping.

An XSLT processor will only be able to disable output escaping if it controls how the result tree is output.
This may not always be the case. For example, the result tree may be used as the source tree for another
XSLT transformation instead of being output. An XSLT processor is not required to support disabling
output escaping. If an xsl : val ue- of or xsl : t ext specifiesthat output escaping should be disabled
andthe XSL T processor does hot support this, the XSLT processor may signal an error; if it doesnot signal
an error, it must recover by not disabling output escaping.

If output escaping is disabled for a character that is not representable in the encoding that the XSLT pro-
cessor is using for output, then the XSLT processor may signal an error; if it does not signal an error, it
must recover by not disabling output escaping.

Since disabling output escaping may not work with all XSLT processors and can resultin XML that is not
well-formed, it should be used only when there is no alternative.

17. Conformance

A conforming XSL T processor must be able to use a stylesheet to transform a source tree into aresult tree
as specified inthisdocument. A conforming XSLT processor need not be able to output the result in XML
or in any other form.

Vendors of XSLT processors are strongly encouraged to provide away to verify that their processor is behaving
conformingly by allowing the result tree to be output as XML or by providing access to the result tree through a
standard APl such asthe DOM or SAX.

A conforming XSLT processor must signal any errors except for those that this document specifically
alows an XSLT processor not to signal. A conforming XSLT processor may but need not recover from
any errorsthat it signals.

A conforming XSL T processor may impose limits on the processing resources consumed by the processing
of a stylesheet.

Page 62 of 86 Conformance

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

18. Notation

The specification of each X SLT-defined element typeis preceded by a summary of its syntax in the form
of amodel for elements of that element type. The meaning of syntax summary notation is as follows:

* Anattributeisrequired if and only if itsnameisin bold.

» Thestring that occurs in the place of an attribute value specifies the allowed values of the attribute. If
thisis surrounded by curly braces, then the attribute value is treated as an attribute value template, and
the string occurring within curly braces specifies the allowed values of the result of instantiating the
attribute value template. Alternative allowed values are separated by | . A quoted string indicates a
value equal to that specific string. An unquoted, italicized name specifies a particular type of value.

» If theelement isallowed not to be empty, then the element contains a comment specifying the allowed
content. The allowed content is specified in a similar way to an element type declaration in XML;
template means that any mixture of text nodes, literal result elements, extension elements, and XSLT
eementsfromthei nst ruct i on category is allowed; top-level-elements means that any mixture of
XSLT elementsfromthet op- | evel - el ement category is alowed.

» Theelementisprefaced by commentsindicating if it belongstothei nstructi on category ort op-
| evel - el ement category or both. The category of an element just affects whether it is alowed in
the content of elements that allow atemplate or top-level-elements.

Appendix A. References

A.1. Normative References

XML

World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Recommendation.
See http://www.w3.0rg/TR/1998/REC-xml-19980210

XML Names

World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.org/TR/REC-xml-names

XPath

World Wide Web Consortium. XML Path Language. W3C Recommendation. See
http://www.w3.0rg/TR/xpath

A.2. Other References

Cx2

World Wide Web Consortium. Cascading Style Sheets, level 2 (CS2). W3C Recommendation.
See http://www.w3.0rg/ TR/1998/REC-CSS2-19980512

DSSSL

International Organization for Standardization, Internationa Electrotechnical Commission. ISO/IEC
10179:1996. Document Style Semantics and Specification Language (DSSSL). International
Standard.

Normative References Page 63 of 86

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xpath
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

HTML

World Wide Web Consortium. HTML 4.0 specification. W3C Recommendation. See
http://www.w3.0rg/TR/REC-htmi40

IANA

Internet Assigned Numbers Authority. Character Sets. See ftp://ftp.isi.edu/in-notes/iana/assign-
ments/character-sets.

RFC2278

N. Freed, J. Postel. IANA Charset Registration Procedures. IETF RFC 2278. See
http://www.ietf.org/rfc/rfc2278.txt.

RFC2376

E. Whitehead, M. Murata. XML Media Types. IETF RFC 2376. See
http://www.ietf.org/rfc/rfc2376.txt.

RFC2396

T.Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource ldentifiers (URI): Generic Syntax.
IETF RFC 2396. See http://www.ietf.org/rfc/rfc2396.txt.

UNICODE TR10

Unicode Consortium. Unicode Technical Report #10. Unicode Collation Algorithm. Unicode
Technical Report. See http://www.unicode.org/unicode/reports/tr10/index.html.

