Integrating RenderX XSL FO Technology with
iText for High Performance Dynamic Forms
Generation

This paper presents a complete, generic framework for creating modifiable, flowing PDF forms, based on XML
content and standard XSL templates. It requires no programming to generate dynamic, fill-able, custom PDF
forms by mapping some RenderX XSL FO extensions to form elements.

Recently RenderX has seen many opportunities arise for creating “dynamic” forms. We mean dynamic because
both the shape and the content of the form may depend on the actual content. This paper presents a method
used for generating dynamic forms using RenderX’s XEP, an XSL FO formatting engine, combined with the iText
library for PDF manipulation to produce dynamic, fill-able, custom forms in a high-volume, multi-threaded application.

Potential Applications

There are 1000s of potential applications that would benefit from such a solution. One real-life RenderX customer
is creating over 100,000 monthly statements in PDF to be e-mailed to their customers. What is unique is that each
statement is in reality a custom PDF Acroform for credit card submittal. The fields of the form must flow to any
location in the document to be at the end of the statement and they must carry specific information in hidden
fields. This includes such things as the account number, the amount, and the recipient’s name and address. The
RenderX customers’ monthly statement run creates these dynamic, custom forms for presentation to the recipient
through their on-line portal — not only as a “green” initiative but also providing a very convenient (and in many
cases a more expedient) method for obtaining payment. They already were producing statements using XSL FO,
the methods presented here allow them to dynamically generate unique custom forms for every recipient.

Another example customer is creating a dynamic insurance application form that is 100% custom to the applicant.
The form is generated using information from a few upfront questions and known information from the customers’
account. Whole sections and/or specific questions are included depending on the known information about the
particular user (like previous insurance products, state of residence, etc.). Other fields are filled with known
information and even hidden to prevent their modification. Based on a few simple questions asked at the web site,
a dynamic form is generated on-demand that is custom for the applicant. The overall application process is
streamlined, forgoing the many different applications for different types of users for one process to generate a
custom form. It also eliminates mistakes and saves a lot of time for known prospects by pre-filling in information
as well as hiding fields that should not be changed.

The Benefits of XSL FO for the Document and iText for the Form

XSL FO, a W3C standard for representing print information in a standard XML language, is a technology that is well
suited to creating flowing text documents through no use of programming. However, XSL FO contains no structures
for supporting input of information such as a form field. The iText library is an ideal solution for enhancing and
modifying existing PDFs and in this case it is used for its ability to stamp form fields onto existing PDF documents
given a known location and page.

RenderX, Inc. White Paper 4/19/2008 Page 1 0of9

http://www.w3.org/TR/2006/REC-xsl11-20061205/xsl11.pdf
http://www.w3.org/

Thus, one can use the ease of XML and XSL technology to compose PDF documents, while leveraging information
from the RenderX XEP software during the composition phase to record the physical locations on the page for the
form fields. RenderX is used to generate a “blank” PDF, one that would be a background as if the form fields where
in the document. During the process, RenderX can record information about each of these fields — names, exact
locations, pages, and other properties. A post-process of the resulting “blank” PDF and the form field information
(obtained from the formatting process) using iText completes the application, creating a fully “dynamic” form with
fields perfectly located within the document. The sample application created to demonstrate this capability has
two classes. One creates the “background” form using RenderX software and records the information needed. The
second class stamps the fields using iText. A standard set of templates in XSL completes the application. They are
used to transform an XML element representing a form field. For the production application, the two classes were
wrapped into a multi-threaded framework. The results were very high-speed production of totally custom form
documents from source XML content and XSL instructions. The most important benefit of this solution is that it
creates a complete, generic framework with modifiable form field elements, based on XML content and standard
XSL templates. No further programming is necessary to generate dynamic, fill-able, custom PDF forms.

How it Works - The Details

One particular customer requested a final implementation on Windows with .NET interfaces, so RenderX selected
the XEPWin solution. XEPWin is RenderX’s Java-based XSL FO formatting engine (XEP) that has a .NET wrapper to
expose only .NET interfaces to the developer. The iText C# port (itextsharp) was selected for the stamping of the
form fields.

