Rendered from XML to PDF by XEP - [www.Render X.com] XSL to PDF and XSL to Postscript for matter

WL,

ExtensibleMarkup Language(XML)
1.0 (Second Edition)

W 3C Recommendation 6 October 2000

Thisversion:
http://www.w3.0rg/TR/2000/REC-xml-20001004
PDH
E HTML review versior]

Latest version:

http://www.w3.org/ TR/REC-xml

Previous versions:

http://www.w3.0rg/TR/2000/WD-xml-2e-20000814
ttp://www.w3.0rg/TR/1998/REC-xml-19980210

Authors and Contributors:

Tim Bray (Textuality and Netscape) <tbray @textuality.con}>

Jean Paoli (Microsoft) <{eanpa@microsoft.conf>

C. M. Sperberg-McQueen (University of Illinois at Chicago and Text Encoding Initiative)
<gcmsmcg@uic.edy>

Eve Maler (Sun Microsystems, Inc.) <gve.maler@east.sun.conf>

© 2000 W33® (M1}, [NRIA, Keid), Al Rights Reserved.
Wa3C [iability, frademarH}, focument usd, and Eoftware licensind rules apply.

Abstract

The Extensible Markup Language (XML) isasubset of SGML that iscompletely described in thisdocument.
Its goal is to enable generic SGML to be served, received, and processed on the Web in the way that is
now possible with HTML. XML has been designed for ease of implementation and for interoperability
with both SGML and HTML.

http://www.renderx.com
http://www.w3.org/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006.html
http://www.w3.org/TR/2000/REC-xml-20001006.xml
http://www.w3.org/TR/2000/REC-xml-20001006.pdf
http://www.w3.org/TR/2000/REC-xml-20001006-review.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/1998/REC-xml-19980210
mailto:tbray@textuality.com
mailto:jeanpa@microsoft.com
mailto:cmsmcq@uic.edu
mailto:elm@east.sun.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Status of this document

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director asaW3C Recommendation. It is astable document and may be used as reference material
or cited as a normative reference from another document. W3C's role in making the Recommendation is
to draw attention to the specification and to promote its widespread deployment. This enhances the func-
tionality and interoperability of the Web.

Thisdocument specifiesasyntax created by subsetting an existing, widely used international text processing
standard (Standard Generalized Markup Language, 1 SO 8879:1986(E) as amended and corrected) for use
on the World Wide Web. It is a product of the W3C XML Activity, details of which can be found at
http://www.w3.org/XML|. The English version of this specification isthe only normative version. However,
for trand ations of this document, see pttp://www.w3.ora/X ML /#rang. A list of current W3C Recommen-
dations and other technical documents can be found at http://www.w3.0ra/TH.

Thissecond editionisnot anew version of XML (first published 10 February 1998); it merely incorporates

the changes dictated by thefirst-edition errata (available at pttp://www.w3.org/X ML /xml-19980210-erratd)
as a convenience to readers. The errata list for this second edition is avalable at

http://www.w3.ora/ XML /xml-V 10-2e-erratd.
Please report errorsin this document to kml-editor@wa3.ord; prchiveg are available.

C. M. Sperberg-McQueen's affiliation has changed since the publication of thefirst edition. Heisnow at the World
Wide Web Consortium, and can be contacted at Emsmca@w3.ord.

http://www.w3.org/XML/
http://www.w3.org/XML/#trans
http://www.w3.org/TR/
http://www.w3.org/XML/xml-19980210-errata
http://www.w3.org/XML/xml-V10-2e-errata
mailto:xml-editor@w3.org
http://lists.w3.org/Archives/Public/xml-editor
mailto:cmsmcq@w3.org
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Table of Contents

L ENEEOGUCLIOM ..ot s e s sene s en e en s 1
I O Lo TTRYEE aTe KoY RO 1
1.2, [TEIMUNOTOGY ... n e seeessseeenseneeneeesen e s e sesenesnean 2

B 0 L Lo U] 1 U=] S SR 3
2.1, Well-FOrmed XIVIL DOCUMIEIIES ...cveeveereeeeeereeeeeeeeeeaeeesessesseseeesessessesssessesnesesssessesesasesneseennesnens 3
2.2 [CRAIACIENS ...ttt sttt ss st s st s st ese 3
2.3. [COMMON SyNtaCtic CONSIIUCEScvcueevrvereriieerierereeeeeeete e e et s e e e b se e et beseas e tebesenssesseseseaens 4
2.4. ICharacter Data and MalKUI «....coeeeeeeeeee et et et et e e e et et e e e ere st eeeeeease st eeneaseaneseeeneeseeaneeaeennesneenes 5
2.5, [COMMENLGcvoveceevecece et ss st se s ss s s s s ss e s s s ess s 6
2.6. ProceSSiNG INSITUCHIONGcovevevevieeieiereeeeesieteseeeese e re e e s be e s e sebe e e e sebese s ssssesesensssssesesenssnnas 6
2.7 JCDATA SECHONG .veveeeeeeeeeee et eeee e e et et eeeeaeeeeeeeeseaseseeeaseseeeneeaseasesreeneeaseaseseeanesseaneeasenneseeeeeasennes 6
2.8. Prolog and Document TYPE DECIAIGLIONcvvevevevereeeeesrereeesesessetesesesessesessessssesessssssssesessssssesens 7
2.9. Btandalone DOCUMENt DECIAIALIONcvcveuieereererieeesiereteeee ettt e s et e bbb s e e sesenens 9
2.20. White SPACE HANAING v eeeeeee ettt e et e e e et et eeeeeeesreeeeanesreseeeeneane st neeseeareenenanesees 10
2.11. ENd-Of-LiN€ HaNGIINGvveveveeeeeeerereeeeeeetctee et ee st eve e se s tesssessssssesesesssessessssssssssesssnsnsnnns 10
2.12. Lanquage [dentifiCationcceeeveerrereiieeisieteeee ettt vt b et se e st ne b b ne e s 10

I IS T IS UL L= ST 11
3.1. Btart-Tags, End-Tags, and EMPtY-ElEMENt TAOF «..vveveeveeeeeeeeeeeeeeeeeeeeeeeereseeeeeeeesreseeeeeesneeeens 12
3.2. Element TYPE DECIAIAIONGcvcuveeereererieeeseereseeeseesetesesesessesesessssssesesessssssesessssssssesessssssssesesssnaes 13

2.1 ELEMENE CONMEENM ..ottt et et et e e e et et eeeeereereeeeeseseeereeeeeaneareeeesneereeneeeneseeereenes 14
B.2.2. [MIXEA CONEENT ...ttt 14
3.3, JAUITDULE- LISt DECIAIAIIONG .vevveveeeeeeeeeeeeeeeeeeeeee et et eesesee et eesessesseeeeasesreseeeenensesneneesneareeenanesees 15
3314 1 SRR 15
3.3.2. AL DULE DEFAUILSvoveveeeeeeeereeeeeeee ettt e st be s s s b be e se s b be e e sesenas 17
3.3.3. Attribute-ValUE NOMMEBITZAEIOM ..ot e et e e et e e eneenesreeeeeresreseeeeneereaneens 18
3.4. [CONAIIONA SECHIONGveveeeerereeeeseetetee st tetese st ees e te e e sestebesesssessesessesssssesesessssssesesssesessesessssnenes 19

4. PRYSICAl SETUCLUI S ..ottt sttt ss st st se st st b s st s ss s st se st et ebesn s s ssse st st eserans 20
4.1. Character and Entity REFEIENCESceveueeierieteteeceetetete ettt ettt st ne b 20
4.2 ENLLY DECIAIEIIONG ...veveeeeeeeeeeeeeeeeee et eeeeeeeee et eeseaseseeeeeeseanesreseseaseaneseeesseseeereeasessesreeeeasesneneesneans 21

4.2.1. INEEINEI ENTTIEToeoveoeeeeeeseeeeeeesee st sesee e ese s ssesss s s s e essss s es e s st sssessannen 22
A e 1 I =L L= T 22
4.3 PASEU ENLILIET ...veveveeeeeiteteeeectetetee ettt ettt b et e bt se e e bt ese e st ebese s sbebenennas 23
4.3.1. [The TEXt DECIAIAHION ..veveveeeeerereeeeesestetee e st seseessesteseesesesse e s sessesese s sessesessssssssesensassenees 23
4.3.2. Well-FOrmed ParSat ENEITIESeeoveeeeeeeeeee et eeee et st et eeeeeeseeeeeeeeare st eeneseeeneeeeeanesneeeeanens 23
4.3.3. Character ENCOdiNg IN ENLLIESccveveveveeiieereteeeeeeeteteee st teve e s seas s b s s s ennes 23
4.4. XML Processor Treatment of EntitieS and REFEIENCEToveeeeeeeeeeeeeeeeeeeeeeeeee e ereeeeeseeeneenes 25

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

AA.1. INOURECOGNIZE ...t eee et et e e e e et et e e e e eeeee et eeeseeseeseeeeneseeseeeeseeeeeeesensanneens 26

BA2. INCTUIE ... sn st en e e et s en e eneeneees 26

A.4.3. INCIUAET 1T VaITAHNG +..veeeeeeeeee e et e e et e eeeeseeeseeeateeseeseesseesseesseeseesseenseesseesseensesnses 26

A AL FOTDIATEI ..ottt e et e et et e e e e e e et et e e eeeeee et eeeeeeeeeaeeeeeeneaees 26

445, INCIUAEA TN LIEEIA ..ottt ettt et et e et et et e et et et e eeesee et eeeeseeseneenenneanens 26

3 N T SOOI 27

BAT. BYDBSSEY ..ottt 27

A.4.8. INCIUTEA BS PHoocvveei ittt ettt et eete e e s st e s saaa e e e s ab et e s eeaeeessasbeessaabetesaaseeesssbeeesaares 27

4.5, Construction of Internal Entity RepIaCeMENE TEXTovvoveeeeeeeeeeeeeeeeeeeeeeeeeee et e eeseeeeeeearennens 27

4.6, PredefiNEd ENETIEG . .cee oot eeeeeee et ettt et e et e et et et e eee et et eeeeeeeeeeeeeeeeeeeeeaeeeeeseeaeeeeeaeeseeeaeeaneans 28

A.7. INOLAHON DECIAIAHIONG ...ttt et et et e e et et e e e et et eeeeseeseeeeeaseasesaeeaeeseeeneeasesseseeenearesneennenneans 28

4.8, DOCUMENE ENTETY vttt ettt ee et e e st et e e eeeeseeeeeeeseaseseeeeeeneanesneeenesseaneseseaneneeeeeasenrenneas 28

B I ONTOIN MANCA .ot e e e e e e eeeee e e et eseeseen e e e e e eeseereeseeeeseeseeneeneeens 29

5.1. Malidating and NON-V alidating PrOCESSOIGeeueeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeseeseeeeeseeseeeeeeeeseseeas 29

5.2, JUSING XIVIL PrOCESSOIS ...t eeeeeeeeeeeee et eeee et et eeeeaeeseeeeeesesasesneeaseseeeneaaeeseeseeeeeenseareseeeaneseeaneeneennes 29

B INOLALIOM ...t ee s e eese s see s s en e se e seesenes 30
Appendices

A.R 0 e e eeeeeeeeeet.eaeeeeeeeeeeeett—eeeeeeeeeeeeeee—aaeeeeaeereeea————aaeaaeereenn——— 31

AL INOIMBEVE REFEIENCET ..ottt et e e et e e e et e et et eeeesee et eeeeasesreereeeseare st eeneaneaneeanennennes 31

A2 JOINEE REFEIEICE ...ttt et et e e e e et et et e e et et eeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeeeeeeeeeneeaneneeeees 32

B. ICNAI ACLET ClASSEG ..veuveeeeeeeeeeeeeeeeeeeeeeeeeeeeseesessesssesseseessessessessessessessesesssesssnsessesseseesssssssssesesesnens 33

C.IXML and SGML (NON-NOFMBEIVE ..vveeeeeeeeereereeeeeesesseesssssesesesessssssessessesssssessessessesssseens 36

D. Expansion of Entity and Character References (NOn-NOr Mative)ccoeeeeeeeeeeeeeeeeeseeeanns 36

E. Deterministic Content M odels (NON-NOFMELIVE]veeveeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeesessesssesseesesres 37

F. Autodetection of Character ENncodings (NON-NOFMELIVEYveeeeeeeeeeeeeeeeeeeseeeeeseeserseeenes 37

F.1. Detection Without External ENcoding INfOrMEHIONeeeeeeeeeeeeeeeee et eeeeee et eeeeeeesesaeeeeeaeesenenes 38

F.2. Priorities in the Presence of External ENcoding INfOrMELIiON «....oveeeeeeeeeeeeeeeeeeeeeeeeseeeeeereeens 39

G.W3C XML Working Group (NON-NOFMELIVE)eeeeeeeeeeeeeeeseeeseeesessesessssesssesesssessssesessesees 39

H. W3C XML Core Group (NON-NOFMEEIVE)ceeeeeeeeeeeeeeeeeeeeeseeeeseeeseesssessesesesessessessssasssesees 40

I. Production NOtES (NON-NOFMEEIVEYeeveeeeeeeeeeeeeeeseeeeseesssessseessssssessesssesssesssssssessssesseseseesesses 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

1. Introduction

Extensible Markup Language, abbreviated XML, describes aclass of data objects called X ML documentg
and partially describes the behavior of computer programs which process them. XML is an application
profile or restricted form of SGML, the Standard Generalized Markup Language [[SO 8879]. By construc-
tion, XML documents are conforming SGML documents.

XML documents are made up of storage units called pntitied, which contain either parsed or unparsed data.
Parsed datais made up of Eharacterg, some of which form and some of which form arkug.
Markup encodes a description of the document's storage layout and logical structure. XML provides a
mechanism to impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and provide access to their
content and structure. It isassumed that an XML processor is doing itswork on behalf of another module,
called the application. This specification describes the required behavior of an XML processor in terms
of how it must read XML data and the information it must provide to the application.