XHTML

World Wide Web Consortium. XHTML 1.0: The Extensible Hyper Text Markup Language. W3C
Proposed Recommendation. See http://www.w3.org/TR/xhtml 1

XPointer

World Wide Web Consortium. XML Pointer Language (XPointer). W3C Working Draft. See
http://www.w3.0rg/ TR/Xptr

XML Stylesheet

World Wide Web Consortium. Associating stylesheetswith XML documents. W3C Recommenda-
tion. See http://www.w3.org/TR/xml-stylesheet

X&L

World Wide Web Consortium. Extensible Stylesheet Language (XSL). W3C Working Draft. See
http://www.w3.org/TR/WD-xd

Appendix B. Element Syntax Summary

<l-- Category: instruction -->
<xsl : apply-inports/>

Page 64 of 86 Element Syntax Summary

http://www.w3.org/TR/REC-html40
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
http://www.ietf.org/rfc/rfc2278.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.unicode.org/unicode/reports/tr10/index.html
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/WD-xsl
http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<l-- Category: instruction -->

<xsl : apply-tenpl ates

sel ect = node- set-expression

node = ghane >

<I-- Content: (xsl:sort | xsl:with-param* -->
</ xsl : appl y-t enpl at es>

<l-- Category:. instruction -->
<xsl:attribute

name = { gname }

namespace = { uri-reference } >
<l-- Content: tenplate -->
</xsl:attribute>

<l-- Category: top-level-elenment -->
<xsl:attribute-set

name = gnhane

use-attribute-sets = gnanes >

<l-- Content: xsl:attribute* -->
</xsl:attribute-set>

<l-- Category:. instruction -->
<xsl:call-tenpl ate

name = gnhane >

<l-- Content: xsl:wth-parant -->
</ xsl:call-tenpl ate>

<l-- Category: instruction -->
<xsl : choose>
<I-- Content: (xsl|l:when+, xsl:otherw se?) -->

</ xsl : choose>

<l-- Category:. instruction -->
<xsl : comrent >

<l-- Content: tenplate -->

</ xsl : conment >

<l-- Category: instruction -->
<xsl : copy

use-attribute-sets = gnanes >
<l-- Content: tenplate -->

</ xsl : copy>

<l-- Category:. instruction -->
<xsl : copy- of
sel ect = expression />

Page 65 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<l-- Category: top-level-elenment -->
<xsl : deci mal - f or mat

name = gnhame

deci mal - separator = char

gr oupi ng- separator = char
infinity = string

m nus-sign = char

NaN = string

percent = char

per-nille = char

zero-digit = char

digit = char
pattern-separator = char />

<l-- Category:. instruction -->
<xsl : el ement

name = { gname }

namespace = { uri-reference }
use-attribute-sets = gnanmes >
<l-- Content: tenplate -->

</ xsl : el ement >

<l-- Category: instruction -->
<xsl : fal | back>

<l-- Content: tenplate -->

</ xsl:fall back>

<l-- Category:. instruction -->
<xsl : for-each

sel ect = node-set-expression >

<l-- Content: (xsl:sort*, tenplate) -->
</ xsl:for-each>

<l-- Category: instruction -->
<xsl:if

test = bool ean- expression >
<l-- Content: tenplate -->
</xsl:if>

<xsl :inport
href = uri-reference />

<l-- Category: top-level-elenment -->
<xsl :i ncl ude
href = uri-reference />

<l-- Category:. top-level-elenment -->
<xsl : key

name = gnhame

mat ch = pattern

use = expression />

Page 66 of 86

Element Syntax Summary

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<l-- Category: instruction -->
<xsl : message
termnate = "yes" | "no" >

<l-- Content: tenplate -->
</ xsl : message>

<l-- Category:. top-Ilevel-element -->
<xsl : namespace-al i as

styl esheet-prefix = prefix | "#default"
result-prefix = prefix | "#default" />
<l-- Category: instruction -->
<xsl : nunmber

level = "single" | "nultiple"” | "any"

count = pattern

from= pattern

val ue = nunber - expressi on

format = { string }

lang = { nntoken }

letter-value = { "al phabetic" | "traditional" }
groupi ng-separator = { char }

groupi ng-si ze = { nunber } />

<xsl:otherw se>
<l-- Content: tenplate -->
</ xsl : ot herw se>

<l-- Category: top-level-elenment -->
<xsl : out put

method = "xm" | "htm" | "text" | qgnane-but-not-ncnane

ver si on = nnt oken

encodi ng = string
omt-xm-declaration = "yes" | "no
st andal one = "yes" | "no"
doctype-public = string

doct ype-system = string

cdat a- section-el enments = gnanes

i ndent = "yes" | "no
nedi a-type = string />

<l-- Category:. top-Ilevel-element -->
<xsl : param

name = gnhame

sel ect = expression >

<l-- Content: tenplate -->

</ xsl : par anp

<l-- Category: top-level-elenment -->
<xsl : preserve-space
el ements = tokens />

Page 67 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<l-- Category: instruction -->
<xsl : processi ng-instruction
name = { ncnanme } >

<l-- Content: tenplate -->

</ xsl : processi ng-i nstruction>

<xsl :sort
sel ect = string-expression
lang = { nntoken }

data-type = { "text" | "nunber" | gnane-but-not-ncnane }
order = { "ascending" | "descendi ng" }

case-order = { "upper-first" | "lower-first" } />

<l-- Category: top-level-elenment -->

<xsl :strip-space
el enents = tokens />

<xsl : styl esheet

id =id

ext ensi on-el enent - prefi xes = tokens

excl ude-result-prefixes = tokens

versi on = nunber >

<l-- Content: (xsl:inmport*, top-Ilevel-elenents) -->
</ xsl : styl esheet >

<l-- Category: top-level-elenment -->
<xsl :tenpl ate

mat ch = pattern

name = gnhame

priority = numnber

node = ghane >

<l-- Content: (xsl:parant, tenplate) -->
</ xsl:tenpl at e>

<l-- Category:. instruction -->
<xsl : text
di sabl e- out put - escaping = "yes" | "no" >