RenderX XEPWin is an application that takes in XML as the source data and XSL as the rules for how that XML data
will flow and appear on a page. XSL can contain logic to make decisions and create structures in the XSL FO that
represent the page layout and all other visible appearances. The RenderX XSL FO core technology handles the flow
of the content into the layout, making all the decisions about character placement, spacing, page endings, etc.
based on the rules contained within the XSL FO Specification itself as well as the parameters in the XSL FO file.

RenderX technology can produce PDF, Postscript and AFP output. RenderX software composes the XSL FO document
to an internal XML representation of the page which is normally not exposed to the end user but has always been
available through programming. This XML format is called the XEP Intermediate Format (XEP format). Normally,
this internal format is streamed directly to a backend program that converts the XEP format to the desired output,
like PDF in this case. However, the XEP format can be obtained through the APl and programmatically examined
and even manipulated. RenderX has presented other papers discussing manipulation of this formation for things
like inserting OMR marks, generating custom barcodes and Transpromo advertising.

The XEP format is well documented on the RenderX support web site. One can easily see the page structure in an
XML format that is simple to understand. The XEP format contains such elements as <document>, <page>, <text>,
<rectangle>, <line>, , <cmyk-color>, etc. It also contains instructions like <rotate>, <clip> and <translate>.
The key here is that RenderX produces an easily interpreted XML structure of entire documents and this XML file
can be analyzed programmatically.

RenderX also supports an extension element to the XSL FO standard within it’s own “rx:” namespace. This element
is known as a <pinpoint>. By placing a <pinpoint> element in the source, a resulting <pinpoint> will appear in the
XEP format at the exact page location where it would be formatted. In the XEP format, the <pinpoint> element is
marked with attributes of the exact X,Y page coordinates where the “pin” is dropped. It can also contain a single
label as an attribute to be used to identify the pin.

RenderX, Inc. White Paper 4/19/2008 Page 2 of 9

http://www.renderx.com/tools/xepwin.html?wp=forms1
http://www.renderx.com/tools/xep.html?wp=forms1
http://itextsharp.sourceforge.net/
http://www.renderx.com/reference.html
http://www.renderx.com/reference.html?wp=forms1

The XML and XSL Representations

The following figures show sample XML content with <formfield> elements, a sample XSL set of templates that can
be included in any XSL file and a brief look at the resulting XEP format results.

<test>

<desc>Simple Textbox with Default Value</desc>

<content><formfield "fieldOo6" "textbox" "false" "Change me"
"Helvetica" "10pt" "normal"/></content>

</test>

<test>

<desc>Password Field</desc>

<content><formfield "fieldO7" "password"/></content>
</test>
<test>

<desc>Option List</desc>

<content><formfield "fieldO8" "combobox"
"optionl;option2;option3;option4;option5;option6” "Helvetica" "10pt"
"normal"/></content>
</test>
<test>

<desc>Option List with Default Value</desc>

<content><formfield "field0O9" "combobox" "optionb5"
"optionl;option2;option3;option4d;option5;optione6” "Helvetica" "8pt"
"normal" "green"/></content>
</test>
<test>

<desc>Select List (10 items, showing 5 lines, default to option7, bold and red font</desc>

<content><formfield "field28" "selectlist" "sn
"optionl;option2;option3;option4d;option5;option6;option7;option8;option9;optionlO" "option7"
"Helvetica" "10pt" "bold" "red"/></content>
</test>
<test>

<desc>Checkbox Using "check"</desc>
<content><formfield "fieldlo" "checkbox" "check" "true"/></content>

