
5
The XSLT

transformation
environment

http://www.renderx.com
Prentice Hall PTR
This is a sample chapter of Definitive XSLT and XPath
ISBN: 0-13-065196-6

For the full text, visit http://www.phptr.com

©2001 Pearson Education. All Rights Reserved.

5 The XSLT transformation
environment

Some aspects of our stylesheets are of a global nature that we must
consider before we delve into the details of template instruction exe-
cution and behaviors. This chapter overviews the aspects of our envi-
ronment in which we use our XSLT processor from the perspectives
of the stylesheet contents, the serialized output (if any), and the
operator invoking the processor.

All explicitly declared stylesheets follow a required shape of container
and top-level (container children) elements. Methods are also specified
for including arbitrary information in a stylesheet file, useful for sup-
plemental information for processing, or as documentation of the
stylesheet content.

The stylesheet can declare its desire for values of certain parameters
of the output serialization that influence the contents of the reified
result node tree.

In addition, there are a number of ways available to communicate
with an XSLT processor that is interpreting a stylesheet resource against

http://www.renderx.com

a source resource. Communication to the processor can be engaged
at invocation as well as from the processor during execution.

Finally, this chapter reviews aspects of the transformation environment
that cannot be controlled by the operator or the stylesheet. It is
important to understand the limitations of what can be asked for or
even supported by the XSLT processor.

This chapter includes discussion of the following XSLT instructions
regarding the transformation environment in which a stylesheet is
used.

Instructions for wrapping the content of a stylesheet are as follows.

<xsl:stylesheet>4

encapsulates a stylesheet specification.5

<xsl:transform>4

encapsulates a stylesheet specification.5

Instructions for serializing the result tree are as follows.

<xsl:namespace-alias>4

specifies a result tree namespace translation.5

<xsl:output>4

specifies the desired serialization of the result tree.5

Instructions for communicating with the operator are as follows.

<xsl:message>4

reports a stylesheet condition to the operator.5

<xsl:param>4

supplies a parameterized value from the operator.5

5.1 Stylesheet basics
5.1.1 The stylesheet document/container element

Two identical and interchangeable choices for the document element
are:

<xsl:stylesheet>4

<xsl:transform>4

142 Definitive XSLT and XPath

5.0 The XSLT transformation environment

http://www.renderx.com

They can also be used as a container element for a stylesheet embedded
in another context.

They may use id="unique identifier".4

It identifies the stylesheet when there are multiple ones from which to choose.5

The use of this XML ID attribute is outside the scope of the Recommendation.5

It could be used as a fragment identifier by the stylesheet association processing5

instruction or by other techniques to identify a given stylesheet among many.

Controls available on container element or any literal result element
are:

exclude-result-prefixes="whitespace-separated-prefixes"4

scope of influence is all descendent elements in stylesheet;5

this declaration indicates which stylesheet namespace prefixes are not expected5

in the result, thus are not to be included in the stylesheet tree;
a list of whitespace-separated namespace prefixes specifies prefixes that are6

to be explicitly excluded from the stylesheet tree (using #default as the
name to reference the default namespace, which is sometimes unofficially
called the null namespace);

user-specified prefixes and associated namespace declarations are often used in5

XSLT stylesheets (but not desired in the result) for various purposes such as:
top-level documentation,6

embedded structured data,6

named XSLT constructs;6

recall that copying an element node from the stylesheet to the result will copy5

all attached namespace nodes, thus stylesheet namespace declarations can easily
end up in the result tree;

a stylesheet wrapper-element namespace declaration is typically used for6

top-level namespace usage, thus the document element of the result will
typically end up with the same declarations;

this exclusion declaration tells the XSLT processor to not include the specified5

namespace nodes on descendent nodes of the stylesheet tree;
this exclusion declaration has no effect on namespace nodes of the source tree,5

extension-element-prefixes="whitespace-separated-prefixes"4

scope of influence is all descendent elements in stylesheet;5

this declaration indicates which stylesheet namespace prefixes are instruction5

prefixes;
a list of whitespace-separated namespace prefixes specifying prefixes that6

are extension namespaces to be recognized by the XSLT processor (using
#default as the name to reference the default namespace);

recall that everything that is not an instruction is considered to be a literal result5

element;

The stylesheet document/container element 5.1.1

5 The XSLT transformation environment 143

http://www.renderx.com

elements prefixed with the namespace prefix associated with the XSLT URI5

are interpreted as instructions;
this declaration tells the XSLT processor what other prefixes are to be interpreted5

as instructions because they are extension elements required by the stylesheet;
the processor need not implement the extension elements (detailed in Chap-5

ter 6).