1.1. Origin and Goals

XML wasdeveloped by an XML Working Group (originally known asthe SGML Editorial Review Board)
formed under the auspices of the World Wide Web Consortium (W3C) in 1996. It was chaired by Jon
Bosak of Sun Microsystems with the active participation of an XML Special Interest Group (previously
known asthe SGML Working Group) aso organized by the W3C. The membership of the XML Working
Group isgiven in an appendix. Dan Connolly served as the WG's contact with the W3C.

The design goalsfor XML are:

1. XML snall be straightforwardly usable over the Internet.

2. XML shall support awide variety of applications.

3. XML shall be compatible with SGML.

It shall be easy to write programs which process XML documents.

The number of optiona featuresin XML isto be kept to the absolute minimum, ideally zero.
XML documents should be human-legible and reasonably clear.

The XML design should be prepared quickly.

The design of XML shall be formal and concise.

XML documents shall be easy to create.

© © N o 0 A~

10. Tersenessin XML markup is of minimal importance.

This specification, together with associated standards (Unicode and | SO/IEC 10646 for characters, Internet
RFC 1766 for language identification tags, SO 639 for language name codes, and | SO 3166 for country
name codes), providesall theinformation necessary to understand XML Version 1.0 and construct computer
programs to process it.

Thisversion of the XML specification may bedistributed freely, aslong asall text and legal noticesremain
intact.

Origin and Goals Page 1 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

1.2. Terminology

The terminology used to describe XML documentsis defined in the body of this specification. The terms
defined in the following list are used in building those definitions and in describing the actions of an XML
Pprocessor:

may
Conforming documents and XML processors are permitted to but need not behave as described.

must

Conforming documents and XML processors are required to behave as described; otherwise they
arein error.

error

A violation of the rules of this specification; results are undefined. Conforming software may
detect and report an error and may recover from it.

fatal error

An error which a conforming must detect and report to the application. After
encountering a fatal error, the processor may continue processing the data to search for further
errors and may report such errors to the application. In order to support correction of errors, the
processor may make unprocessed data from the document (with intermingled character data and
markup) available to the application. Once afatal error is detected, however, the processor must
not continue normal processing (i.e., it must not continue to pass character data and information
about the document'slogical structure to the application in the normal way).

at user option
Conforming software may or must (depending on the modal verb in the sentence) behave as
described; if it does, it must provide users a means to enable or disable the behavior described.
validity constraint

A rule which applies to all XML documents. Violations of validity constraints are errors;
they must, at user option, be reported by palidating XML processors.

well-formedness constraint
A rulewhich appliestoall XML documents. Violations of well-formedness constraints

arefatal errord.

match

(Of strings or names:) Two strings or names being compared must be identical. Characters with
multiple possible representations in I SO/IEC 10646 (e.g. characters with both precomposed and
basetdiacritic forms) match only if they have the same representation in both strings. No case
folding is performed. (Of strings and rulesin the grammar:) A string matches a grammatical pro-
ductionif it belongsto the language generated by that production. (Of content and content models:)
An element matches its declaration when it conforms in the fashion described in the constraint
|'Element Valid.

for compatibility
Marks a sentence describing a feature of XML included solely to ensure that XML remains com-
patible with SGML.

Page 2 of 40 Introduction

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

for interoperability
Marks a sentence describing a non-binding recommendation included to increase the chances that

XML documents can be processed by the existing installed base of SGML processorswhich predate
the WebSGML Adaptations Annex to | SO 8879.

2. Documents

A data object is an XML document if it is vell-formed, as defined in this specification. A well-formed
XML document may in addition be[zalid if it meets certain further constraints.

Each XML document has both alogical and a physical structure. Physically, the document is composed
of units called ntitied. An entity may to other entities to cause their inclusion in the document. A
document begins in a “root” or focument entity. Logically, the document is composed of declarations,
elements, comments, character references, and processing instructions, all of which are indicated in the
document by explicit markup. The logical and physical structures must nest properly, as described in
E 4.3.2 — Well-Formed Parsed Entitieg on page 23.

2.1. Well-Formed XML Documents

A textual object is awell-formed XML document if:

1. Taken asawhole, it matches the production labeled focument.

2. It meetsall the well-formedness constraints given in this specification.

3. Each of the which is referenced directly or indirectly within the document is

[1 document ::= prolodElement Misd
Matching the production implies that:
1. It contains one or more Elements.

2. Thereis exactly one element, called the root, or document element, no part of which appearsin the
of any other element. For al other elements, if theftart-tad isin the content of another element,
thend-tad isin the content of the same element. More simply stated, the elements, delimited by start-
and end-tags, nest properly within each other.

As a conseguence of this, for each non-root element C in the document, there is one other element P in
the document such that C isin the content of P, but is not in the content of any other element that isin the
content of P. Pisreferred to asthe parent of C, and C asachild of P.

2.2. Characters

A parsed entity contains text, a sequence of Eharacterd, which may represent markup or character data. A
character is an atomic unit of text as specified by 1SO/IEC 10646 [[SO/IEC 1064€] (see aso [[SO/IEQ
fL0646-2000]). Legal characters aretab, carriage return, line feed, and the legal characters of Unicode and
ISO/IEC 10646. The versions of these standards cited injA ppendix A.1 — Normative Referenceg on page 31
were current at the time this document was prepared. New characters may be added to these standards by
amendments or new editions. Consequently, XML processors must accept any character in the range

Weéll-Formed XML Documents Page 3 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

specified for [Char]. The use of “compatibility characters’, as defined in section 6.8 of [[Unicodd] (see also
D21 in section 3.6 of [Unicoded]), is discouraged.

[16] Char = #x9|#xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000- *
#x10FFFF] VB
b
ar
8
@
#
de
oi
¢t
€13
a
ag
<o)
=
da
F

~
*

The mechanism for encoding character code points into bit patterns may vary from entity to entity. All
XML processors must accept the UTF-8 and UTF-16 encodings of 10646; the mechanisms for signaling
which of the two is in use, or for bringing other encodings into play, are discussed later, in
[Character Encoding in Entitieg on page 23.

2.3. Common Syntactic Constructs

This section defines some symbols used widely in the grammar.

E (white space) consists of one or more space (#x20) characters, carriage returns, line feeds, or tabs.
[26] S = (#x20|#x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other characters. A letter consists of an
alphabetic or syllabic base character or an ideographic character. Full definitions of the specific characters
in each class are given in Appendix B — Character Classes on page 33.

A Name is a token beginning with a letter or one of a few punctuation characters, and continuing with
letters, digits, hyphens, underscores, colons, or full stops, together known as name characters. Names
beginning with the string “xm ”, or any string which would match ((" X' |'x") (‘"M |'m)
("L"|"1")),arereserved for standardization in this or future versions of this specification.

|:| The Namespacesin XML Recommendation [[XML Named] assignsameaning to names containing colon characters.
Therefore, authors should not use the colon in XML names except for namespace purposes, but XML processors
must accept the colon as a name character.

An (name token) is any mixture of name characters.

[33] NameChar ::= |Bigid | ||| | EombiningCha] | Extende]
[50] Name := (Lette]|''|") (NameChar)*

[63] Names

Namd (8 Naméd)*

Page 4 of 40 Documents

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

[78] Nmtoken ::= (NameChar)+
[88] Nmtokens ::= Nmtoken (§ Nmtoken)*

Literal datais any quoted string not containing the quotation mark used as a delimiter for that string. Lit-
erals are used for specifying the content of internal entities (EntityValud), the values of attributes
(AttValud), and external identifiers (SystemLiteral). Note that a[BystemL iteral can be parsed without

scanning for markup.

(103 EntityValue = "' (["%&"] | PEReferencd | Referencd)* ™
| ("%&] | PEReferencd | Referencd)* "
(129 AttVaue = " ([*<&"] |Referencd* ™
| ([(*<&7 | Referencd)* "
[141] &/Steleteral = ("" [/\"]* "") | (""" [/\']* -----)
(148 PubidLiteral = ™ PubidChar* ™ | "™ "
[161] PubidChar = #x20 | #xD | #XA | [a-ZA-Z0-9] | [()+,/:=21*#@$ %]

Although the EntityValud production allowsthe definition of an entity consisting of asingle explicit < intheliteral
(eg., <!'ENTITY nylt "<">),itisstrongly advised to avoid this practice since any reference to that entity will
cause awell-formedness error.

2.4. Character Data and Markup

[Fexd consists of intermingled Eharacter datd and markup. Markup takes the form of tart-tagd, bnd-tagg,
brpty-element tagd, pntity referenced, Eharacter referenced, Fommentd, [CDATA sectior] delimiters,
kype declaration, processing instructiond, KM L declarationd, fext_declarationd, and any white space

that is at the top level of the document entity (that is, outside the document element and not inside any
other markup).

All text that is not markup constitutes the character data of the document.

The ampersand character (&) and the left angle bracket (<) may appear in their literal form only when
used as markup delimiters, or within afcomment, ajprocessing instructior], or a[CDATA sectior]. If they
are needed elsewhere, they must be using either humeric character referenced or the strings
“&anp; "and“&l t ; ” respectively. Theright angle bracket (>) may be represented using thestring“ > ; 7,
and must, for compatibilityl, be escaped using “> ; " or acharacter reference when it appearsin the string

“11>" in content, when that string is not marking the end of alCDATA sectior].

In the content of elements, character data is any string of characters which does not contain the start-
delimiter of any markup. In a CDATA section, character datais any string of characters not including the
CDATA-section-close delimiter, “]1] >”.

To alow attribute valuesto contain both single and double quotes, the apostrophe or single-quote character
() may be represented as “' ”, and the double-quote character (") as“" ; ”.

(165 CharData = ["<&]* - (["<&]* 1]>' ['<&]*)

Character Data and Markup Page 5 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

2.5. Comments

Comments may appear anywherein adocument outside other narkug; in addition, they may appear within
the document type declaration at places allowed by the grammar. They are not part of the document's
an XML processor may, but need not, make it possible for an application to retrieve the

text of comments. [For_compatibilityl, the string “- - ” (double-hyphen) must not occur within comments.
Parameter entity references are not recognized within comments.
(175 Comment ::= '<!-'([Chad- ") | (- €had- -))* -->"

An example of acomment:

<l-- declarations for <head> & <body> -->

Note that the grammar does not allow a comment ending in - - - >. The following example is not well-
formed.

<{-- B+ B, or B--->

2.6. Processing I nstructions

Processing instructions (PIs) allow documents to contain instructions for applications.

189 P <7 PiTaroel @ (Chat* - (Chatl* "> Bhat)))? >

(20 PiTarget = Namd- ((X'|'X) (M"]'m) (L'|)

PIs are not part of the document's but must be passed through to the application. The PI
begins with a target (PI Targef) used to identify the application to which the instruction is directed. The
target names “XM.", “xm ", and so on are reserved for standardization in this or future versions of this

specification. The XML mechanism may be used for formal declaration of Pl targets. Parameter
entity references are not recognized within processing instructions.

2.7. CDATA Sections

CDATA sections may occur anywhere character data may occur; they are used to escape blocks of text
containing characters which would otherwise be recognized as markup. CDATA sections begin with the
string “<! [CDATA[" and end with the string “]] >":

(219 CDSect := [cDStar{[CDatd[CDENd
233 CDStart ::= '<I[CDATA['

[240] CData := (Char* - (Char* ']]>' Char*))
[256] CDEnd := 1]>'

Within a CDATA section, only the[CDENd string is recognized as markup, so that left angle brackets and
ampersands may occur in their literal form; they need not (and cannot) be escaped using “& t ; ” and
“&anp; ”. CDATA sections cannot nest.

An example of a CDATA section, in which “<gr eeti ng>" and “</ gr eet i ng>" are recognized as
character datd, not Imarkug:

<I'[CDATA[<greeti ng>Hel | o, worl d!</greeting>]]>

Page 6 of 40 Documents

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

2.8. Prolog and Document Type Declaration

XML documents should begin with an XML declaration which specifies the version of XML being used.
For example, the following is a complete XML document, but not [alid:

<?xm version="1.0"?> <greeting>Hell o, world!</greeting>

and soisthis:

<greeting>Hel | o, world!</greeting>

The version number “1. 0” should be used to indicate conformance to this version of this specification;
itisan error for adocument to usethevaue“1. 0” if it does not conform to thisversion of this specification.
It isthe intent of the XML working group to give later versions of this specification numbers other than
“1. 0”, but thisintent does not indicate a commitment to produce any future versions of XML, nor if any
are produced, to use any particular numbering scheme. Since future versionsare not ruled out, this construct
isprovided asameansto allow the possibility of automatic version recognition, should it become necessary.
Processors may signal an error if they receive documents labeled with versions they do not support.

The function of the markup in an XML document is to describe its storage and logical structure and to
associate attribute-value pairs with its logical structures. XML provides a mechanism, the
beclaratior], to define constraints on the logical structure and to support the use of predefined storage units.
An XML document isvalidif it has an associated document type declaration and if the document complies
with the constraints expressed in it.

The document type declaration must appear before the first in the document.

[263 prolog = KMLDec|?Misd* (doctypedec| Misd*)?

[281] XMLDecl ::= '<?ml'Versioninfd EncodingDecl?[EDDecl?§? 2>

[300] Versioninfo == ['version' Ed (" ersonNum " | " VersionNum] ")/* */
[321] Eq = E2>='F

[333 VersionNum ::= ([azA-Z0-9 .] |-+

[340 Misc ::= [Commeni|Pl|B

The XML document type declaration contains or points to jnarkup declarationg that provide a grammar
for a class of documents. This grammar is known as a document type definition, or DTD. The document
type declaration can point to an external subset (a special kind of External entity]) containing markup dec-
larations, or can contain the markup declarations directly in an internal subset, or can do both. The DTD
for adocument consists of both subsets taken together.