</test>

Figure 1: A Sample XML Fragment Showing Form Fields

RenderX, Inc. White Paper 4/19/2008 Page 3 of 9

<xsl:template match="formfield">

<xsl:call-template name="process.formfield"/>
</xsl:template>
<xsl:template name="process.formfield">
<!-- Start the formfield -->
<rx:pinpoint>
<xsl:attribute name="value">start, formfield</xsl:attribute>
</rx:pinpoint>
<!-- Output each attribute as is -->
<xsl:for-each select="attribute::node()">
<rx:pinpoint>
<xsl:attribute name="value"><xsl:value-of select="name (self::node())"

ect=","/></xsl:attribute>

/>,<xsl:value-of

</rx:pinpoint>
</xsl:for-each>
<xsl:choose>

<xsl:when test="attribute::type='hidden'">

</xsl:when>

<xsl:otherwise>

<fo:block-container background-color="white">
<xsl:choose>

"attribute::type= 'textarea'">

<xsl:when te

<xsl:call-template name="form.line">

<xsl:with-param name="count">

<xsl:value-of ~="attribute::numlines"/>
</xsl:with-param>
</xsl:call-template>
</xsl:when>
<xsl:when test="attribute::type= 'selectlist'">
<xsl:call-template name="form.line">
<xsl:with-param name="count">

t="attribute::numlines"/>

<xsl:value-of

</xsl:with-param>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<fo:block>
<fo:leader le
</fo:block>

der-pattern="space"/>

</xsl:otherwise>
</xsl:choose>
</fo:block-container>
</xsl:otherwise>
</xsl:choose>
<rx:pinpoint>
<xsl:attribute name="value">end, formfield</xsl:attribute>
</rx:pinpoint>
</xsl:template>
<xsl:template name="form.line">

<xsl:param name="count"/>

-="iteration">1</xsl:param>

<xsl:param na
<fo:block>

<fo:leader leader-pattern="space"/>

RenderX, Inc. White Paper 4/19/2008 Page 4 of 9

</fo:block>

<xsl:if "Siteration < S$Scount">
<xsl:call-template "form.line">

<xsl:with-param "count" "Scount"/>

<xsl:with-param "iteration" "Siteration +1"/>
</xsl:call-template>
</xsl:if>

</xsl:template>

Figure 2: Sample XSL Template to Convert into XSL FO with <pinpoint> Elements

The <formfield> Element

Essentially these two things — the <pinpoint> element and the easily interpreted XML format - are all that is needed
to process the files. Any customer can now introduce a new XML element in the source document to describe a
form field. This empty element is <formfield> and it carries various attributes that describe the actual form field
type, content and appearance. Of course, many field properties are optional and the code itself has most items
defaulted to standard PDF form conventions. However, for very fine control most of the appearance features of
the field can be modified. The following table shows the various attributes supported for the sample application.

Table 1: The <formfield> Element Attributes

name The name of the field in the output (must be unique across all form fields and
is required)

type The type of field, one of
(textbox | password | combobox | selectlist | checkbox | textarea | radio | submit | reset | hidden)

numlines the number of visible lines in a textarea, selectlist

options a semi-colon separated list of options for a combobox or selectlist

default the default value to the field

font-family the font-family to use for the field

font-size the font size to use for the field

font-weight normal|bold

font-style normal |italic

font-color the color of the font represented as a common name like “SlateBlue” or through
hex like “#FOFOFQ”

borderstyle one of (solid | beveled|dashed|inset|underline)

bordercolor

the color of the field border represented as a common name like “SlateBlue”
or through hex like “#FOFOFQ”

border the thickness of the border

readonly true|false to create a readonly field

radiogroup A name to allow for grouping radio buttons into a collection. All radios with the
same group (and on the same page) are grouped into a set of radios.

onstate the checkbox onstate for a radio group

checktype one of (diamond|check|circle|square|star|cross) for checkboxes or radio
buttons

href the link for a submit button

background-color

the color of the background of the submit or reset button represented as a
common name like “SlateBlue” or through hex like “#FOFOFQ”

RenderX, Inc. White Paper

4/19/2008 Page 5 of 9

After an XML file is processed through an XSL file with the addition of the templates for processing the <formfield>
elements, the resulting XEP file contains all the information necessary to construct a form field using an automated
process.