<l-- Content: #PCDATA -->
</ xsl:text>

<xsl :transform

id =id

ext ensi on- el enent - prefi xes = tokens

excl ude-resul t-prefi xes = tokens

versi on = nunber >

<l-- Content: (xsl:inport*, top-level-elenents) -->
</ xsl :transfornp

Page 68 of 86 Element Syntax Summary

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<l-- Category: instruction -->
<xsl : val ue- of
sel ect = string-expression

di sabl e- out put-escaping = "yes" | "no" />
<l-- Category:. top-Ilevel-element -->
<l-- Category:. instruction -->

<xsl :vari abl e

name = gnhame

sel ect = expression >

<l-- Content: tenplate -->
</ xsl :vari abl e>

<xsl : when

test = bool ean- expression >
<l-- Content: tenplate -->
</ xsl : when>

<xsl :with-param

name = gnhame

sel ect = expression >

<l-- Content: tenplate -->
</ xsl : wi t h- par ane

Appendix C. DTD Fragment for XSLT Stylesheets
(Non-Normative)

|:| ThisDTD Fragment is not normative because XML 1.0 DTDs do not support XML Namespaces and thus cannot
correctly describe the allowed structure of an XSLT stylesheet.

The following entity can be used to construct aDTD for XSLT stylesheets that create instances of a par-
ticular result DTD. Before referencing the entity, the stylesheet DTD must definear esul t - el enent s
parameter entity listing the allowed result element types. For example:

<IENTITY %result-elenments "
| fo:inline-sequence
| fo:block

">

Such result elementsshould bedeclaredto havexsl : use-attri but e- set s andxsl : ext ensi on-
el ement - pr ef i xes attributes. Thefollowing entity declaresther esul t - el enent - at t s parameter
for this purpose. The content that XSL T allows for result elementsisthe same asit allows for the XSLT
elements that are declared in the following entity with a content model of % enpl at e; . The DTD may
use amore restrictive content model than % enpl at e; to reflect the constraints of the result DTD.

TheDTD may definethenon- xsl -t op- | evel parameter entity to allow additional top-level elements
from namespaces other than the XSLT namespace.

Page 69 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

The use of the xsl : prefix in this DTD does not imply that XSLT stylesheets are required to use this
prefix. Any of the elements declared in this DTD may have attributes whose name startswith xm ns: or
isequal to xm ns in addition to the attributes declared in this DTD.

<IENTITY % char-instructions "
xsl : appl y-tenpl ates
xsl:call-tenpl ate

xsl :apply-inmports

xsl: for-each

xsl : val ue- of

xsl : copy- of

xsl : number

xsl : choose

xsl:if
xsl : text
xsl : copy

xsl :vari abl e
xsl : message
xsl : fal |l back

"

<IENTITY % instructions "
9%har -i nstructions;
| xsl:processing-instruction
| xsl:coment
| xsl:elenent
| xsl:attribute

<IENTITY % char-tenpl ate "
(#PCDATA
%har-instructions;)*

">

<IENTITY %tenplate "
(#PCDATA
% nstructions;
% esul t-el ements;)*
">

<l-- Used for the type of an attribute value that is a URl reference.-->
<IENTITY % URI " CDATA">

<l-- Used for the type of an attribute value that is a pattern.-->
<IENTITY % pattern " CDATA">

Page 70 of 86 DTD Fragment for XSLT Stylesheets

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<l-- Used for the type of an attribute value that is an
attribute value tenplate.-->
<IENTITY % avt " CDATA">

<l-- Used for the type of an attribute value that is a QNane; the prefix
gets expanded by the XSLT processor. -->
<IENTI TY % gnane " NMIOKEN' >

<I-- Like gnanme but a whitespace-separated |ist of (QNanmes. -->
<IENTITY % gnanmes " NMIOKENS">

<l-- Used for the type of an attribute value that is an expression.-->
<IENTITY % expr " CDATA">

<l-- Used for the type of an attribute value that consists
of a single character.-->

<IENTITY % char " CDATA">

<l-- Used for the type of an attribute value that is a priority. -->
<IENTITY %priority "NMIOKEN'>

<IENTITY % space-att "xnl:space (default|preserve) #l MPLI ED"'>

<l-- This nmay be overridden to custom ze the set of elenents allowed
at the top-level. -->
<IENTI TY % non-xsl -top-level "">

<IENTITY % top-level "
(xsl:inmport*,

(xsl :incl ude
xsl:strip-space
xsl : preserve-space
xsl : out put
xsl : key
xsl : deci nal - f or mat
xsl:attribute-set
xsl:variabl e
xsl : param
xsl:tenpl ate
xsl : namespace-al i as

% on- xsl -top-1evel ;)*)

<IENTITY % top-level-atts '

Page 71 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

ext ensi on- el enent - prefi xes CDATA #| MPLI ED

exclude-resul t-prefixes CDATA #l MPLI ED

id 1D #l MPLI ED

ver si on NMIOKEN #REQUI RED

CDATA #FI XED "htt p: //www. w3. or g/ 1999/ XSL/ Tr ansf or ni'
Yspace-att;

xm ns: xsl

<I-- This entity is defined for use in the ATTLI ST decl aration

for

result el enents.