A markup declaration is an glement type declaratior], an gttribute-list declaratior], an ntity declaratior],
or ajotation declaration]. These declarations may be contained in whole or in part within parameter entities,
as described in the well-formedness and validity constraints below. For further information, see g 4 4
Physical Structures on page 20.

(34 doctypedecl ::= '<IDOCTYPE' BNamd @ExternallD)?82 ([’ (markupdec] | DeclSed)** /
T2 I
(300 DeclSep = PEReferencd|g */
/*

[40g] markupdec! ::= Elementdec] | AttlistDec] | EntityDec] | NotationDec] | PI] | Eomment]

Prolog and Document Type Declaration Page 7 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Note that it is possible to construct awell-formed document containing a that neither points
to an external subset nor contains an internal subset.

The markup declarations may be made up in whole or in part of the feplacement tex{ of parameter entitie.
The productions later in this specification for individual nonterminals (Elementdec], [AttlistDecl, and so
on) describe the declarations after all the parameter entities have been [ncluded.

Parameter entity references are recognized anywhereinthe DTD (internal and external subsets and external
parameter entities), except in literals, processing instructions, comments, and the contents of ignored
conditional sections (seef§ 3.4 — Conditional Sectiongon page 19). They are also recognized in entity value
literals. The use of parameter entitiesin the internal subset is restricted as described below.

Validity Constraint: Root Element Type
The in the document type declaration must match the element type of the foot element.

Validity Constraint: Proper Declaration/PE Nesting

Parameter-entity feplacement tex{ must be properly nested with markup declarations. That is to say, if
either the first character or the last character of amarkup declaration (nar kupdecl| above) is contained in
the replacement text for a parameter-entity referencd, both must be contained in the same replacement
text.

Well-Formedness Constraint: PEsin Internal Subset

In the internal DTD subset, parameter-entity referenceg can occur only where markup declarations can
occur, not within markup declarations. (This does not apply to referencesthat occur in external parameter
entities or to the external subset.)

Well-Formedness Constraint: External Subset
The external subset, if any, must match the production for pxtSubsef.

Well-Formedness Constraint: PE Between Declar ations
The replacement text of aparameter entity referencein aDeclSed must match the production extSubsetDedl.

Like the internal subset, the external subset and any external parameter entities referenced in aDeclSed
must consist of aseries of complete markup declarations of the types alowed by the non-terminal symbol
markupdec], interspersed with white space or parameter-entity reference. However, portions of the
contents of the external subset or of these external parameter entities may conditionally be ignored by
using the conditional sectior] construct; thisis not allowed in the internal subset.

[437 extSubset = [[extDec|?pxtSubsetDecl

[443 extSubsetDecl ::= (jmarkupdec] | conditional Sect] | Decl Sed)* */
/*

The external subset and external parameter entities also differ from the internal subset in that in them,
parameter-entity referenceg are permitted within markup declarations, not only between markup declarations.

Page 8 of 40 Documents

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

An example of an XML document with a document type declaration:

<?xm version="1.0"?> <I DOCTYPE greeti ng SYSTEM "hel | 0. dtd"> <greeting>Hel | o,
wor | d! </ greeting>

Thepystem identifier “hel | 0. dt d” gives the address (a URI reference) of aDTD for the document.

The declarations can also be given locally, asin this example:

<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE greeting [
<! ELEMENT greeting (#PCDATA) >
1>
<greeting>Hel | o, worl d!</greeting>

If both the external and internal subsets are used, the internal subset is considered to occur before the
external subset. This has the effect that entity and attribute-list declarations in the internal subset take
precedence over those in the external subset.

2.9. Standalone Document Declaration

Markup declarations can affect the content of the document, as passed from an to an
application; examples are attribute defaults and entity declarations. The standal one document declaration,
which may appear asacomponent of the XML declaration, signalswhether or not there are such declarations
which appear external to the [document entity] or in parameter entities. An external markup declaration is
defined as a markup declaration occurring in the external subset or in a parameter entity (external or
internal, the latter being included because non-validating processors are not required to read them).

463 SDDecl = ['standalone EJ (™ (yes' | 'no) ™) | (" (yes |) ™))

In astandal one document declaration, the value yesindicates that there are no external markup declarationg
which affect the information passed from the XML processor to the application. The value no indicates
that there are or may be such external markup declarations. Note that the standal one document declaration
only denotes the presence of external declarations; the presence, in a document, of references to external
entities, when those entities are internally declared, does not change its standal one status.

If there are no external markup declarations, the standal one document declaration has no meaning. If there
are external markup declarations but there is no standal one document declaration, the value no is assumed.

Any XML document for which st andal one="no" holdscan be converted algorithmically to astandalone
document, which may be desirable for some network delivery applications.

Validity Constraint: Standalone Document Declar ation
The standal one document declaration must have the value no if any external markup declarations contain
declarations of:

« attributes with values, if elements to which these attributes apply appear in the document
without specifications of values for these attributes, or

« entities (other thananp, | t , gt , apos, quot), if feferenced to those entities appear in the document,
or

« attributes with values subject to hormalizatior], where the attribute appears in the document with a
value which will change as aresult of normalization, or

Standalone Document Declaration Page 9 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

« element types with Element conteni, if white space occurs directly within any instance of those types.

An example XML declaration with a standalone document declaration:

<?xm version="1.0" standal one='yes' ?>

2.10. White Space Handling

In editing XML documents, it is often convenient to use “white space” (spaces, tabs, and blank lines) to
set apart the markup for greater readability. Such white space istypically not intended for inclusion in the
delivered version of the document. On the other hand, “significant” white space that should be preserved
in the delivered version is common, for example in poetry and source code.

An must always pass all characters in a document that are not markup through to the
application. A |validating XML processoll must also inform the application which of these characters
constitute white space appearing in Element content.

A specia named xml:space may be attached to an element to signal an intention that in that element,
white space should be preserved by applications. In valid documents, this attribute, like any other, must
be if it is used. When declared, it must be given as an enumerated typd whose values are one or
both of default and preserve. For example:

<I ATTLI ST poem xnl:space (default|preserve) 'preserve' >

<l-- -->
<I ATTLI ST pre xml :space (preserve) #FIXED ' preserve' >

The value default signals that applications' default white-space processing modes are acceptable for this
element; the value preserveindicatestheintent that applications preserve all the white space. Thisdeclared
intent is considered to apply to al elements within the content of the element where it is specified, unless
overriden with another instance of the xml:space attribute.

Thefoot element of any document is considered to have signal ed no intentions as regards appli cation space
handling, unless it provides avalue for this attribute or the attribute is declared with a default value.

2.11. End-of-Line Handling

XML are often stored in computer files which, for editing convenience, are organized into
lines. Theselines aretypically separated by some combination of the characters carriage-return (#xD) and
line-feed (#xA).

To simplify the tasks of pplicationd, the characters passed to an application by the must
be asif the XML processor normalized all line breaks in external parsed entities (including the document

entity) oninput, before parsing, by trand ating both the two-character sequence #xD #xA and any #xD that
isnot followed by #xA to asingle #xA character.

2.12. Language | dentification

In document processing, it is often useful to identify the natural or formal language in which the content
iswritten. A special named xml:lang may be inserted in documents to specify the language used
in the contents and attribute values of any element inan XML document. In valid documents, this attribute,
like any other, must bePeclared if it is used. The values of the attribute are language identifiers as defined

Page 10 of 40 Documents

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

by [IETE RFC 1764], Tags for the Identification of Languages, or its successor on the IETF Standards
Track.

|:| [[ETE_ REC 1766] tags are constructed from two-letter language codes as defined by [[SO 639], from two-letter
country codes as defined by [[SO 3164], or from language identifiers registered with the Internet Assigned Numbers
Authority [TANA-CANGCODEY]. It is expected that the successor to [IETE REC 1766] will introduce three-letter
language codes for languages not presently covered by [[SO 639].

(Productions 33 through 38 have been removed.)

For example:

<p xm :lang="en">The quick brown fox junps over the |azy dog.</p>
<p xm :lang="en- GB">What col our is it?</p>
<p xm :lang="en-US">What color is it?</p>
<sp who="Faust" desc='leise' xm:|ang="de">
<l >Habe nun, ach! Phil osophie, </I>
<I>Juristerei, und Medizin</|>
<l >und | ei der auch Theol ogi e</| >
<l >durchaus studiert mit heiRem Benmih' n.</I|>
</ sp>

Theintent declared with xml:lang is considered to apply to al attributes and content of the element where
it is specified, unless overridden with an instance of xml:lang on another element within that content.

A simple declaration for xml:lang might take the form

xm : 1 ang NMIOKEN #| MPLI ED

but specific default values may also be given, if appropriate. In a collection of French poems for English
students, with glosses and notesin English, the xml:lang attribute might be declared this way:

<I ATTLI ST poem xnl:lang NMIOKEN ' fr'>
<I' ATTLI ST gl oss xml :|lang NMIOKEN 'en' >
<I ATTLI ST note xm :1ang NMIOKEN ' en' >

3. Logical Structures

Each contains one or more el ements, the boundaries of which are either delimited by
fagd and end-tagg, or, for elements, by an pmpty-element tad. Each element has a type, identified
by name, sometimes called its “generic identifier” (Gl), and may have a set of attribute specifications.
Each attribute specification has ajhamd and afvalud.

(534 element =

|ETad Eonteni ETad
This specification does not constrain the semantics, use, or (beyond syntax) names of the element types
and attributes, except that names beginning withamatchto ((" X' |"x") ("M |'m) ("L |"1"))

arereserved for standardization in this or future versions of this specification.

Well-Formedness Constraint: Element Type Match
The in an element's end-tag must match the element type in the start-tag.

L anguage I dentification Page 11 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Validity Constraint: Element Valid
An element isvalid if there is a declaration matching where the matches the element
type, and one of the following holds:

1. The declaration matches EMPTY and the element has no onten.

2. Thedeclaration matchesfhildr e and the sequence of belongsto the language generated
by the regular expression in the content model, with optional white space (characters matching the
nonterminal [§) between the start-tag and the first child element, between child elements, or between
the last child element and the end-tag. Note that a CDATA section containing only white space does
not match the nonterminal [§, and hence cannot appear in these positions.

3. The declaration matches and the content consists of Eharacter datd and hild element3 whose
types match names in the content model.

4. The declaration matches ANY, and the types of any ghild elementg have been declared.

3.1. Start-Tags, End-Tags, and Empty-Element Tags
The beginning of every non-empty XML element is marked by a start-tag.

[553] STag := '<'Namd @B [Attributd)* §2'>'
(573 Attribute ::= NamdEd[AttValud

The in the start- and end-tags gives the element's type. The Name-AttValug pairs are referred to
as the attribute specifications of the element, with the[Namd in each pair referred to as the attribute name
and the content of the (the text between the' or " delimiters) as the attribute value.Note that
the order of attribute specificationsin a start-tag or empty-element tag is not significant.

Well-Formedness Constraint: Unique Att Spec
No attribute name may appear more than once in the same start-tag or empty-element tag.

Validity Constraint: Attribute Value Type

The attribute must have been declared; the value must be of the type declared for it. (For attribute types,
see g 3.3 — Attribute-List Declarationg on page 15.)

Well-Formedness Constraint: No External Entity References
Attribute values cannot contain direct or indirect entity references to external entities.

Well-Formedness Constraint: No < in Attribute Values

The feplacement tex{ of any entity referred to directly or indirectly in an attribute value must not contain
a<.

An example of a start-tag:
<terndef id="dt-dog" tern"dog">

Page 12 of 40 Logical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

The end of every element that begins with a start-tag must be marked by an end-tag containing a name
that echoes the element’s type as given in the start-tag:
[591] ETag ::= '</'Namd@>'>'
An example of an end-tag:
</ terndef >

The fex] between the start-tag and end-tag is called the element's content:

[604] content = [CharDatd? ((Elemenf |Referencd |[CDSec] | Pl |[Comment) Char] */
Datd?)* I

An element with no content is said to be empty. The representation of an empty element is either a start-
tag immediately followed by an end-tag, or an empty-element tag. An empty-element tag takes a special
form:

[635] EmptyElemTag ::= '<'Namd (§[Attributd)* §2'/>"

Empty-element tags may be used for any element which has no content, whether or not it isdeclared using
the keyword EMPTY. [For interoperability], the empty-element tag should be used, and should only be used,
for elements which are declared EMPTY .

Examples of empty elements:

<IMs align="left"

src="http://ww. w3. org/ | cons/ WW w3c_hone" />

</ br >

3.2. Element Type Declarations

The structure of an may, for purposes, be constrained using element
type and attribute-list declarations. An element type declaration constrains the element's onten.

Element type declarations often constrain which element types can appear as of the element. At
user option, an XML processor may issue a warning when a declaration mentions an element type for
which no declaration is provided, but thisis not an error.

An element type declaration takes the form:

[655] elementdecl ::= '<IELEMENT'BNamd[gEontentspedg?*>'
[678] contentspec = 'EMPTY'|'ANY" | Mixed | Ehildred

where the gives the element type being declared.

Validity Constraint: Unique Element Type Declaration
No element type may be declared more than once.

Examples of element type declarations:

<! ELEMENT br EMPTY>

<! ELEMENT p (#PCDATA| enph)* >

<I ELEMENT Y%nane. para; %ontent.para; >
<! ELEMENT cont ai ner ANY>

Element Type Declarations Page 13 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

3.2.1. Element Content

An element fypd has element content when elements of that type must contain only elements (no
character data), optionally separated by white space (characters matching the nonterminal [§).In this case,
the constraint includes acontent model, asimple grammar governing the allowed types of the child elements
and the order in which they are allowed to appear. The grammar is built on content particles @s), which
consist of names, choice lists of content particles, or sequence lists of content particles:

ol children ::= (Ehoicd|Bed) (7' |'+)?