<xep:pinpoint "377700" "635100" "start, formfield"/>
<xep:pinpoint "377700" "635100" "name, field04"/>
<xep:pinpoint "377700" "635100" "type, textbox"/>
<xep:pinpoint "377700" "635100" "readonly, false"/>
<xep:pinpoint "377700" "635100" "font-family,Helvetica"/>
<xep:pinpoint "377700" "635100" "font-size, 12pt"/>
<xep:pinpoint "377700" "635100" "font-weight,bold"/>
<xep:pinpoint "377700" "635100" "font-style,italic"/>
<xep:pinpoint "377700" "635100" "font-color, red"/>
<xep:gray-color "1.0"/>

<xep:rectangle "377700" "620700" "538500" "635100"/>
<xep:pinpoint "377700" "620700" "end, formfield" />

Figure 3: A Sample of the XEP Intermediate Format to Used to Derive a Form Field

The original XML+XSL elements are processed in a program to the XEP file, represented by a MemoryStream. This
stream is loaded to an XML Document and analyzed programmatically to find the <pinpoint> elements, extract the
field attributes and the exact X,Y locations of the fields. The field size itself is obtained from a table cell whose
background color is white. This table cell area results in a <rectangle> element in the XEP file and this <rectangle>
element gives us the exact lIx,lly,urx and ury locations of the rectangle to insert for the form field using iText (after
unit and coordinate system conversion).

This XEP file MemoryStream is processed to PDF using RenderX software, utilizing one class to obtain the document
background as a PDF. The MemoryStream and the PDF are then passed to another class used to analyze the XEP

intermediate file and stamp the form fields using iText. These two classes now represent a complete solution for

insertion of form fields into XSL FO data to be dynamically stamped into the output stream.

For the customer application and for high-volume testing, these two classes were wrapped in a multi-thread harness
that can take a list of XML files and an XSL file and process the whole list in a configurable number of threads. The
whole solution is very fast and can easily run 4, 8, 10 or more simultaneous rendering threads on a tested
configuration of a dual-core laptop computer. One example document was developed that contains a mega-test
of all different types of form fields. There are 28 fields on this document and results for the tested dual-core laptop
show 60 forms of one page (each with 28 fields) generated in 4 threads in 9.2 documents/second. A single CPU
dual-core license for a server-class machine should be sufficient to handle 20-30 simultaneous requests for a similar
form and be able to serve that form is less than 1.5 seconds to the end-user in an on-demand situation.

RenderX, Inc. White Paper 4/19/2008 Page 6 of 9

= FormTest0002.pdf - Adobe Reader

|File Edit View Document Tools Window Help

& »[]/

L EE ! = MR

Please fill out the following form. You cannot save data typed into this form.
Please print your completed form if you would like a copy for your records.

This is a test of form elements

Simple Textbox with blue text and different borders textboxes
Simple Textbox (same as first with italic, 8pt) [of
Simple Textbox (same as first with bold, 10pt) |all
Simple Textbox (same as first with bold-italic, 12pt, red) |([types
Simple Read Only Textbox
Simple Textbox with Default Value |Change me
Password Field (===
Option List | ~1
Option List with Default Value [\aptions -1
Select List (10 items, showing 5 lines, default to option?, ([aption6
bold and red font option?
i
optiond
option10
Checkbox Using "check" | v
Checkbox Using "star” in orange |
Checkbox Using "square” |]
Checkbox Using "circle” in cyan |
Checkbox Using "diamond"” | *
Checkbox Using "cross" in magenta | =

Multiline Textbox with blue text

Multi-line text box that can has a
scrollbar when content exceeds
the dimensions

Radio Group1 Test - Option 1 *

Radio Group1 Test - Option 2 |

Radio Group1 Test - Option 3 |

Radio Group2 Test - Option 1 (Blue, 8pt, Square) []

Radio Group2 Test - Option 2 (Red, 6pt, Cross) |

Radio Group2 Test - Option 3 (green, 7pt, Star) |

Submit Button (White Text on SlateBlue) [swmz |
Reset Button Reset

Figure 4: Mega-Test Sample PDF Form Generated

RenderX, Inc. White Paper 4/19/2008

Page 7 of 9

= FDIC Form.pdf - Adobe Reader

File Edit View Document Tools Window Help

=) #® 825% |-

€ P [0)/= = EE

E Please fill out the following form. You cannot save data typed into this form.
Please print your completed form if you would like a copy for your records.