>

<IENTITY %result-elenent-atts '

xsl : ext ensi on-el ement - prefi xes CDATA #l MPLI ED
xsl : excl ude-resul t-prefi xes CDATA #l MPLI ED
xsl :use-attribute-sets %nanes; #l MPLI ED
xsl :versi on NMICKEN #| MPLI ED
>
<l ELEMENT xsl : styl esheet % op-1Ievel ;>
<I ATTLI ST xsl :styl esheet % op-|evel -atts; >
<! ELEMENT xsl :transform % op- | evel ; >
<I ATTLI ST xsl:transform % op-|evel -atts; >
<! ELEMENT xsl :i nmport EMPTY>
<I' ATTLI ST xsl:inmport href %JRI; #REQU RED>
<! ELEMENT xsl :i ncl ude EMPTY>
<I' ATTLI ST xsl:include href %JRI; #REQU RED>
<! ELEMENT xsl : stri p-space EMPTY>
<I ATTLI ST xsl:strip-space el enents CDATA #REQUI RED>
<! ELEMENT xsl : preserve-space EMPTY>
<I' ATTLI ST xsl: preserve-space el enents CDATA #REQUI RED>
<! ELEMENT xsl : out put EMPTY>
<I ATTLI ST xsl : out put

met hod %gnane; #l MPLI ED

ver si on NMICKEN #| MPLI ED

encodi ng CDATA #l MPLI ED

om t-xm -declaration (yes|no) # MPLIED
st andal one (yes|no) #l MPLI ED

doct ype- publ i ¢ CDATA #| MPLI ED

doct ype- syst em CDATA #| MPLI ED

Page 72 of 86

DTD Fragment for XSLT Stylesheets

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<
<

<
<

<
<

<

<

cdat a- secti on-el ements %gnanes;

i ndent (yes|no) #l MPLI ED
medi a-type CDATA #| MPLI ED

I ELEMENT xsl : key EMPTY>
ATTLI ST xsl : key

nanme %gnane; #REQUI RED
mat ch Y%attern; #REQU RED
use %expr; #REQUI RED

I ELEMENT xsl : deci mal - f or mat
ATTLI ST xsl : deci nal - f or mat
name %gnane; #| MPLI ED
deci nal - separat or %har;
gr oupi ng- separator %har;
infinity CDATA "Infinity"
m nus-si gn %har;

NaN CDATA " NaN'

percent %har; "%

per-mlle %har; "‰"

zero-digit %har; "O"
digit %har; "#"
pattern-separator %har;

I ELEMENT xsl : nanespace-al i as EMPTY>
I ATTLI ST xsl : nanespace-ali as
styl esheet - prefi x CDATA #REQUI RED

EMPTY>

result-prefix CDATA #REQUI RED

I ELEMENT xsl :tenplate
(#PCDATA

% nstructions;

9% esul t-el enents;

| xsl:param*

I ATTLI ST xsl :tenpl ate
mat ch Y%pattern; #l MPLIED
name %gnane; #| MPLI ED

priority Y%riority; #l MPLIED

node %gname; #| MPLI ED

#| MPLI ED

Page 73 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Y%space-att;

<l ELEMENT xsl : val ue- of EMPTY>
<! ATTLI ST xsl : val ue- of
sel ect %expr; #REQUI RED
di sabl e- out put - escapi ng (yes| no) "no"

<! ELEMENT xsl : copy- of EMPTY>
<I ATTLI ST xsl:copy-of select %expr; #REQU RED>

<! ELEMENT xsl : nunber EMPTY>

<I ATTLI ST xsl : nunber
I evel (single|lnmultiple|lany) "single"
count Ypattern; #l MPLI ED
from %attern; #l MPLIED
val ue %expr; #l MPLI ED
format %avt; '1'
| ang %avt; #l MPLIED
| etter-val ue %avt; #l| MPLI ED
groupi ng- separ at or %avt; #l MPLI ED
groupi ng-si ze %avt; #l MPLI ED

<! ELEMENT xsl : appl y-tenpl ates (xsl:sort|xsl:wth-param*>
<! ATTLI ST xsl :apply-tenpl ates

sel ect %expr; "node()"

node %gname; #| MPLI ED

<! ELEMENT xsl : appl y-i mports EMPTY>

<l-- xsl:sort cannot occur after any other el enents or
any non-whitespace character -->

<! ELEMENT xsl : for-each
(#PCDATA
% nstructions;
o% esul t-el enents;
| xsl:sort)*

<! ATTLI ST xsl :for-each
sel ect %expr; #REQUI RED

Page 74 of 86 DTD Fragment for XSLT Stylesheets

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Y%space-att;

<! ELEMENT xsl :sort EMPTY>
<! ATTLI ST xsl :sort

<!