™ o = (Namd|Eioicd B (71| +)?

(720 choice = '('B2kd (B2 B?Ed)+H?" g
4
e

™ wq o= (BB (B BB By y

/*

where each isthe type of an element which may appear as afhild. Any content particlein achoice
list may appear in theflement content at the location where the choice list appearsin the grammar; content
particles occurring in asequence list must each appear in the flement content in the order givenin thelist.
The optional character following aname or list governs whether the element or the content particlesin the
list may occur one or more (+), zero or more (*), or zero or onetimes (?). The absence of such an operator
meansthat the element or content particle must appear exactly once. Thissyntax and meaning areidentical
to those used in the productions in this specification.

The content of an element matches a content model if and only if it is possible to trace out a path through
the content model, obeying the sequence, choice, and repetition operators and matching each element in
the content against an element type in the content model. [For compatibility), it isan error if an element in
the document can match more than one occurrence of an element type in the content model. For more
information, see jAppendix E — Deterministic Content Modelg on page 37.

Validity Constraint: Proper Group/PE Nesting

Parameter-entity feplacement tex| must be properly nested with parenthesized groups. That is to say, if
either of the opening or closing parentheses in a Ehoicd, ed, or construct is contained in the
replacement text for aparameter entity], both must be contained in the same replacement text.

For interoperability, if a parameter-entity reference appears in a Ehoicd, fed, or Mixed construct, its
replacement text should contain at least one non-blank character, and neither the first nor last non-blank
character of the replacement text should be a connector (| or,).

Examples of element-content models:

<! ELEMENT spec (front, body, back?)>
<IELEMENT divl (head, (p | list | note)*, div2*)>
<! ELEMENT di ctionary-body (%iv.mx; | %ict.mx;)*>

3.2.2. Mixed Content

An element fypd has mixed content when elements of that type may contain character data, optionally
interspersed with elements. In this case, the types of the child elements may be constrained, but not
their order or their number of occurrences:

Page 14 of 40 Logical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter
(784 Mixed = ' B?*#PCDATA’ (@' B2 Namd)* B
|'(B2 #PCDATA'B?")
where the Namds give the types of elements that may appear as children. The keyword #PCDATA derives
historically from the term “parsed character data.”

Validity Constraint: No Duplicate Types
The same name must not appear more than once in a single mixed-content declaration.

Examples of mixed content declarations:

<! ELEMENT p (#PCDATA|alul|bli]em*>
<IELEMENT p (#PCDATA | %ont; | Y%hrase; | Y%special; | YBorm)* >
<! ELEMENT b (#PCDATA) >

3.3. Attribute-List Declar ations

are used to associate name-val ue pairs with Elementd. Attribute specifications may appear only
within Ftart-tagg and empty-element tagg; thus, the productions used to recognize them appear in
Btart-Tags, End-Tags, and Empty-Element Tagg on page 12. Attribute-list declarations may be used:

» Todefine the set of attributes pertaining to a given element type.

» To establish type constraints for these attributes.

« Toprovide for attributes.

Attribute-list declarations specify the name, datatype, and default value (if any) of each attribute associated
with a given element type:

[818] AttlistDedl = '<IATTLIST' BNamdAttDefr §2'>'
[837] AttDef = BNamdBRAttTypdBDefaultDec]

TheNamdin the ruleis the type of an element. At user option, an XML processor may issue
awarning if attributes are declared for an element type not itself declared, but this is not an error. The

in the ruleis the name of the attribute.

When more than one is provided for a given element type, the contents of all those provided
are merged. When more than one definition is provided for the same attribute of a given element type, the
first declaration is binding and later declarations are ignored. [For interoperability] writers of DTDs may
choose to provide at most one attribute-list declaration for a given element type, at most one attribute
definition for a given attribute name in an attribute-list declaration, and at least one attribute definitionin
each attribute-list declaration. For interoperability, an XML processor may at user option issue awarning
when more than one attribute-list declaration is provided for agiven element type, or more than one attribute
definition is provided for a given attribute, but thisis not an error.

3.3.1. Attribute Types

XML attribute types are of three kinds: a string type, a set of tokenized types, and enumerated types. The
string type may take any literal string as a value; the tokenized types have varying lexical and semantic
constraints. The validity constraints noted in the grammar are applied after the attribute value has been
normalized as described in g 3.3 — Attribute-List Declarationg on page 15.

[880] AttType = [tringTypg|[TokenizedTypg|EnumeratedTypd

Attribute-List Declarations Page 15 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

'CDATA'

D

|'IDREF
|'IDREFS
|'ENTITY"
|'ENTITIES
|'NMTOKEN'
|'NMTOKENS

[875] StringType
[837] TokenizedType

Validity Constraint: ID

Values of type| D must match the[Namd production. A name must not appear more than oncein an XML
document as avalue of thistype; i.e., ID values must uniquely identify the elements which bear them.

Validity Constraint: One D per Element Type
No element type may have more than one ID attribute specified.

Validity Constraint: ID Attribute Default
An ID attribute must have a declared default of #1 MPLI ED or #REQUI RED.

Validity Constraint: IDREF

Valuesof type| DREF must match theNamd production, and values of type | DREFS must match
each must match the value of an 1D attribute on some element in the XML document; i.e. | DREF
values must match the value of some ID attribute.

Validity Constraint: Entity Name

Valuesof type ENTI TY must match theNaméd production, values of type ENTI Tl ES must match[Named;
each must match the name of an declared inthe DTD.

Validity Constraint: Name Token
Values of type NMITOKEN must match the production; values of type NMTOKENS must match .

Enumerated attributes can take one of alist of values provided in the declaration. There are two kinds of
enumerated types:

[917] EnumeratedType ::= [NotationTypg |Enumeration
[929] NotationType ::= 'NOTATION'B'(B2Namd @2 B?Namd)* §2")
(964 Enumeration = '('[§?Nmtokerd (2| 2 Nmtoker)* B2y

A NOTATI ON attribute identifies a potatior], declared in the DTD with associated system and/or public
identifiers, to be used in interpreting the element to which the attribute is attached.

Validity Constraint: Notation Attributes

Values of this type must match one of the names included in the declaration; all notation names
in the declaration must be declared.

Page 16 of 40 Logical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Validity Constraint: One Notation Per Element Type
No element type may have more than one NOTATI ON attribute specified.

Validity Constraint: No Notation on Empty Element
[For compatibility], an attribute of type NOTATI ON must not be declared on an element declared EMPTY.

Validity Constraint: Enumeration
Values of this type must match one of the tokens in the declaration.

FFor interoperability] the same[Nmtoken] should not occur more than oncein the enumerated attribute types
of asingle element type.

3.3.2. Attribute Defaults

An Rttribute declaratior] provides information on whether the attribute's presence is required, and if not,
how an XML processor should react if adeclared attribute is absent in a document.

[987] DefaultDec] = #REQUIRED' |'#IMPLIED'
| (#FIXED' S)? BttValud)

In an attribute declaration, #REQUI RED means that the attribute must always be provided, #1 MPLI ED
that no default value is provided. If the declaration is neither #REQUI RED nor #1 MPLI ED, then the
value contains the declared default value; the #FI XED keyword states that the attribute must
always have the default value. If a default value is declared, when an XML processor encounters an
omitted attribute, it is to behave as though the attribute were present with the declared default value.

Validity Constraint: Required Attribute

If the default declaration isthe keyword #REQUI RED, then the attribute must be specified for all elements
of the type in the attribute-list declaration.

Validity Constraint: Attribute Default L egal
The declared default value must meet the lexical constraints of the declared attribute type.

Validity Constraint: Fixed Attribute Default

If an attribute has a default value declared with the #FI XED keyword, instances of that attribute must
match the default value.

Examples of attribute-list declarations:

<! ATTLI ST ter ndef

id ID #REQUI RED

nane CDATA #| MPLI ED>
<! ATTLI ST Ii st

type (bul l ets| ordered| gl ossary) "ordered">
<I' ATTLI ST form

nmet hod CDATA #FI XED " POST" >

Attribute-List Declarations Page 17 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

3.3.3. Attribute-Value Nor malization

Before the value of an attribute is passed to the application or checked for validity, the XML processor
must normalize the attribute value by applying the algorithm below, or by using some other method such
that the value passed to the application is the same as that produced by the algorithm.

1. All line breaks must have been normalized on input to #xA as described in g 2.11 — End-of-Ling
on page 10, so the rest of this algorithm operates on text normalized in this way.

2. Begin with anormalized value consisting of the empty string.

3. For each character, entity reference, or character reference in the unnormalized attribute value,
beginning with the first and continuing to the last, do the following:

» For acharacter reference, append the referenced character to the normalized value.

» For an entity reference, recursively apply step 3 of this algorithm to the replacement text of the
entity.

» For awhite space character (#x20, #xD, #xA, #x9), append a space character (#x20) to the normal-
ized value.

» For another character, append the character to the normalized value.

If the attribute typeis not CDATA, then the XML processor must further process the normalized attribute
value by discarding any leading and trailing space (#x20) characters, and by replacing sequences of space
(#x20) characters by a single space (#x20) character.

Notethat if the unnormalized attribute val ue contains a character reference to awhite space character other
than space (#x20), the normalized value contains the referenced character itself (#xD, #xA or #x9). This
contrasts with the case where the unnormalized val ue contains a white space character (not a reference),
which is replaced with a space character (#x20) in the normalized value and also contrasts with the case
where the unnormalized value contains an entity reference whose replacement text contains awhite space
character; being recursively processed, the white space character is replaced with a space character (#x20)
in the normalized value.

All attributes for which no declaration has been read should be treated by anon-validating processor asif
declared CDATA.

Following are examples of attribute normalization. Given the following declarations:

<IENTITY d "  ">
<IENTITY a "&H#xA; ">
<IENTITY da " 
 ">

the attribute specifications in the left column below would be normalized to the character sequences of
themiddle columniif the attribute ais declared NMTOKENS and to those of theright columnsif aisdeclared
CDATA.

Attribute specification aisNMTOKENS aisCDATA
a=" XYy z #x20 #x20 x y z
xyz"
a="&d; &d; A&a; &a; B&da; " A #x20 B #x20 #x20 A #x20 #x20 B
#x20 #x20

Page 18 of 40 Logical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Attribute specification aisNMTOKENS aisCDATA

a= #xD #xD A #xA #xXA B #xD|#xD #xD A #xA #xA B #xD
" &ixd; &éixd; A
 Sétxa;, BREX, 8@, " | #x A #xD

Note that the last example isinvalid (but well-formed) if ais declared to be of type NMTOKENS.

3.4. Conditional Sections

Conditional sections are portions of the document type declaration external subse{ which areincluded in,
or excluded from, the logical structure of the DTD based on the keyword which governs them.

[og conditionalSect = |ncludeSect] | jgnor eSec

(1017 includeSect ::= '<I['S?'INCLUDE' S?[' ExtSubsetDec]]]>' * |
/*

W[032] ignoreSect = '<!['S?'IGNORE' S?'|gnor eSectContentg* ']]>' */
/*

[10m ignoreSectContents = | gnorg ('<![' lgnor eSectContentg '1]>' | gnor g)*

(10 Ignore ::= [Char - (Char* (<![' | 1]>) Ehat*)

Validity Constraint: Proper Conditional Section/PE Nesting

If any of the"<![","[", or "]]>" of a conditional section is contained in the replacement text for a
parameter-entity reference, all of them must be contained in the same replacement text.

Liketheinternal and external DTD subsets, a conditional section may contain one or more complete dec-
larations, comments, processing instructions, or nested conditional sections, intermingled with white space.

If the keyword of the conditional section is| NCLUDE, then the contents of the conditional section are part
of the DTD. If the keyword of the conditional section is | GNORE, then the contents of the conditional
section are not logically part of the DTD. If a conditional section with a keyword of | NCLUDE occurs
within a larger conditional section with a keyword of | GNORE, both the outer and the inner conditional
sections are ignored. The contents of an ignored conditional section are parsed by ignoring all characters
after the "[" following the keyword, except conditional section starts "<! [" and ends "]] >", until the
matching conditional section end isfound. Parameter entity references are not recognized in this process.

If the keyword of the conditional section is a parameter-entity reference, the parameter entity must be
replaced by its content before the processor decides whether to include or ignore the conditional section.

An example:

<IENTITY %draft '1NCLUDE >
<IENTITY % final 'lIGNORE >

<I[%raft;[

<! ELEMENT book (comments*, title, body, supplenents?)>
11>

<I[%Binal;[

<! ELEMENT book (title, body, supplenments?)>

11>

Conditional Sections Page 19 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

4. Physical Structures

An XML document may consist of one or many storage units. These are called entities; they all have

content and are all (except for the focument entity| and thexternal DTD subsel) identified by entity name.
Each XML document has one entity called the focument entity], which serves as the starting point for the

and may contain the whole document.

Entitiesmay be either parsed or unparsed. A parsed entity's contents are referred to asitsfeplacement texi;
thisfex{ is considered an integral part of the document.

An unparsed entity is a resource whose contents may or may not be fexi, and if text, may be other than
XML. Each unparsed entity has an associated hotatior], identified by name. Beyond a requirement that an
XML processor make the identifiers for the entity and notation available to the application, XML places
no constraints on the contents of unparsed entities.

Parsed entities are invoked by name using entity references; unparsed entities by name, givenin the value
of ENTI TY or ENTI Tl ES attributes.

General entities are entities for use within the document content. In this specification, general entitiesare
sometimes referred to with the unqualified term entity when thisleads to no ambiguity. Parameter entities
are parsed entities for use within the DTD. These two types of entities use different forms of reference
and are recognized in different contexts. Furthermore, they occupy different namespaces; a parameter
entity and a general entity with the same name are two distinct entities.