(Column A} {Column Bj {Column C} {Column Of
Held-to-maturity | Held-to Fair for-sale for-sale Fair
Dollar in i Cost Value Amortized Cost Value
1. U5, Treasury securities. RCFDO213 RCFD1236 RCFD1287 1
2. US. agency
securities): 2
E a_ Issued by ULS. RCFD1280 | RCFDM281 | RCFD1203 2a
b. Issued by U.5. Government sponsored agencies..... RCFD1205 RCFD1297 RCFD1288 2n
3. Securities issued by states and political ivisix in the U.S..[RCFD2406 RCFDB427 RCFDa408 RCFDE400 3
4. Mortgage-backed securities (MBS): 4
a. Pass-through securities: | 43
1. Guaranteed by GNMA_.._..__._ ... RCFD1629 RCFDI7TIM RCFD1702 4al.
2. Issued by FNMA and FHLMC. RCFD1T0S RCFDNM706 RCFD1707 432
3. Other pass-through it RCFDATI0 RCFOA711 | RCFD1713 423
b. Other mortgage-backed securities (include CMOs, REMICs,
and stripped MBS): 4n
1. Issued or guaranteed by FNMA, FHLMC, or GMMA_._._._. RCFDM714 RCFDA715 RCFDMT16 RCFD1717 4nd.
2. Collateralized by MBS issued or guaranteed by FNMA. | peeny7qg RCFDT18 RCFDM73 RCFD1732 02
RCFD1733 RCFDIT34 | RCFD1M735 RCFD1736 4n3.
5
RCFDB330 RCFDB240 RCFDB341 5a
RCFDB342 RCFDB244 RCFDB345 sh
RCFDBa47 RCFDBE4E RCFDB340 5o
" RCFDBEs1 | RCFDBE5Z | RCFDBas53 | sd
RCFDBA55 | RCFDBESE | RCFDBE5T | se
RCFDBa50 RCFDBE5D RCFDBAG1 13
: B
a. Other domestic debt it RCFD1737 RCFD1738 RCFD1M730 RCFD1741 6a.
ities.. o...| RCFDI742 RCFD1743 RCFD1744 | RCFD1746 Bh
7. Investments in mutual funds and other equity securities with
readily determinable fair values. ReFDASTD ReFDAs T
RCFDATT | RCFD1772 RCFD1772 B
Schedule RC-B - Securities - continued
Dollar in
M. Memoranda M
1. Pledged securities. RCFDO0418 i,
2. Maturity and repricing data for debt those in status) Mz
a. Securities issued by the LS. Treasury, ULS. Government agencies, and states and
political subdivisions in the U.S.; other non-mortgage debt securities; and mortgage
pass-through securities other than th d-end first fien 1-4 family resi
meortgages with a remaining maturity or next repricing data of: MZa
1. Three months or less. RCFDAS48 Mzai
2 Over three months through 12 months. RCFDASED M2az
3. Over one year through three years. RCFDASE1T M2a3
4. Over three years through five years. RCFDASS2 M2ad
5. Over five years through 15 years. RCFDAGE3 M2as
= 6. Over 15 years. RCFDASS4 MZak
= b. Morigage pass-through securifies backed by closed-end first lien 1-4 family residential
mortgages with a remaining maturity or next repricing date of: M.Zh L

Figure 5: Sample Application (30 Page PDF with 1872 form fields in multiple layouts)

RenderX, Inc. White Paper

4/19/2008

Page 8 of 9

Conclusions

Marrying RenderX XEP and XSL FO technology with iText has resulted in a 100% generic way to generate dynamic
PDF forms for everyday applications. Users only need to include a new style sheets template into their existing
XSLs and add a new element into their XML where they wish form fields to be placed. Using code like the two
classes developed, the <formfield> element is automatically processed, leveraging RenderX XEP and iText to create
dynamic, fillable, custom forms in a muti-threaded, high volume application.