<

<l

<

<!

<

<

<

<

<!

<

<

<

sel ect %expr;
#1 MPLI ED

| ang Yavt ;

data-type %avt; "text"

order %avt;

"ascendi ng"

case-order %avt; #| MPLIED

ELEMVENT xsl
ATTLI ST xsl
test %expr;
Y%space-att;

ELEMENT xsl
ATTLI ST xsl

ELEVENT xsl
ATTLI ST xsl
test %expr;
Y%space-att;

ELEVMENT xsl

ATTLI ST xsl

ELEMENT xsl
ATTLI ST xsl

(i f %enplate; >
i f
#REQUI RED

: choose (xsl:when+, xsl:otherw se?)>
: choose Y%space-att;>

:when % enpl ate; >
: when
#REQUI RED

:otherwi se % enpl ate; >
: ot herwi se %space-att; >

cattribute-set (xsl:attribute)*>
cattribute-set

name %gnane; #REQUI RED
use-attribute-sets %gnanes; #l MPLI ED

ELEMENT xsl
ATTLI ST xsl

:call-tenplate (xsl:with-param*>
:call-tenplate

name %gnanme; #REQUI RED

I ELEMENT xsl

ATTLI ST xsl

:Wi th-param % enpl ate; >
;Wi t h- param

name %gnane; #REQUI RED
sel ect %expr; #l MPLI ED

Page 75 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

>

<! ELEMENT xsl :variabl e % enpl ate; >
<I ATTLI ST xsl:vari abl e

nanme %gnanme; #REQUI RED

sel ect %expr; #l MPLI ED

<! ELEMENT xsl : param % enpl at e; >
<I ATTLI ST xsl : param

name %gnane; #REQUI RED

sel ect %expr; #l MPLIED

<! ELEMENT xsl :text (#PCDATA) >
<I ATTLI ST xsl :text
di sabl e- out put - escapi ng (yes| no) "no"

<! ELEMENT xsl : processi ng-i nstruction %har-tenpl ate; >
<l ATTLI ST xsl : processing-instruction

name %avt; #REQUI RED

Yspace-att;

<! ELEMENT xsl : el ement % enpl ate; >
ATTLI ST xsl : el enent

name %avt; #REQUI RED

nanmespace %avt; #l MPLI ED
use-attribute-sets %gnanes; #l MPLI ED

Y%space-att;

<

<

ELEMENT xsl:attribute %har-tenpl ate; >
ATTLI ST xsl:attribute

name %avt; #REQUI RED

nanespace %avt; #l MPLI ED

Yspace-att;

<!

<! ELEMENT xsl:coment % har-tenpl ate; >
<l ATTLI ST xsl:comrent Y%pace-att; >

<! ELEMENT xsl : copy % enpl ate; >
<I ATTLI ST xsl : copy

Page 76 of 86 DTD Fragment for XSLT Stylesheets

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Y%space-att;
use-attribute-sets %gnanes; #l MPLI ED

<! ELEMENT xsl: nessage % enpl ate; >
<I ATTLI ST xsl: message
Y%space-att;
term nate (yes| no)

no

<l ELEMENT xsl:fall back % enpl ate; >
<I ATTLI ST xsl: fall back Y%space-att;>

Appendix D. Examples (Non-Nor mative)

D.1. Document Example

This example is a stylesheet for transforming documents that conform to a simple DTD into XHTML

[XHTML]. The DTD is:

<! ELEMENT doc (title, chapter*)>

<l ELEMENT chapter (title, (para|note)*, section*)>
<! ELEMENT section (title, (paralnote)*)>

<IELEMENT title (#PCDATA| enph)*>

<! ELEMENT para (#PCDATA| enph) *>

<! ELEMENT not e (#PCDATA| enph)*>

<! ELEMENT enph (#PCDATA| enph) *>

The stylesheet is:

<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf'

xm ns="http://ww. w3.org/ TR/ xhtm 1/strict">

<xsl :strip-space el ements="doc chapter section"/>
<xsl : out put

nmet hod="xn "

i ndent ="yes"

encodi ng="i so-8859- 1"
/>

<xsl :tenpl ate mat ch="doc" >
<htm >
<head>
<title>
<xsl :val ue-of select="title"/>
</title>

Document Example

Page 77 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ head>
<body>
<xsl : appl y-tenpl at es/ >
</ body>
</htm >
</ xsl :tenpl at e>

<xsl :tenplate match="doc/title">
<h1l>
<xsl : appl y-tenpl at es/ >
</ hl>
</ xsl : tenpl ate>

<xsl :tenpl ate match="chapter/title">
<h2>
<xsl :apply-tenpl ates/ >
</ h2>
</ xsl :tenpl at e>

<xsl :tenpl ate match="section/title">
<h3>
<xsl : appl y-tenpl ates/ >
</ h3>
</ xsl : tenpl ate>

<xsl :tenpl ate mat ch="para">
<p>
<xsl :apply-tenpl ates/ >
</ p>
</ xsl :tenpl at e>