4.1. Character and Entity References

A character reference refers to a specific character in the ISO/IEC 10646 character set, for example one
not directly accessible from available input devices.

[107 CharRef = '&# [0-9]+"
| '&#x' [0-9afA-F]+ "'

Well-Formedness Constraint: Legal Character
Characters referred to using character references must match the production for .

If the character reference begins with “&#x”, the digits and letters up to the terminating ; provide a hex-
adecimal representation of the character's code point in ISO/IEC 10646. If it begins just with “&#”, the
digits up to the terminating ; provide adecimal representation of the character's code point.

An entity reference refers to the content of a named entity. References to parsed general entities use
ampersand (&) and semicolon (;) as delimiters. Parameter-entity references use percent-sign (%) and
semicolon (;) asdelimiters.

o Reference = [EntityRe] | CharRe]
(10 EntityRef = '&'Namg’;
(13 PEReference = '% Namd';

Well-Formedness Constraint: Entity Declared

In a document without any DTD, a document with only an internal DTD subset which contains ho
parameter entity references, or a document with “st andal one="' yes' ", for an entity reference that

Page 20 of 40 Physical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

does not occur within the external subset or a parameter entity, the given in the entity reference
must that in an pntity declaratior] that does not occur within the external subset or a parameter entity,
except that well-formed documents need not declare any of the following entities: anp, | t, gt , apos,
quot . Thedeclaration of ageneral entity must precede any referenceto it which appearsin adefault value
in an attribute-list declaration.

Note that if entities are declared in the externa subset or in external parameter entities, a non-validating
processor ishot obligated tq read and processtheir declarations; for such documents, the rule that an entity
must be declared is a well-formedness constraint only if gtandalone="yes|.

Validity Constraint: Entity Declared

In a document with an external subset or external parameter entities with “st andal one=' no' ”, the
Namd given in the entity reference must that in an Entity declaratior]. For interoperability, valid
documents should declaretheentitiesanp, | t , gt , apos, quot , in theform specified in g 4.6 — Predefined
on page 28. The declaration of a parameter entity must precede any referenceto it. Similarly, the
declaration of a general entity must precede any attribute-list declaration containing a default value with
adirect or indirect reference to that general entity.

Weéll-Formedness Constraint: Parsed Entity

An entity reference must not contain the name of an unparsed entity|. Unparsed entities may be referred to
only in gitribute valueg declared to be of type ENTI TY or ENTI Tl ES.

Well-Formedness Constraint: No Recursion
A parsed entity must not contain arecursive reference to itself, either directly or indirectly.

Well-Formedness Constraint: In DTD
Parameter-entity references may only appear in the DTO.

Examples of character and entity references:

Type <key>| ess-than</key> (<) to save options.
Thi s docurment was prepared on &docdate; and
is classified &security-Ievel;.

Example of a parameter-entity reference:

<l-- declare the paraneter entity "ISCLat2"... -->
<IENTITY % | SOLat 2
SYSTEM "http: //wwmv. xm . coni so/isolat2-xm.entities" >
<l-- ... nowreference it. -->
% SOLat 2;

4.2. Entity Declarations

Entities are declared thus:

(1177 EntityDecl ::= [GEDec| | PEDec]

Entity Declarations Page 21 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

(1341 GEDedl ::= '<IENTITY'BNamdRBEntityDelg?">'
(1163 PEDecl := '<IENTITY'B'% BNamdBPEDe] B> >
[119] EntityDef ::= EntityValug | (Externall f NDataDec|?)
129 PEDef = Ent|tyVaIud|ExternaJIIj

The d identifies the entity in an ntity referencd or, in the case of an unparsed entity, in the value of
an ENTI TY or ENTI TI ES attribute. If the same entity is declared more than once, the first declaration
encountered is binding; at user option, an XML processor may issue a warning if entities are declared
multiple times.

4.2.1. Internal Entities

If the entity definition isan EntityValud, the defined entity iscalled an internal entity. Thereisno separate
physical storage object, and the content of the entity is given in the declaration. Note that some processing
of entity and character references in the |iteral entity valug may be required to produce the correct
Feplacement texi: see[§ 4.5 — Construction of Internal Entity Replacement Tex{ on page 27.

Aninternal entity is ajparsed entity.
Example of an internal entity declaration:

<IENTITY Pub-Status "This is a pre-release of the
specification.">

4.2.2. External Entities

If the entity isnot internal, it is an external entity, declared asfollows:

72 ExternallD = 'SYSTEM'BEystemLiteral
|'PUBLIC' BPubidLiteral B[SystemLiteral
(124 NDataDecl ::= [§'NDATA'BNamd

If theNDataDec|| is present, thisis a general unparsed entity}; otherwise it is a parsed entity.

Validity Constraint: Notation Declared
The Namd must match the declared name of ajotatior].

The[SystemLiteral is called the entity's systemidentifier. It isa URI reference (as defined in [[ETE REQ
394, updated by [[ETE RFC 2733]), meant to be dereferenced to obtain input for the XML processor to
construct the entity's replacement text. It isan error for afragment identifier (beginning with a# character)
to be part of asystem identifier. Unless otherwise provided by information outside the scope of this spec-
ification (e.g. aspecial XML element type defined by aparticular DTD, or aprocessing instruction defined
by a particular application specification), relative URIs are relative to the location of the resource within
which the entity declaration occurs. A URI might thus be relative to the document entity, to the entity
containing the external DTD subsel, or to some other pxternal parameter entityl.

URI references require encoding and escaping of certain characters. The disallowed charactersinclude all
non-ASCII characters, plus the excluded characters listed in Section 2.4 of [IETE RFC 2394], except for
the number sign (#) and percent sign (%9 characters and the square bracket charactersre-allowed in [[ETH
RFC 2737]. Disallowed characters must be escaped as follows:

1. Each disallowed character is converted to UTF-8 [IETE REC 2279] as one or more bytes.

Page 22 of 40 Physical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

2. Any octets corresponding to a disallowed character are escaped with the URI escaping mechanism
(that is, converted to %-H, where HH is the hexadecimal notation of the byte value).

3. Theoriginal character isreplaced by the resulting character sequence.

In addition to asystem identifier, an external identifier may include apublicidentifier. An XML processor
attempting to retrieve the entity's content may use the public identifier to try to generate an alternative
URI reference. If the processor is unable to do so, it must use the URI reference specified in the system
literal. Before a match is attempted, all strings of white space in the public identifier must be normalized
to single space characters (#x20), and leading and trailing white space must be removed.

Examples of external entity declarations:

<l ENTI TY open- hat ch
SYSTEM "htt p: // ww. t extual i ty. cont boi | er pl at e/ OpenHat ch. xm " >
<IENTI TY open- hat ch
PUBLIC "-//Textual ity// TEXT Standard open-hatch boil erpl ate//EN'
"http://ww. textuality.coniboilerplate/ OpenHatch. xm ">
<IENTI TY hat ch-pic
SYSTEM ". ./ grafi x/ OpenHat ch. gi f"
NDATA gi f >

4.3. Parsed Entities

4.3.1. The Text Declaration
External parsed entities should each begin with atext declaration.

(1267 TextDecl = '<?xml'ersionlnfd?EncodingDec] [§?'>>'

The text declaration must be provided literally, not by reference to a parsed entity. No text declaration
may appear at any position other than the beginning of an external parsed entity. The text declaration in
an externa parsed entity is not considered part of itseplacement texi.

4.3.2. Well-For med Parsed Entities

The document entity is well-formed if it matches the production labeled Hocument. An external general
parsed entity is well-formed if it matches the production labeled pxtPar sedEnt|. All external parameter
entities are well-formed by definition.

12g extParsedEnt = [TextDec|?ontent

An internal general parsed entity is well-formed if its replacement text matches the production |abeled
Eontend. All internal parameter entities are well-formed by definition.

A consequence of well-formednessin entitiesisthat the logical and physical structuresin an XML document
are properly nested; no gtart-tad, pnd-tad, pmpty-€element tad, glement, comment, processing instructior,
Eharacter referencd, or ntity referencd can begin in one entity and end in another.

4.3.3. Character Encoding in Entities

Each external parsed entity in an XML document may use adifferent encoding for its characters. All XML
processors must be able to read entities in both the UTF-8 and UTF-16 encodings. The terms “UTF-8”
and “UTF-16" in this specification do not apply to character encodings with any other labels, even if the
encodings or labels are very similar to UTF-8 or UTF-16.

Par sed Entities Page 23 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Entities encoded in UTF-16 must begin with the Byte Order Mark described by Annex F of [ISO/IEQ
fL0644], Annex H of [[SO/IEC 10646-200(], section 2.4 of [[Unicodd], and section 2.7 of [Unicode]] (the
ZERO WIDTH NO-BREAK SPACE character, #XFEFF). Thisis an encoding signature, not part of either
the markup or the character data of the XML document. XML processors must be able to use this character
to differentiate between UTF-8 and UTF-16 encoded documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-16 encodings, it is
recognized that other encodings are used around the world, and it may be desired for XML processors to
read entities that use them. In the absence of external character encoding information (such as MIME
headers), parsed entities which are stored in an encoding other than UTF-8 or UTF-16 must begin with a
text declaration (see g 4.3.1 — The Text Declaratior] on page 23) containing an encoding declaration:

[EncodingDecl ::= [B'encoding' Ed ("' EncNamdg ™' | " EncNamg """)
12 EncName := [A-ZaZ] ([A-Z&z0-9.]|™-)*

*
~

HeoegsBaBag

~
*

In the Jocument entity], the encoding declaration is part of the XML declaratior]. The EncNamg is the
name of the encoding used.

In an encoding declaration, thevalues“ UTF- 8”,“UTF- 16”,“l SO 10646- UCS- 2”,and "l SO 10646-
UCS- 4” should be used for the various encodings and transformations of Unicode / | SO/IEC 10646, the
values “I SO 8859- 1", “I SO 8859- 2", ... “I SO 8859-n" (where n is the part humber) should be
used for the parts of 1SO 8859, and thevalues“| SO 2022- JP",“Shi ft _JI S”, and “EUC- JP” should
be used for the various encoded forms of JIS X-0208-1997. It is recommended that character encodings
registered (as charsets) with the Internet Assigned Numbers Authority [JANA-CHARSETY], other than
those just listed, be referred to using their registered names; other encodings should use names starting
with an “x-" prefix. XML processors should match character encoding names in a case-insensitive way
and should either interpret an |ANA-registered name as the encoding registered at IANA for that name or
treat it as unknown (processors are, of course, not required to support all IANA-registered encodings).

In the absence of information provided by an external transport protocol (e.g. HTTP or MIME), it isan
for an entity including an encoding declaration to be presented to the XML processor in an encoding
other than that named in the declaration, or for an entity which beginswith neither a Byte Order Mark nor
an encoding declaration to use an encoding other than UTF-8. Note that since ASCII is a subset of UTF-
8, ordinary ASCI|I entities do not strictly need an encoding declaration.

Itisafatal error for afT extDec| to occur other than at the beginning of an external entity.

It isafatal errof when an XML processor encounters an entity with an encoding that it is unable to process.
Itisafata error if an XML entity isdetermined (viadefault, encoding declaration, or higher-level protocol)
to bein acertain encoding but contains octet sequencesthat are not legal in that encoding. It isalso afatal
error if an XML entity contains no encoding declaration and its content is not legal UTF-8 or UTF-16.

Page 24 of 40 Physical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Examples of text declarations containing encoding declarations:

<?xm encodi ng=' UTF-8' ?>
<?xm encodi ng=' EUC- JP' ?>

4.4. XML Processor Treatment of Entities and References

Thetable below summarizes the contexts in which character references, entity references, and invocations
of unparsed entities might appear and the required behavior of an in each case. Thelabels
in the leftmost column describe the recognition context:

Reference in Content
as a reference anywhere after the and before the of an element; corresponds to
the nonterminal tontent.

Reference in Attribute Value
as areference within either the value of an attribute in aftart-tad, or adefault valuein an
Peclaratior]; corresponds to the nonterminal [AttValud.

Occurs as Attribute Value

asaNamd, not a reference, appearing either as the value of an attribute which has been declared
astype ENTI TY, or as one of the space-separated tokens in the value of an attribute which has
been declared astype ENTI Tl ES.

Reference in Entity Value
as areference within a parameter or internal entity's|iteral entity valugin the entity's declaration;
corresponds to the nonterminal EntityValué.

Referencein DTD
as areference within either the internal or external subsets of the DTD, but outside of an

Valud, [AttValud, PI], Comment, BystemLiteral, PubidLiteral, or the contents of an ignored

conditional section (seeE 3.4 — Conditional Sectiond on page 19).

Entity Type Character
External Parsed
Parameter | Internal General General Unparsed
Reference in| Not recognized Included Included if vali{| [Forbidden ed
Content pating
Referencein| Not recognized | |ncluded in lit{ Forbidden ed
Attribute Vaue
Occurs as| Not recognized | Forbidder
Attribute Value
Referencein| [ncdludedinlit] | Bypassed ed
EntityValue Eral
Referencein| |ncluded asPH | [Forbidden Forbidden Forbidder]
DTD

XML Processor Treatment of Entities and References

Page 25 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

4.4.1. Not Recognized

Outside the DTD, the %character has no special significance; thus, what would be parameter entity refer-
ences in the DTD are not recognized as markup in Eontent. Similarly, the names of unparsed entities are
not recognized except when they appear in the value of an appropriately declared attribute.

4.4.2. Included

An entity isincluded when itsfeplacement tex{ is retrieved and processed, in place of the reference itself,
asthough it were part of the document at the location the reference was recognized. The replacement text
may contain both Eharacter datd and (except for parameter entities) narkug, which must be recognized in
the usual way. (The string “AT&anp; T; ” expandsto “AT&T; " and the remaining ampersand is not rec-
ognized as an entity-reference delimiter.) A character reference is included when the indicated character
is processed in place of the reference itself.