& Dynamic Forms 2.0 BEA
Fie Format Hep
i 150] (2] | @ | Number of Threads 10
Name Directory Size| Date Modified | [Fies | Statistics |
t F Ci\Documents and A \ 6KB 3/26/2005 11:05 P T T Flapsed Pages oG e [l
FormTest0001. E:S::x:::z ::; Settmgs\kbmwnﬂl:Eesk&n:\TestFnrm z EFBK ;iz:;ggi ::ZE E:i ::469074078 59075031 o553 1 CADocuments and Y pdf thread 6
CADocuments and D o 6 KB | 3/26/2008 11:05 FM 1 ’732074078 89074875 97 1 C\Documents and L \L \T \F 1.pdf thread 4
2 2 28 = || D ao07a003 ao076125 032 1 C\Documents and paf threadd
CADocuments and 6B 3/26/2008 11:05 Ph T ss07s083 ssorsz6s 172 1 CDocuments and ot thread?
2 Dscumsns s setingbramd Dkl sto e 1ses —TT T
¥ FomTest0007.... CDacuments an Sttingf KorownC I De KR Testromm 66 3/26/2008 11:05 PH Beoortis iy it ! S : : : : T
L L ErDocuments and S KB | 3/76/2006 11:03 Pl (T as074156 89074953 797 1 C\Documents and Tpof thresa2
2 Gocemertane estont 1o et —TT e
 FomTESt0LL.... CDacuments and Sttingf orownCI DesKEop Testrorm 66 3/26/2008 11:05 PH (o i e ! S : o Bl {hiads
¥ FormTest0012.... CADacuments and Settings\kbrownaL Desktop TestForm KB 3/26/2008 1105 PN R asorson ooreats r . R o Tentrom s v
FormTest0013... C\Documents and Settings\kbrown01\Desktop\TestForm 6 KB 3/26/2008 11:05 PM "’BQMSHG 39075390 750 1 C\Documents and o thread 3
“* FormTest00L4.... CADocuments and Settings\Kbrown01\Desktop\TestForm KB 3/25/2008 11:05 P Bosorsin csoreat o ' Documents and ¥ ¥ ; .‘ T thread 2
r rmTestonLs. EEZ::::& ::Z jemngs\kbmwnﬂl\Euk{up\T!s(Furm : Ez iiziggi :: Z: :":: (1)89075265 89076625 1360 1 C\Documents and Settings\kbrown01\Desktop\TestForm\FormTest0024.pof thread 7
] ‘ ! Desktop) /261 7 as07ss31 ssoreszs 797 1 CDocuments ana topTestForm¥ ot threads
2 FomTes017... Documants and Sting om0 DeslopTsform G5 325700 1145 1 Cosammsms . st
5 F C‘\‘Dmuments and . \‘D : 5KB 3"2E‘mﬂg 11:05 B :LBQMSSH 89077203 1532 1 C\Documents and i\ \pdf thread 1
istop Derase i 129 L Coumns o S MbrorniL Deop T T st
A : /257) \Documents an opTestForm rea
B FormTest0021... C:\Documents anf S:ttmgs\kbmwnﬂi:E:sklup‘T:s(Furm i E: iriirf:ii ‘1‘1:2 z:\j T 9076171 89077965 1797 1 CADocwments and o thread 9
_ (783076250 89077406 115 1 C\Documents and i pdf thread 4
(789076312 89077500 1188 1 C\Documents and " \ T \F df thread &
: Dasoreziz ss077109 707 1 CDocuments and of thread2
G St thetormiil > T ssoraz sas 1 CDoeuments ana bor thiesas
. - 789076625 89077796 1171 1 C\Documents and i\ df thread 7
- exskattribute name="value"> = . Ty
start formfield ’732075268 89077671 703 1 C\Documents and L I T \F real
<1 Output each atrbute 3s s Dasorross a0078203 1157 1 C\Documents and Tpdf thread 10 L
= <alfor-each select="attributenode("> Dasorrizs 89078531 1406 1 C\Documents and of thread3
= erepinpoint> Desorrasz as078250 Y 1 C\Documents and ot thiead s
&1 exslattribute name="value'> 789077312 89078718 1406 1 CADocuments and ¥ I T ¥ o thread 2