<xsl :tenpl ate mat ch="note" >
<p class="note">
NOTE:
<xsl : appl y-tenpl at es/ >
</ p>
</ xsl :tenpl at e>

<xsl:tenpl ate natch="enph">
<enp
<xsl : appl y-tenpl at es/ >
</ enp
</ xsl : tenpl at e>

</ xsl : styl esheet >

Page 78 of 86

Examples

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

With the following input document

<! DOCTYPE doc SYSTEM "doc. dtd">

<doc>

<title>Document Title</title>
<chapt er >

<title>Chapter Title</title>
<section>

<title>Section Title</title>
<para>This is a test.</para>
<note>This is a note.</note>

</ section>

<section>

<title>Another Section Title</title>
<para>Thi s is <enph>anot her </ enph> test. </ para>
<note>This i s another note. </ note>
</ section>

</ chapt er >

</ doc>

it would produce the following result

<?xm version="1.0" encodi ng="i so-8859-1"?>
<htm xm ns="http://ww. w3. org/ TR/ xhtm 1/strict">
<head>

<title>Docunment Title</title>

</ head>

<body>

<hl>Docurent Titl e</hl>

<h2>Chapter Title</h2>

<h3>Section Title</h3>

<p>This is a test.</p>

<p class="note">

NOTE: This is a note.</p>
<h3>Anot her Section Title</h3>

<p>Thi s is <enpranot her</enk test.</p>

<p class="note">

NOTE: This is another note.</p>

</ body>

</htm >

D.2. Data Example

Thisisan example of transforming some datarepresented in XML using three different XSL T stylesheets
to produce three different representations of the data, HTML, SVG and VRML.

Data Example Page 79 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Theinput datais:

<sal es>

<di vision id="North">
<revenue>10</revenue>
<gr owt h>9</ gr owt h>
<bonus>7</ bonus>

</ di vi si on>

<di vi si on i d="Sout h">
<revenue>4</revenue>
<gr owt h>3</ gr owt h>
<bonus>4</ bonus>

</ di vi si on>

<di vi sion id="West">
<revenue>6</revenue>
<gr owt h>-1. 5</ gr owt h>
<bonus>2</ bonus>

</ di vi si on>

</ sal es>

The following stylesheet, which uses the simplified syntax described in § 2.3 — Literal Result Element as

Stylesheet on page 5, transforms the datainto HTML.:

<htm xsl:version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf'
| ang="en" >
<head>
<title>Sales Results By Division</title>
</ head>
<body>
<t abl e border="1">
<tr>
<t h>Di vi si on</t h>
<t h>Revenue</t h>
<t h>Gr owt h</ t h>
<t h>Bonus</t h>
</tr>
<xsl :for-each sel ect ="sal es/di vi sion">
<l-- order the result by revenue -->
<xsl:sort sel ect="revenue"
dat a-t ype="nunber"
or der ="descendi ng"/ >
<tr>

Page 80 of 86

Examples

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

<td>

<enp<xsl : val ue-of select="@d"/></enpr
</td>
<t d>

<xsl : val ue- of sel ect="revenue"/>
</td>
<t d>

<!-- highlight negative growth in red -->

<xsl:if test="growth &t; 0">

<xsl:attribute nane="style">
<xsl:text>col or:red</xsl:text>
</xsl:attribute>

</xsl:if>

<xsl : val ue-of select="growth"/>
</td>
<t d>

<xsl : val ue- of sel ect="bonus"/>
</td>

</tr>
</ xsl:for-each>
</tabl e>
</ body>
</htm >

The HTML output is:

<htm |ang="en">

<head>

<meta http-equiv="Content-Type" content="text/htnml; charset=i so-8859-1">
<title>Sales Results By Division</title>

</ head>

<body>

<tabl e border="1">

<tr>

<t h>Di vi si on</t h><t h>Revenue</t h><t h>G owt h</t h><t h>Bonus</t h>

</tr>

<tr>

<t d><enPNort h</ enp</t d><t d>10</t d><t d>9</t d><t d>7</t d>

</tr>

<tr>

<t d><enmpWest </ emp</t d><t d>6</td><td style="col or:red">-1.5</td><td>2</td>
</tr>

<tr>

<t d><enmpSout h</ enp</t d><t d>4</t d><t d>3</t d><t d>4</t d>

</tr>

</t abl e>

Data Example Page 81 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ body>
</htnm >

The following stylesheet transforms the data into SVG:

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
xm ns="http://ww. w3. or g/ G aphi cs/ SVG@ SVG 19990812. dt d" >

<xsl : out put met hod="xm " indent="yes" nedi a-type="i mage/ svg"/>
<xsl:tenplate match="/">

<svg width = "3in" height="3in">

<g style = "stroke: #000000">
<l-- draw the axes -->
<line x1="0" x2="150" y1="150" y2="150"/>
<line x1="0" x2="0" yl1="0" y2="150"/>
<text x="0" y="10">Revenue</text>
<text x="150" y="165">D vi si on</text>
<xsl:for-each sel ect="sal es/di vi sion">