4.4.3. Included If Validating

When an XML processor recognizes a reference to a parsed entity, in order to the document, the
processor must [ncludd its replacement text. If the entity is external, and the processor is not attempting
to validate the XML document, the processor nay, but need not, include the entity's replacement text. If
a non-validating processor does not include the replacement text, it must inform the application that it
recognized, but did not read, the entity.

Thisruleisbased on the recognition that the automatic inclusion provided by the SGML and XML entity
mechanism, primarily designed to support modularity in authoring, is not necessarily appropriate for other
applications, in particular document browsing. Browsers, for example, when encountering an external
parsed entity reference, might choose to provide avisual indication of the entity's presence and retrieve it
for display only on demand.

4.4.4. Forbidden
The following are forbidden, and constitute fata] errors:
* the appearance of areference to an unparsed entity].

» the appearance of any character or general-entity reference in the DTD except within an EntityValug
or AttValug.

» areferenceto an external entity in an attribute value.

4.45. Included in Literal

When an appearsin an attribute value, or a parameter entity reference appearsin aliteral
entity value, itsfeplacement texq is processed in place of the reference itself as though it were part of the
document at the location the reference was recognized, except that a single or double quote character in
the replacement text is always treated as a normal data character and will not terminate the literal. For
example, thisis well-formed:

<l-- -->
<IENTITY % YN '"Yes"' >
<IENTITY What HeSai d "He said %N, " >

Page 26 of 40 Physical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

while thisis not;

<IENTITY EndAttr "27'" >
<el enent attribute="a-&EndAttr;>

4.4.6. Notify

When the name of an appears as a token in the value of an attribute of declared type
ENTI TY or ENTI Tl ES, avalidating processor must inform the application of the systen] and publid (if
any) identifiers for both the entity and its associated hotatior].

4.4.7. Bypassed

When a general entity reference appears in the in an entity declaration, it is bypassed and
left asis.

4.4.8. Included as PE

Just as with external parsed entities, parameter entities need only be jncluded if validatind. When a
parameter-entity reference is recognized in the DTD and included, its feplacement tex{ is enlarged by the
attachment of one leading and one following space (#x20) character; the intent is to constrain the
replacement text of parameter entities to contain an integral number of grammatical tokensin the DTD.
This behavior does not apply to parameter entity references within entity values; these are described in
g 4.4.5 —Included in Literal on page 26.

4.5. Construction of Internal Entity Replacement Text

In discussing the treatment of internal entities, it is useful to distinguish two forms of the entity's value.
The literal entity value isthe quoted string actually present in the entity declaration, corresponding to the
non-terminal EntityValud. Thereplacement text isthe content of the entity, after replacement of character
references and parameter-entity references.

The literal entity value as given in an internal entity declaration (EntityValud) may contain character,
parameter-entity, and general-entity references. Such references must be contained entirely withintheliteral
entity value. The actual replacement text that is[ncluded as described above must contain the replacement
text of any parameter entities referred to, and must contain the character referred to, in place of any char-
acter referencesintheliteral entity value; however, general-entity references must beleft as-is, unexpanded.
For example, given the following declarations:

<IENTI TY % pub "Éditions Gllimrd" >
<IENTITY rights "All rights reserved" >
<IENTITY book "La Peste: Albert Canus,
© 1947 Y%pub;. &rights;" >

then the replacement text for the entity “book” is:

La Peste: Al bert Canus,
© 1947 Editions Gallimard. &rights;

The general-entity reference“&r i ght s; ” would be expanded should the reference “ &book; ” appear in
the document's content or an attribute value.

These simple rules may have complex interactions; for a detailed discussion of a difficult example, see
Appendix D — Expansion of Entity and Character Referenceg on page 36.

Construction of Internal Entity Replacement Text Page 27 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

4.6. Predefined Entities

Entity and character references can both be used to escape the left angle bracket, ampersand, and other
delimiters. A set of general entities (anp, | t, gt , apos, quot) is specified for this purpose. Numeric
character references may also be used; they are expanded immediately when recognized and must be
treated as character data, so the numeric character references “< ” and “& " may be used to
escape < and & when they occur in character data.

All XML processors must recognize these entities whether they are declared or not. [For interoperability,
valid XML documents should declare these entities, like any others, before using them. If the entities| t
or anp are declared, they must be declared asinternal entitieswhose replacement text isacharacter reference
to the respective character (less-than sign or ampersand) being escaped; the double escaping is required
for these entities so that references to them produce awell-formed result. If theentitiesgt , apos, or quot
aredeclared, they must be declared asinternal entitieswhose replacement text isthe single character being
escaped (or acharacter reference to that character; the double escaping here is unnecessary but harmless).
For example:

<IENTITY |t " & #60; " >
<IENTITY gt " > " >
<IENTITY anp " & #38; " >

<IENTI TY apos " ' " >
<IENTI TY quot " " " >

4.7. Notation Declar ations

Notations identify by name the format of unparsed entitied, the format of elements which bear a notation
attribute, or the application to which aprocessing instructior] is addressed.

Notation declarations provide a name for the notation, for use in entity and attribute-list declarations and
in attribute specifications, and an external identifier for the notation which may allow an XML processor
or its client application to locate a hel per application capable of processing data in the given notation.

[133] NotationDecl ::= '<INOTATION'BNamdf Externalld |PubliciD) §?">"
(157 PubliciD ::= 'PUBLIC BPubidLiteral

Validity Constraint: Unique Notation Name
Only one notation declaration can declare a given Namd.

XML processors must provide applications with the name and external identifier(s) of any notation declared
and referred to in an attribute val ue, attribute definition, or entity declaration. They may additionally resolve
the external identifier into the pystem identifiel, file name, or other information needed to alow the
application to call a processor for data in the notation described. (It is not an error, however, for XML
documents to declare and refer to notations for which notation-specific applications are not available on
the system where the XML processor or application is running.)

4.8. Document Entity

The document entity serves as the root of the entity tree and a starting-point for an XML processol|. This
specification does not specify how the document entity isto be located by an XML processor; unlike other

Page 28 of 40 Physical Structures

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

entities, the document entity has no name and might well appear on a processor input stream without any
identification at all.

5. Conformance
5.1. Validating and Non-Validating Processor s

Conforming XML processorg fall into two classes: validating and non-validating.

Validating and non-validating processorsalike must report viol ations of this specification'swell-formedness
constraints in the content of the focument entity] and any other that they read.

Validating processors must, at user option, report violations of the constraints expressed by the declarations
in theDTO, and failures to fulfill the validity constraints given in this specification. To accomplish this,
validating XML processors must read and processthe entire DTD and all external parsed entities referenced
in the document.

Non-validating processors are required to check only the document entityl, including the entire internal
DTD subset, for well-formedness. While they are not required to check the document for validity, they
arerequired to processall the declarationsthey read in theinternal DTD subset and in any parameter entity
that they read, up to the first reference to a parameter entity that they do not read; that isto say, they must
use the information in those declarations to attribute values, the replacement text of
internal entities, and supply default attribute valueg. Except when st andal one="yes" , they must not
proces3entity declarationd or fttribute-list declarationg encountered after areference to a parameter entity
that is not read, since the entity may have contained overriding declarations.

5.2. Using XML Processors

The behavior of avalidating XML processor is highly predictable; it must read every piece of adocument
and report all well-formedness and validity violations. Less is required of a non-validating processor; it
need not read any part of the document other than the document entity. This has two effects that may be
important to users of XML processors:

» Certain well-formedness errors, specifically those that require reading external entities, may not be

detected by a non-validating processor. Examples include the constraints entitled Entity Declared,
Parsed Entityl, and No Recursior], as well as some of the cases described as fForbidded in 4.4 — XML
Processor Treatment of Entities and Referenceg on page 25.

» The information passed from the processor to the application may vary, depending on whether the
processor reads parameter and external entities. For example, anon-validating processor may not
attribute values, the replacement text of internal entities, or supply Befault attributd
[valued, where doing so depends on having read declarations in external or parameter entities.

For maximum reliability ininteroperating between different XML processors, applicationswhich use non-
validating processors should not rely on any behaviors not required of such processors. Applicationswhich
require facilities such as the use of default attributes or internal entities which are declared in external
entities should use validating XML processors.

Validating and Non-Validating Processor s Page 29 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

6. Notation

The formal grammar of XML is given in this specification using a simple Extended Backus-Naur Form
(EBNF) notation. Each rule in the grammar defines one symbol, in the form

synbol ::= expression

Symbolsarewritten with aninitial capital letter if they arethe start symbol of aregular language, otherwise
with aninitial lower case |etter. Literal strings are quoted.

Within the expression on the right-hand side of arule, the following expressions are used to match strings

of one or more characters:

#xN
where Nis a hexadecimal integer, the expression matches the character in |SO/IEC 10646 whose
canonical (UCS-4) code value, when interpreted as an unsigned binary number, has the value
indicated. The number of leading zeros in the #xN form is insignificant; the number of leading
zeros in the corresponding code value is governed by the character encoding in use and is not
significant for XML.

[a-zA- Z] , [#xXN- #xN]|
matches any with avaluein the range(s) indicated (inclusive).

[abc], [#xXNEXNAEXN]
matches any with avalue among the characters enumerated. Enumerations and ranges can
be mixed in one set of brackets.

[ra-z], ["#xN-#xN|
matches any with a value outside the range indicated.

[Mabc], [M#xXNEXNEXN]

matches any with avalue not among the characters given. Enumerations and ranges of for-
bidden values can be mixed in one set of brackets.

"string"
matches a literal string that given inside the double quotes.
"string'

matches a literal string that given inside the single quotes.

These symbols may be combined to match more complex patterns as follows, where A and B represent
simple expressions:
(expr essi on)
expr essi on istreated as aunit and may be combined as described in thislist.
A?
matches A or nothing; optional A.
A B

matches A followed by B. This operator has higher precedence than alternation; thusA B | C
Disidenticalto(A B) | (C D).

Page 30 of 40 Notation

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

A| B
matches A or B but not both.
A- B
matches any string that matches A but does not match B.
A+
matches one or more occurrences of A.Concatenation has higher precedence than alternation; thus
A+ | Btisidenticato(A+) | (B+).
Ax

matches zero or more occurrences of A. Concatenation has higher precedence than alternation;
thusA* | B* isidentica to (A*) | (B*).

Other notations used in the productions are:

[* ... %
comment.

[wic: ...]

well-formedness constraint; thisidentifies by name a constraint on documents asso-
ciated with a production.

[ve: ...]

validity constraint; this identifies by name a constraint on documents associated with a pro-
duction.

Appendix A. References

A.1. Nor mative References

IANA-CHARSETS

(Internet Assigned Numbers Authority) Official Names for Character Sets, ed. Keld Simonsen et
al. See ftp://ftp.isi.edu/in-notes/ianalassignments/character-setg.

IETF RFC 1766

[ETFE (Internet Engineering Task Force). REC 1766: Tags for the Identification of Lanquages, ed]
H. Alvestrand. 1995] Availableat ht t p: / / www. i et f. org/rfc/rfcl766.txt.

| SO/IEC 10646

ISO (International Organization for Standardization). |SO/IEC 10646-1993 (E). Information
technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and
Basic Multilingual Plane. [Geneva]: International Organization for Standardization, 1993 (plus
amendments AM 1 through AM 7).

| SO/IEC 10646-2000

ISO (International Organization for Standardization). 1SO/IEC 10646-1:2000. |nformation tech-
nology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic
Multilingual Plane. [Geneval: International Organization for Standardization, 2000.

Normative References Page 31 of 40

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Unicode

The Unicode Consortium. The Unicode Sandard, Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

Unicode3

The Unicode Consortium. The Unicode Sandard, Version 3.0. Reading, Mass.: Addison-Wesley
Developers Press, 2000. ISBN 0-201-61633-5.

A.2. Other References

Aho/Ullman

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Reading: Addison-Wesley, 1986, rpt. corr. 1988.

Berners-Leeet al.

Berners-Lee, T., R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax
and Semantics. 1997. (Work in progress, see updatesto RFC1738.)

Briggemann-Klein

Briggemann-Klein, Anne. Formal Modelsin Document Processing. Habilitationsschrift. Faculty
of Mathematics at the University of Freiburg, 1993. (See ftp://ftp.informatik.uni-freiburg.de/docq
LUments/papers/brueggem/habil .pg.)

Briiggemann-Klein and Wood

Briiggemann-Klein, Anne, and Derick Wood. Deter ministic Regular Languages. Universitét
Freiburg, Institut fUr Informatik, Bericht 38, Oktober 1991. Extended abstract in A. Finkel, M.
Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag, Berlin 1992. L ecture Notesin Computer
Science 577. Full version titled One-Unambiguous Regular Languagesin Information and Com-
putation 140 (2): 229-253, February 1998.

Clark

James Clark. Comparison of SGML and XML. See http://www.w3.0ra/TR/NOTE-sgml-xml{

=
D .

IANA-LANGCODES

Internet Assigned Numbers Authority) Registry of Language Tags, ed. Keld Simonsen et &
Availableathtt p: // www. i si . edu/i n-not es/i ana/ assi gnnent s/ | anguages/ .

IETF RFC2141

|ETFE (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R. Moats. 1997.| Available
ahttp://ww.ietf.org/rfc/rfc2141.txt.

IETF RFC 2279

|ETF (Internet Engineering Task Force). REC 2279: UTF-8, a transformation format of SO 10646
Ed. F. Yergeau, 1998] Availableatht t p: / / www. i et f. org/rfc/ rfc2279. t xt.

IETF RFC 2376

|ETF (Internet Engineering Task Force). REC 2376: XML Media Types. ed. E. Whitehead, M|
urata. 1998] Availableatht t p: //www. i etf.org/rfc/rfc2376.txt.