<xshvalue-of select="name(selfznode()'/> (D so077312 so078328 1016 1 C\Documents and y ! v L pdf threadl
, (T 89077406 sso7ase? 1156 1 CADocuments and lpat thresad
“xskvalue-of select="."/» (D as077500 89076715 1218 1 C\Documents and pdf threads
<I-- Determine if this is a hidden field, if s do not output any content, just the pinpoints --> (189077671 89078546 875 1 C\Decuments and ¥ I \ ¥ e thread 8
& <xk:choose> (8007779 80079390 1504 1 C\Documents and y ! v L pdf thread?
I8 <><S:=W?:‘€n test="attributeitype= hidden"/> (183077963 83079406 1438 1 C\Documents and pdf thread 8
xskothenvise> I ¥
<l-- Create s block container that fils the ares for the form field > ZZ;S;Z;’; v e H e o A o Tids
= g“i'j‘(::::::‘””l’“kg'“”""“‘“’:”w“‘““’ E (7)89078328 80079328 1000 1 C\Documents and L " \ ¥ paf thread 1
T so078531 89080078 1547 1 CADocuments and o threads
I (;S‘:f;;: }:S;aa:;:m\tzitixlbct;tr:f:a)aria cquivalent to the number of lines desired by the aaoross oot Lo . R P Fre
& <xshcall-template nam. mline’> ’LBQMBSSZ 89079384 1422 1 C\Documents and i\ df thread 4
2 elwith-param name=" ot Dasoraia 89080437 1719 1 C\Documents and Y ! q ! o threads
cxelvalu of select="stributesnumlines’/> Dasoraria ao079582 a1 1 C\Documents and paf thread?
© <xshwhen test="attributestype= 'selectlist”™> Dss073203 89080250 1047 1 C\Documents and of thiead 10
- <uskcall-template nam mline’s (189079296 59080265 268 1 C\Documents and i df thread 5
= <xskwith-param na ount"> (789079328 89080078 750 1 C\Documents and L I T \F 7.pdf thread 1
<xshvalue-of select="attributeznumlines’/> (189079437 89080609 172 1 C\Documents and df thread 9
<l-- Otherwise, create a single line area for the formfield --> [v]l || Fasor8s62 89080468 906 1 C\Documents and df thread 7 [v)
@ m] =) < Im I &

Figure 6: The Dynamic Forms Sample Application

Acknowledgements
This solution uses the C# port (itextsharp) of the iText Library for generating form fields in the document. The iText
Library is Copyright (C) 1999-2008 by Bruno Lowagie and Paulo Soares. All rights reserved.

This solution uses RenderX XEPWin for dynamic formatting of XSL FO content. XEPWin is a product of RenderX,
Copyright (c) 2004 - 2008 by RenderX, Inc. All rights reserved.

Sample code of the example application is available on request. For more information about this application,
contact:

Kevin Brown
RenderX, Inc.
kevin@renderx.com

RenderX, Inc. White Paper 4/19/2008 Page 9 of 9

http://itextsharp.sourceforge.net/
http://www.lowagie.com/iText/
http://www.lowagie.com/iText/
http://www.renderx.com/tools/xepwin.html?wp=forms1
mailto:kevin@renderx.com

	1 Potential Applications
	2 The Benefits of XSL FO for the Document and iText ...
	3 How it Works – The Details
	4 The XML and XSL Representations
	5 The <formfield> Element
	6 Conclusions
	7 Acknowledgements