<!-- define sone useful variables -->

<!-- the bar's x position -->
<xsl :vari abl e nane="pos"
sel ect =" (position()*40)-30"/>

<l-- the bar's height -->
<xsl :vari abl e name="hei ght"
sel ect ="revenue*10"/ >

<l-- the rectangle -->
<rect x="{$pos}" y="{150-$height}"
wi dt h="20" hei ght ="{$hei ght}"/>

<I-- the text |abel -->

<text x="{$pos}" y="165">
<xsl : val ue-of select="@d"/>

</text>

<!-- the bar value -->
<text x="{$pos}" y="{145-S$height}">
<xsl :val ue-of sel ect="revenue"/>
</text>
</ xsl : for-each>
</ g>

Page 82 of 86 Examples

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

</ svg>

</ xsl : tenpl at e>
</ xsl : styl esheet >

The SVG output is:

<svg wi dth="3in" height="3in"
xm ns="http://ww. w3. or g/ G aphi cs/ SVE svg-19990412. dt d" >
<g style="stroke: #000000">
<line x1="0" x2="150" y1="150" y2="150"/>
<line x1="0" x2="0" y1="0" y2="150"/>
<text x="0" y="10">Revenue</text>
<text x="150" y="165">Di vi si on</text>
<rect x="10" y="50" w dth="20" hei ght="100"/>
<text x="10" y="165">North</text>
<text x="10" y="45">10</text>
<rect x="50" y="110" w dt h="20" hei ght="40"/>
<text x="50" y="165">Sout h</text>
<text x="50" y="105">4</text>
<rect x="90" y="90" w dth="20" hei ght="60"/>
<text x="90" y="165">West</text>
<text x="90" y="85">6</text>
</ g>
</ svg>

The following stylesheet transforms the datainto VRML:

<xsl:styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<I-- generate text output as mnme type nodel/vrm, using default charset -->
<xsl:out put nethod="text" encodi ng="UTF-8" nedi a-type="nodel /vrm"/>

<xsl :tenplate match="/">#VRWML V2.0 utf8

externproto definition of a single bar el ement
EXTERNPROTO bar [

field SFInt32 x

field SFInt32 y

field SFInt32 z

field SFString nane

]
"http://ww. vrm . org/Wrki ngG oups/ dbwor k/ bar Proto. wr | "

inline containing the graph axes
Inline {

Data Example Page 83 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

url "http://ww.vrm . org/ Wrki ngG oups/ dbwor k/ bar Axes. wr | "
}

<xsl:for-each sel ect="sal es/di vi sion">
bar {
x <xsl :val ue-of select="revenue"/>
y <xsl :val ue-of select="growth"/>
z <xsl :val ue-of sel ect="bonus"/>
nane "<xsl:val ue-of select="@d"/>"

}

</ xsl : for-each>
</ xsl :tenpl at e>

</ xsl : styl esheet >
The VRML output is:
#VRML V2.0 utf8

externproto definition of a single bar el enent
EXTERNPROTO bar [

field SFInt32 x

field SFInt32 y

field SFInt32 z

field SFString nane

]
"http://ww. vrm . org/ WrkingG oups/ dbwor k/ bar Prot o. wr | "

inline containing the graph axes
Inline {
url "http://ww. vrmn.org/ Wrki ngG oups/ dbwor k/ bar Axes. wr | "

}

bar {
x 10

y 9
z 7
name "North"

}

bar {

Page 84 of 86 Examples

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

name " Sout h"

}

bar {
X 6
y -1.5
z 2
nane "West"

}

Appendix E. Acknowledgements (Non-Nor mative)

The following have contributed to authoring this draft:

- Daniel Lipkin, Saba

- Jonathan Marsh, Microsoft

- Henry Thompson, University of Edinburgh
- Norman Walsh, Arbortext

- Steve Zilles, Adobe

This specification was developed and approved for publication by the W3C XSL Working Group (WG).
WG approval of this specification does not necessarily imply that all WG membersvoted for its approval.
The current members of the XSL WG are:

Sharon Adler, IBM (Co-Chair); Anders Berglund, IBM; Perin Blanchard, Novell; Scott Boag, Lotus; Larry
Cable, Sun; Jeff Caruso, Bitstream; James Clark; Peter Danielsen, Bell Labs; Don Day, IBM; Stephen
Deach, Adobe; Dwayne Dicks, SoftQuad; Andrew Greene, Bitstream; Paul Grosso, Arbortext; Eduardo
Gutentag, Sun; Juliane Harbarth, Software AG; Mickey Kimchi, Enigma; ChrisLilley, W3C; ChrisMaden,
Exemplary Technologies; Jonathan Marsh, Microsoft; Alex Milowski, Lexica; Steve Muench, Oracle;
Scott Parnell, Xerox; Vincent Quint, W3C; Dan Rapp, Novell; Gregg Reynolds, Datalogics,; Jonathan
Raobie, Software AG; Mark Scardina, Oracle; Henry Thompson, University of Edinburgh; Philip Wadler,
Bell Labs; Norman Walsh, Arbortext; Sanjiva Weerawarana, IBM; Steve Zilles, Adobe (Co-Chair)

Appendix F. Changes from Proposed Recommendation
(Non-Normative)

The following are the changes since the Proposed Recommendation:

» Thexsl : versi on attribute is required on aliteral result element used as a stylesheset (see § 2.3 -
Literal Result Element as Stylesheet on page 5).