Page 32 of 40 References

ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps
ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.isi.edu/in-notes/iana/assignments/languages/
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

IETF RFC 2396

|ETF (Internet Engineering Task Force). RFC 2396: Uniform Resourceldentifiers (URI): Generid
Byntax. T. Berners-Lee, R. Fielding, L. Masinter. 1998] Available at

http://www. ietf.org/rfc/rfc2396.t1txt.

IETF RFC 2732

IETF (Internet Engineering Task Force). RFC 2732: Format for Literal [Pv6 Addressesin URL's]
R. Hinden, B. Carpenter, L. Masinter. 1999] Available at
http://ww.ietf.org/rfc/rfc2732.txt.

IETF RFC 2781

|ETF (Internet Engineering Task Force). REC 2781: UTF-16, an encoding of 1S0 10646, ed. P
offman, F. Yergeau. 2000f Availableatht t p: / /www. i etf.org/rfc/rfc2781.txt.
1O 639

(International Organization for Standardization). |90 639:1988 (E). Code for the representation
of names of languages. [Geneva): International Organization for Standardization, 1988.

SO 3166

(International Organization for Standardization). | SO 3166-1:1997 (E). Codesfor the representation
of names of countries and their subdivisions -- Part 1: Country codes [Geneva]: International
Organization for Standardization, 1997.

SO 8879

SO (International Organization for Standardization). SO 8879:1986(E). | nformation processing
-- Text and Office Systems -- Standard Generalized Markup Language (SGML). First edition --
1986-10-15. [Geneval: International Organization for Standardization, 1986.

ISO/IEC 10744

ISO (International Organization for Standardization). |SO/IEC 10744-1992 (E). Information
technology -- Hypermedia/Time-based Structuring Language (HyTime). [Geneva): International
Organization for Standardization, 1992. Extended Facilities Annexe. [Geneva): International
Organization for Standardization, 1996.

WEBSGML

1 SO (International Organization for Standardization). | SO 8879: 1986 TC2. | nfor mation technol ogy
[- Document Description and Processing Lanquages. [Geneval: International Organization fol]
Standardization, 1998| Availableatht t p: / / www. sgm sour ce. cond 8879r ev/ n0029. ht m

XML Names

[[im Bray, Dave Hollander, and Andrew L ayman, editors. Namespacesin XML. Textuality, Hewlett{
Packard, and Microsoft. World Wide Web Consortium, 1999] Available at
http://ww. w3. or g/ TR REC- xml - nanes/ .

Appendix B. Character Classes

Following the characteristics defined in the Unicode standard, characters are classed as base characters
(among others, these contain the alphabetic characters of the Latin alphabet), ideographic characters, and

Other References Page 33 of 40

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.sgmlsource.com/8879rev/n0029.htm
http://www.sgmlsource.com/8879rev/n0029.htm
http://www.sgmlsource.com/8879rev/n0029.htm
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

combining characters (among others, this class contains most diacritics) Digits and extenders are also
distinguished.

1349 Letter
[1381 BaseChar

BaseChar] | | deogr aphid

[#x0041-#X005A] | [#X0061-#x007A] | [#x00CO-#x00D6] | [#x00D8-
#XO00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E]

| [#x0141-#x0148] | [#Xx014A-#xO017E] | [#x0180-#x01C3] | [#x01CD-
#XO1F0] | [#XO1F4-#X01F5] | [#XOLFA-#x0217] | [#x0250-#x02A8]

| [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A] | #x038C | [#x038E-
#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6] | #x03DA | #x03DC

| #x03DE | #x03E0 | [#X03E2-#x03F3] | [#x0401-#x040C] | [#x040E-
#X044F] | [#x0451-#x045C] | [#X045E-#x0481] | [#x0490-#x04C4]

| [#X04CT-#x04C8] | [#x0ACB-#x04CC] | [#x04DO0-#X04EB] | [#XO4EE-
#XOAF5] | [#X04F8-#x04F9] | [#Xx0531-#x0556] | #x0559 | [#x0561-#x0586]
| [#x05DO0-#X05EA] | [#X05F0-#x05F2] | [#x0621-#x063A] | [#x0641-
#X064A] | [#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#X06CE]

| [#x06D0-#x06D3] | #x06D5 | [#X0BE5-#X0BES] | [#x0905-#x0939)]

| #x093D | [#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990]

| [#x0993-#x00A8] | [#x09AA-#X09B0] | #x09B2 | [#x09B6-#x09B9]

| [#x09DC-#x09DD] | [#x09DF-#X09E1] | [#X09FO0-#x09F1] | [#x0A05-
#XOAOA] | [#XOAOF-#X0A10] | [#X0A 13-#x0A28] | [#X0A2A-#X0A30]

| [#X0A32-#x0A33] | [#X0A35-#X0A36] | [#x0A38-#x0A39)] | [#XxOA59-
#XOA5C] | #X0ASE | [#XOA72-#x0A74] | [#xOA85-#x0A8B] | #x0A8D

| [#XxOABF-#x0A91] | [#x0A93-#X0AAS] | [#XOAAA-#XOABO] | [#X0AB2-
#XOAB3] | [#X0AB5-#X0AB)] | #X0ABD | #X0AEO | [#x0B05-#X0BOC]
| [#XOBOF-#x0B10] | [#Xx0B13-#x0B28] | [#Xx0B2A-#x0B30] | [#Xx0B32-
#x0B33] | [#x0B36-#x0B39)] | #x0B3D | [#Xx0OB5C-#x0B5D] | [#XOB5F-
#x0B61] | [#x0B85-#x0BBA] | [#XOBSE-#x0B90] | [#x0B92-#x0B95]

| [#X0B99-#XOB9A] | #xOBIC | [#XOBIE-#x0BOF] | [#XxOBA3-#X0BA4]
| [#XxOBAS-#x0BAA] | [#XOBAE-#X0BBS5] | [#XOBB7-#X0BBY] | [#X0C05-
#x0COC] | [#XxOCOE-#x0C10] | [#Xx0C12-#x0C28] | [#X0C2A-#x0C33]

| [#x0C35-#x0C39] | [#x0C60-#x0C61] | [#x0C85-#x0CSC] | [#XOCSE-
#x0C90] | [#X0C92-#Xx0CAS8] | [#xOCAA-#x0CB3] | [#x0CB5-#x0CBI]
| #xOCDE | [#x0CEO-#x0CE1] | [#x0D05-#x0D0C] | [#XODOE-#x0D10]
| [#Xx0D12-#x0D28] | [#x0D2A-#x0D39] | [#x0D60-#x0D61] | [#x0E01-
#XOE2E] | #X0E30 | [#XOE32-#x0E33] | [#X0E40-#X0E45] | [#X0ES1-
#XOES2] | #XOE84 | [#XOEST7-#XOESS] | #xOESA | #XOE8D | [#x0E94-
#XOE97] | [#XOEQ9-#XOEQF] | [#XOEA1-#Xx0EA3] | #XOEAS | #xOEA7

| [#XOEAA-#XOEAB] | [#XOEAD-#XOEAE] | #x0EBO | [#X0EB2-#X0EB3]
| #XOEBD | [#XOECO-#XOEC4] | [#XOF40-#X0F47] | [#XOF49-#X0F69)]

| [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100 | [#x1102-#x1103]

| [#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112]
|#x113C | #x113E | #x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155]
| #x1159 | [#x115F-#x1161] | #x1163 | #x1165 | #x1167 | #x1169

| [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E | #x11A8

| #x11AB | [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-
#x11C2] | #X11EB | #x11F0 | #x11F9 | [#x1E00-#X1E9B] | [#x1EAO-
#X1EF9] | [#X1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45]

| [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D

| [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE

| [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#X1FDO-#x1FD3] | [#X1FD6-
#x1FDB] | [#x1FEO-#X1FEC] | [#X1FF2-#x1FF4] | [#x1FF6-#x1FFC]

Page 34 of 40 Character Classes

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

133 Ideographic
[23H CombiningChar
147 Digit
14y Extender

| #x2126 | [#x212A-#x212B] | #x212E | [#x2180-#x2182] | [#x3041-
#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] | [#XACO0-#xD7A3]

[#X4E00-#x9FAS] | #x3007 | [#x3021-#x3029)]

[#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#X05BB-#x05BD] | #X05BF | [#X05C1-#X05C2]

| #x05C4 | [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] | [#x06DD-
#X0BDF] | [#X0BEO-#x06E4] | [#X06E7-#x06ES] | [#Xx0BEA-#X0BED]

| [#X0901-#x0903] | #X093C | [#X093E-#x094C] | #x094D | [#x0951-
#x0054] | [#x0962-#x0963] | [#x0981-#x0983] | #x09BC | #x09BE

| #x09BF | [#X09CO-#x09C4] | [#Xx09C7-#x09C8] | [#x09CB-#x09CD]

| #x09D7 | [#X09E2-#X09E3] | #x0A02 | #XxOA3C | #x0A3E | #x0A3F

| [#X0A40-#X0A42] | [#XOA4T-#XOA48] | [#XOA4B-#X0A4D] | [#X0ATO-
#XOAT1] | [#XOAB1-#x0A83] | #X0ABC | [#XOABE-#X0ACS] | [#X0ACT-
#XOACY] | [#xOACB-#X0ACD] | [#X0BOL1-#x0B03] | #x0B3C | [#x0B3E-
#x0BA43] | [#XxOBA7-#x0B48] | [#X0B4B-#x0B4D] | [#x0B56-#x0B57]

| [#x0B82-#x0B83] | [#XOBBE-#x0BC2] | [#XxOBC6-#x0BC8] | [#XOBCA-
#XOBCD] | #x0BD7 | [#X0CO1-#x0C03] | [#XOC3E-#x0C44] | [#x0CA46-
#x0C48] | [#x0CAA-#x0CAD] | [#X0C55-#x0C56] | [#Xx0C82-#x0C83]

| [#xOCBE-#X0CCA4] | [#X0CC6-#x0CC8] | [#xOCCA-#X0CCD] | [#X0CD5-
#xOCD6] | [#x0D02-#x0D03] | [#X0D3E-#x0D43] | [#x0D46-#x0D48]

| [#xOD4A-#x0D4D] | #x0D57 | #XOE31 | [#XOE34-#x0E3A] | [#Xx0EAT-
#XOEAE] | #X0EB1 | [#XOEB4-#x0EBY] | [#XOEBB-#XOEBC] | [#XOECS-
#XOECD] | [#xOF18-#x0F19] | #xOF35 | #x0F37 | #x0F39 | #xOF3E

| #XOF3F | [#XOF71-#xOF84] | [#xOF86-#X0F8B] | [#X0F90-#x0F95]

| #XOF97 | [#xOF99-#xO0FAD] | [#XOFB1-#xOFB7] | #XOFB9 | [#x20D0-
#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099 | #x309A

[#x0030-#x0039] | [#x0660-#x0669] | [#X0BFO-#X06F9] | [#x0966-#X096F]
| [#X09E6-#X09EF] | [#X0AB6-#X0A6F] | [#XOAE6-#X0AEF] | [#X0B66-
#XOB6F] | [#XOBE7-#XOBEF] | [#X0C66-#x0C6F] | [#XOCE6-#X0CEF]

| [#Xx0D66-#X0D6F] | [#XOES0-#XOESY] | [#XOEDO-#XOEDY] | [#X0F20-
#XOF29]

#x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #XOE46 | #XOECS | #x3005
| [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

The character classes defined here can be derived from the Unicode 2.0 character database as follows:

» Name start characters must have one of the categoriesLI, Lu, Lo, Lt, NI.

» Name characters other than Name-start characters must have one of the categories Mc, Me, Mn, Lm,

or Nd.

» Charactersinthe compatibility area (i.e. with character code greater than #xF900 and | ess than #xFFFE)
are not alowed in XML names.

e Characterswhich have afont or compatibility decomposition (i.e. those with a“ compatibility formatting
tag” infield 5 of the database -- marked by field 5 beginning with a“<”) are not allowed.

» Thefollowing characters are treated as name-start characters rather than name characters, because the
property file classifies them as Alphabetic: [#x02BB-#x02C1], #x0559, #x06E5, #x06E6.

» Characters #x20DD-#x20EOQ are excluded (in accordance with Unicode 2.0, section 5.14).

» Character #x00B7 is classified as an extender, because the property list so identifiesit.

» Character #x0387 is added as a name character, because #x00B7 isits canonical equivalent.

Page 35 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

e Characters".'and' ' are allowed as name-start characters.
e Characters'-' and '." are allowed as name characters.

Appendix C. XML and SGML (Non-Normative)

XML is designed to be a subset of SGML, in that every XML document should also be a conforming
SGML document. For adetailed comparison of the additional restrictions that XML places on documents
beyond those of SGML, see [[ClarK].

Appendix D. Expansion of Entity and Character References
(Non-Normative)

This appendix contains some examples illustrating the sequence of entity- and character-reference recog-
nition and expansion, as specified in g 4.4 — XML Processor Treatment of Entities and Referenceg on

page 25.
If the DTD contains the declaration

<IENTI TY exanpl e "<p>An anpersand (& #38;) may be escaped
nunerical ly (&#38;#38;) or with a general entity

(&anp; anp;) . </ p>" >

then the XML processor will recognize the character references when it parses the entity declaration, and
resolve them before storing the following string as the value of the entity “exanpl e”:

<p>An anpersand (&) may be escaped
nunerical ly (&#38;) or with a general entity

(&anp; anp;) . </ p>

A reference in the document to “&exanpl e; " will cause the text to be reparsed, at which time the start-
and end-tags of the p element will be recognized and the three referenceswill be recognized and expanded,
resulting in a p element with the following content (all data, no delimiters or markup):

An ampersand (& may be escaped
nunerically (&) or with a general entity

(&anp;) .

A more complex examplewill illustrate the rules and their effectsfully. In the following example, theline
numbers are solely for reference.