 Thedat a-t ype attributeon xsl : sort can use a prefixed name to specify a data-type not defined
by XSLT (see § 10— Sorting on page 39).

Data Example Page 85 of 86

http://www.renderx.com

Rendered from XML to PDF by XEP - www.Render X.com XSL to PDF and XSL to Postscript formatter

Appendix G. Featuresunder Consideration for Future
Versionsof XSLT (Non-Normative)

The following features are under consideration for versions of XSLT after XSLT 1.0:

aconditional expression;

support for XML Schema datatypes and archetypes,

support for something like style rulesin the original XSL submission;

an attribute to control the default namespace for names occurring in XSL T attributes;

support for entity references,

support for DTDsin the data model;

support for notations in the data model;

away to get back from an element to the elements that reference it (e.g. by IDREF attributes);
an easier way to get an ID or key in another document;

support for regular expressions for matching against any or all of text nodes, attribute values, attribute
names, element type names;

case-insensitive comparisons,
normalization of strings before comparison, for example for compatibility characters,

afunctionst ri ng resol ve(node- set) function that treatsthe value of the argument asarelative
URI and turnsit into an absolute URI using the base URI of the node;

multiple result documents;
defaulting thesel ect attribute on xsl : val ue- of to the current node;
an attribute on xsl : at t ri but e to control how the attribute value is normalized;

additiona attributes on xsl : sort to provide further control over sorting, such as relative order of
scripts;

away to put the text of aresource identified by a URI into the result tree;

alow unionsin steps (e.g. f oo/ (bar | baz));

alow for result tree fragments all operations that are allowed for node-sets;

away to group together consecutive nodes having duplicate subelements or attributes;

features to make handling of the HTML st y| e attribute more convenient.

Page 86 of 86 Featuresunder Consideration for FutureVersionsof XSLT

http://www.renderx.com

	Colophon
	Abstract
	Status of this document

	Table of Contents
	1. Introduction
	2. Stylesheet Structure
	2.1. XSLT Namespace
	2.2. Stylesheet Element
	2.3. Literal Result Element as Stylesheet
	2.4. Qualified Names
	2.5. Forwards-Compatible Processing
	2.6. Combining Stylesheets
	2.6.1. Stylesheet Inclusion
	2.6.2. Stylesheet Import

	2.7. Embedding Stylesheets

	3. Data Model
	3.1. Root Node Children
	3.2. Base URI
	3.3. Unparsed Entities
	3.4. Whitespace Stripping

	4. Expressions
	5. Template Rules
	5.1. Processing Model
	5.2. Patterns
	5.3. Defining Template Rules
	5.4. Applying Template Rules
	5.5. Conflict Resolution for Template Rules
	5.6. Overriding Template Rules
	5.7. Modes
	5.8. Built-in Template Rules

	6. Named Templates
	7. Creating the Result Tree
	7.1. Creating Elements and Attributes
	7.1.1. Literal Result Elements
	7.1.2. Creating Elements with xsl:element
	7.1.3. Creating Attributes with xsl:attribute
	7.1.4. Named Attribute Sets

	7.2. Creating Text
	7.3. Creating Processing Instructions
	7.4. Creating Comments
	7.5. Copying
	7.6. Computing Generated Text
	7.6.1. Generating Text with xsl:value-of
	7.6.2. Attribute Value Templates

	7.7. Numbering
	7.7.1. Number to String Conversion Attributes

	8. Repetition
	9. Conditional Processing
	9.1. Conditional Processing with xsl:if
	9.2. Conditional Processing with xsl:choose

	10. Sorting
	11. Variables and Parameters
	11.1. Result Tree Fragments
	11.2. Values of Variables and Parameters
	11.3. Using Values of Variables and Parameters with xsl:copy-of
	11.4. Top-level Variables and Parameters
	11.5. Variables and Parameters within Templates
	11.6. Passing Parameters to Templates

	12. Additional Functions
	12.1. Multiple Source Documents
	12.2. Keys
	12.3. Number Formatting
	12.4. Miscellaneous Additional Functions

	13. Messages
	14. Extensions
	14.1. Extension Elements
	14.2. Extension Functions

	15. Fallback
	16. Output
	16.1. XML Output Method
	16.2. HTML Output Method
	16.3. Text Output Method
	16.4. Disabling Output Escaping

	17. Conformance
	18. Notation
	A. References
	A.1. Normative References
	A.2. Other References

	B. Element Syntax Summary
	C. DTD Fragment for XSLT Stylesheets (Non-Normative)
	D. Examples (Non-Normative)
	D.1. Document Example
	D.2. Data Example

	E. Acknowledgements (Non-Normative)
	F. Changes from Proposed Recommendation (Non-Normative)
	G. Features under Consideration for Future Versions of XSLT (Non-Normative)