1 <?xm version='"1.0"?>

2 <IDOCTYPE test [

3 <! ELEMENT test (#PCDATA) >

4 <IVENTITY % xx ' %zz;'>

5 <IENTITY % zz ' < !ENTITY tricky "error-prone" > >
6 UXX;

71>

8 <test>This sanple shows a &tricky; nethod.</test>

Page 36 of 40 XML and SGML

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

This produces the following:

* inline4, thereferenceto character 37 isexpanded immediately, and the parameter entity “xx” isstored
in the symbol table with the value“%z z; ”. Since the replacement text is not rescanned, the reference
to parameter entity “zz” isnot recognized. (And it would be an error if it were, since“zz” is not yet
declared.)

* inlineb5, the character reference “< " is expanded immediately and the parameter entity “zz” is
stored with the replacement text “<! ENTI TY tricky "error-prone" >", whichisawell-
formed entity declaration.

* inline 6, the reference to “xx” is recognized, and the replacement text of “xx” (namely “%z; ") is
parsed. Thereferenceto“zz” isrecognizedinitsturn, and itsreplacement text (“<! ENTI TY tri cky
"error-prone" >")isparsed. The genera entity “t ri cky” has now been declared, with the
replacement text “er r or - pr one”.

* inline 8, the reference to the genera entity “t ri cky” isrecognized, and it is expanded, so the full
content of thetest element isthe self-describing (and ungrammatical) string This sample showsaerror-
prone method.

Appendix E. Deterministic Content M odels (Non-Nor mative)

Asnoted in g 3.2.1 — Element Conten{ on page 14, it is required that content modelsin element type dec-
larations be deterministic. This requirement is for_compatibility with SGML (which calls deterministic
content models “ unambiguous’); XML processors built using SGML systems may flag non-deterministic
content models as errors.

For example, the content model ((b, ¢) | (b, d)) isnon-deterministic, because given aninitial b
the XML processor cannot know which b in the model is being matched without |ooking ahead to see
which element follows the b. In this case, the two referencesto b can be collapsed into a single reference,
making the model read (b, (c | d)).Aninitia b now clearly matches only a single name in the
content model. The processor doesn't need to look ahead to see what follows; either ¢ or d would be
accepted.

More formally: a finite state automaton may be constructed from the content model using the standard
agorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Uliman [[Aho/Ullmar]]. In many such
algorithms, afollow set is constructed for each position in the regular expression (i.e., each leaf node in
the syntax tree for the regular expression); if any position hasafollow set in which morethan onefollowing
positionislabeled with the same el ement type name, then the content model isin error and may be reported
asan error.

Algorithmsexist which allow many but not al non-deterministic content modelsto be reduced automatically
to equivalent deterministic models; see Briiggemann-Klein 1991 [Briiggemann-Kleir].

Appendix F. Autodetection of Character Encodings
(Non-Nor mative)

The XML encoding declaration functions as an internal label on each entity, indicating which character
encoding isin use. Before an XML processor can read the internal label, however, it apparently has to
know what character encoding isin use--which iswhat theinternal label istrying toindicate. In the general

Page 37 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

case, thisis a hopeless situation. It is not entirely hopeless in XML, however, because XML limits the
general casein two ways: each implementation isassumed to support only afinite set of character encodings,
and the XML encoding declaration is restricted in position and content in order to make it feasible to
autodetect the character encoding in usein each entity in normal cases. Also, in many cases other sources
of information are available in addition to the XML data stream itself. Two cases may be distinguished,
depending on whether the XML entity is presented to the processor without, or with, any accompanying
(external) information. We consider the first case first.

F.1. Detection Without External Encoding I nfor mation

Because each XML entity not accompanied by external encoding information and not in UTF-8 or UTF-
16 encoding must begin with an XML encoding declaration, in which thefirst characters must be'<?xm ',
any conforming processor can detect, after two to four octets of input, which of the following cases apply.
In reading thislist, it may help to know that in UCS-4, '<'is“#x0000003C’ and'? is“#x0000003F",
and the Byte Order Mark required of UTF-16 datastreamsis*“#x FEFF”. The notation ##is used to denote
any byte value except that two consecutive ##s cannot be both 00.

With a Byte Order Mark:

00 00 FE FF UCS-4, hig-endian machine (1234 order)
FF FE 00 00 UCS-4, little-endian machine (4321 order)
00 00 FF FE UCS-4, unusual octet order (2143)

FE FF 00 00 UCS-4, unusua octet order (3412)

FE FF ## ## UTF-16, big-endian

FF FE ## ## UTF-16, little-endian

EF BB BF UTF-8

Without a Byte Order Mark:

00 00 00 3C UCS-4 or other encoding with a 32-bit code unit and ASCI|
3C 00 00 00 characters encoded as ASCI| values, in respectively big-endian
(1234), little-endian (4321) and two unusual byte orders (2143
00 00 3C 00 and 3412). The encoding declaration must be read to determine
00 3C 00 00 which of UCS-4 or other supported 32-bit encodings applies.
00 3C 00 3F UTF-16BE or big-endian | SO-10646-UCS-2 or other encoding

with a 16-bit code unit in big-endian order and ASCI| characters
encoded as ASCI| vaues (the encoding declaration must be read
to determine which)

3C 00 3F 00 UTF-16LE or little-endian | SO-10646-UCS-2 or other encoding
with a 16-bit code unit in little-endian order and ASCII charac-
ters encoded as ASCI| values (the encoding declaration must
be read to determine which)

3C 3F 78 6D UTF-8, 1SO 646, ASCII, somepart of | SO 8859, Shift-JIS, EUC,
or any other 7-bit, 8-bit, or mixed-width encoding which ensures
that the characters of ASCII have their normal positions, width,
and values; the actual encoding declaration must be read to
detect which of these applies, but since al of these encodings
use the same bit patterns for the relevant ASCII characters, the
encoding declaration itself may be read reliably

4C 6F A7 94 EBCDIC (in someflavor; the full encoding declaration must be
read to tell which code pageisin use)

Page 38 of 40 Autodetection of Character Encodings

http://www.renderx.com

Rendered from XML to PDF by XEP - [uww.Render X.con] XSL to PDF and XSL to Postscript formatter

Other UTF-8 without an encoding declaration, or else the data stream
ismidabeled (lacking arequired encoding declaration), corrupt,
fragmentary, or enclosed in awrapper of some kind

|:| In cases above which do not require reading the encoding declaration to determine the encoding, section 4.3.3 till
requiresthat the encoding declaration, if present, be read and that the encoding name be checked to match the actual
encoding of the entity. Also, it is possible that new character encodingswill beinvented that will make it necessary
to use the encoding declaration to determine the encoding, in cases where thisis not required at present.

This level of autodetection is enough to read the XML encoding declaration and parse the character-
encoding identifier, which is still necessary to distinguish the individual members of each family of
encodings (e.g. totell UTF-8 from 8859, and the parts of 8859 from each ather, or to distinguish the specific
EBCDIC code page in use, and so on).

Because the contents of the encoding declaration are restricted to characters from the ASCII repertoire
(however encoded), aprocessor can reliably read the entire encoding declaration as soon asit has detected
which family of encodingsisin use. Since in practice, all widely used character encodings fall into one
of the categories above, the XML encoding declaration allows reasonably reliable in-band labeling of
character encodings, even when external sources of information at the operating-system or transport-pro-
tocol level are unreliable. Character encodings such as UTF-7 that make overloaded usage of ASClI-valued
bytes may fail to bereliably detected.

Once the processor has detected the character encoding in use, it can act appropriately, whether by
invoking a separate input routine for each case, or by calling the proper conversion function on each
character of input.

Like any self-labeling system, the XML encoding declaration will not work if any software changes the
entity's character set or encoding without updating the encoding declaration. Implementors of character-
encoding routines should be careful to ensure the accuracy of the internal and external information used
to label the entity.

F.2. Prioritiesin the Presence of External Encoding Infor mation

The second possible case occurs when the XML entity is accompanied by encoding information, as in
some file systems and some network protocols. When multiple sources of information are available, their
relative priority and the preferred method of handling conflict should be specified as part of the higher-
level protocol used to deliver XML. In particular, pleaserefer to [[ETE RFC 237] or its successor, which
definesthet ext / xm and appl i cati on/ xm MIME types and provides some useful guidance. In
the interests of interoperability, however, the following rule is recommended.

o If an XML entity isin afile, the Byte-Order Mark and encoding declaration are used (if present) to
determine the character encoding.

Appendix G. W3C XML Working Group (Non-Normative)

This specification was prepared and approved for publication by the W3C XML Working Group (WG).
WG approval of this specification does not necessarily imply that all WG membersvoted for its approval.
The current and former members of the XML WG are:

Jon Bosak, Sun (Chair); James Clark (Technical Lead); Tim Bray, Textuality and Netscape (XML Co-
editor); Jean Paoli, Microsoft (XML Co-editor); C. M. Sperberg-McQueen, U. of Ill. (XML Co-editor);

Prioritiesin the Presence of External Encoding I nformation Page 39 of 40

http://www.renderx.com

Rendered from XML to PDF by XEP - [yww.Render X.con] XSL to PDF and XSL to Postscript formatter

Dan Connolly, W3C (W3C Liaison); Paula Angerstein, Texcel; Steve DeRose, INSO; Dave Hollander,
HP; Eliot Kimber, ISOGEN; Eve Maler, ArborText; Tom Magliery, NCSA; Murray Maloney, SoftQuad,
Grif SA, Muzmo and Veo Systems; MURATA Makoto (FAMILY Given), Fuji Xerox Information Systems;
Joel Nava, Adobe; Conleth O'Connell, Vignette; Peter Sharpe, SoftQuad; John Tigue, DataChannel

Appendix H. W3C XML Core Group (Non-Normative)

The second edition of this specification was prepared by the W3C XML Core Working Group (WG). The
members of the WG at the time of publication of this edition were:

Paula Angerstein, Vignette; Daniel Austin, Ask Jeeves; Tim Boland; Allen Brown, Microsoft; Dan Connally,
Wa3C (Staff Contact); John Cowan, Reuters Limited; John Evdemon, XML Solutions Corporation; Paul
Grosso, Arbortext (Co-Chair); Arnaud Le Hors, IBM (Co-Chair); Eve Maler, Sun Microsystems (Second
Edition Editor); Jonathan Marsh, Microsoft; MURATA Makoto (FAMILY Given), IBM; Mark Needleman,
Data Research Associates, David Orchard, Jamcracker; Lew Shannon, NCR; Richard Tobin, University
of Edinburgh; Daniel Veillard, W3C; Dan Vint, Lexica; Norman Walsh, Sun Microsystems; Francois
Yergeau, Alis Technologies (Errata List Editor); Kongyi Zhou, Oracle

Appendix |. Production Notes (Non-Nor mative)

This Second Edition wasencoded in the)XML spec DTO (which hasflocumentatio available). The HTML
versions were produced with a combination of the kmispec.xg], Hiffspec.xs], and REC-xml-2e.xs] XSLT
stylesheets. The PDF version was produced with the html2pg facility and a distiller program.

Page 40 of 40 W3C XML CoreGroup

http://www.w3.org/XML/1998/06/xmlspec-v21.dtd
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm
http://www.w3.org/XML/1998/06/xmlspec.xsl
http://www.w3.org/XML/1998/06/diffspec.xsl
http://www.w3.org/XML/1998/06/REC-xml-2e.xsl
http://www.tdb.uu.se/~jan/html2ps.html
http://www.renderx.com

	Colophon
	Abstract
	Status of this document

	Table of Contents
	1. Introduction
	1.1. Origin and Goals
	1.2. Terminology

	2. Documents
	2.1. Well-Formed XML Documents
	2.2. Characters
	2.3. Common Syntactic Constructs
	2.4. Character Data and Markup
	2.5. Comments
	2.6. Processing Instructions
	2.7. CDATA Sections
	2.8. Prolog and Document Type Declaration
	2.9. Standalone Document Declaration
	2.10. White Space Handling
	2.11. End-of-Line Handling
	2.12. Language Identification

	3. Logical Structures
	3.1. Start-Tags, End-Tags, and Empty-Element Tags
	3.2. Element Type Declarations
	3.2.1. Element Content
	3.2.2. Mixed Content

	3.3. Attribute-List Declarations
	3.3.1. Attribute Types
	3.3.2. Attribute Defaults
	3.3.3. Attribute-Value Normalization

	3.4. Conditional Sections

	4. Physical Structures
	4.1. Character and Entity References
	4.2. Entity Declarations
	4.2.1. Internal Entities
	4.2.2. External Entities

	4.3. Parsed Entities
	4.3.1. The Text Declaration
	4.3.2. Well-Formed Parsed Entities
	4.3.3. Character Encoding in Entities

	4.4. XML Processor Treatment of Entities and References
	4.4.1. Not Recognized
	4.4.2. Included
	4.4.3. Included If Validating
	4.4.4. Forbidden
	4.4.5. Included in Literal
	4.4.6. Notify
	4.4.7. Bypassed
	4.4.8. Included as PE

	4.5. Construction of Internal Entity Replacement Text
	4.6. Predefined Entities
	4.7. Notation Declarations
	4.8. Document Entity

	5. Conformance
	5.1. Validating and Non-Validating Processors
	5.2. Using XML Processors

	6. Notation
	A. References
	A.1. Normative References
	A.2. Other References

	B. Character Classes
	C. XML and SGML (Non-Normative)
	D. Expansion of Entity and Character References (Non-Normative)
	E. Deterministic Content Models (Non-Normative)
	F. Autodetection of Character Encodings (Non-Normative)
	F.1. Detection Without External Encoding Information
	F.2. Priorities in the Presence of External Encoding Information

	G. W3C XML Working Group (Non-Normative)
	H. W3C XML Core Group (Non-Normative)
	I. Production Notes (Non-Normative)