Child elements of the document or container element are referred to
as “top-level” elements.

If present, the following must occur before all other top-level ele-4

ments:
xsl:import5

see Chapter 6.6

If present, the following (listed alphabetically) may occur in any4

order as top-level elements:
xsl:attribute-set5

see Chapter 7,6

xsl:include5

see Chapter 6,6

xsl:key5

see Chapter 8,6

xsl:decimal-format5

see Chapter 8,6

xsl:namespace-alias5

see this chapter,6

xsl:output5

see this chapter,6

xsl:preserve-space5

see Chapter 3,6

xsl:strip-space5

see Chapter 3,6

xsl:template5

see Chapter 4.6

The following are used not only as top-level elements, while all4

others listed above are only used as top-level elements:
xsl:param5

see Chapter 6,6

xsl:variable5

see Chapter 6.6

144 Definitive XSLT and XPath

5.1.1 The stylesheet document/container element

http://www.renderx.com

5.1.2 Documenting stylesheets

Because an XSL stylesheet is an XML document —

XML comments can be used to provide documentation about the4

stylesheet,
all XML comments and processing instructions found in an XSL4

stylesheet are ignored.
Note that some XML editing tools may leave processing instructions in files5

for remembering locations such as the last cursor position.

Adding richly marked up documentation to a stylesheet:

allows the stylesheet to be run through a documenting stylesheet4

to extract the documentation in any fashion desired,
is accomplished by including non-XSLT constructs as top-level4

elements (children of the stylesheet document element) provided
that the default namespace is not used as the namespace for such
constructs, as in the following example:

Example 5–1 Using non-XSLT constructs as top-level elements

<?xml version="1.0"?> <!--hellodoc.xsl-->Line 1

<!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->2

3

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"4

 version="1.0" exclude-result-prefixes="mydoc"5

 xmlns:mydoc="http://www.mycompany.com/mydoc">6

7

<xsl:output method="html"/>8

9

<mydoc:para>10

The following construct is the root template.11

</mydoc:para>12

13

<xsl:template match="/"> <!--root rule-->14

 <i><u><xsl:value-of select="greeting"/></u></i>15

 <?test a processing instruction here?>16

</xsl:template>17

18

</xsl:transform>19

Note the use of exclude-result-prefixes= in the document element
above to tell the XSLT processor to not emit a namespace declaration
for the prefix of the documentation namespace —

Documenting stylesheets 5.1.2

5 The XSLT transformation environment 145

http://www.renderx.com

if the stylesheet writer knows that namespace will never be needed4

in the result;
because the XSLT processor doesn’t know when creating the doc-4

ument element node of the result tree whether the namespace will
ever be needed in the instance, so by default the declaration is
emitted.

5.1.3 Namespace protection

Some special concern regarding the use of namespaces are as follows.

The “transformation by example” paradigm utilizes literal result4

elements.
It represents result tree element nodes with associated attribute nodes.5

An element is written with associated attributes in a template in the6

stylesheet and can use —
the default namespace,7

a namespace prefix and associated namespace URI.7

An alternative described later is the use of XSLT instructions to synthesize6

result tree nodes.

Some namespaces can be sensitive in the document processing4

environment;
this includes automatically-triggered platform services;5

for example: digital signature processing.5

If the result tree requires a sensitive namespace, the stylesheet can’t4

use the namespace in a literal result element —
to produce an XSLT script as the output of translation;5

the XSLT processor would incorrectly interpret the result vocabulary as6

input,
to use a platform service for the output of translation;5

the stylesheet use of the URI would incorrectly trigger the service.6

The <xsl:namespace-alias attributes/> top-level element can4

be used, which:
is an instruction to translate a namespace prefix in the stylesheet into another5

namespace prefix when used in the result;
with attribute stylesheet-prefix="prefix":5

specifies the prefix used in the stylesheet tree that is being added to the6

result tree by the stylesheet,
has no influence or recognition in the source tree,7

with attribute result-prefix="prefix":5

146 Definitive XSLT and XPath

5.1.2 Documenting stylesheets

http://www.renderx.com

specifies the prefix of the stylesheet tree whose URI is to be used for the6

result tree prefix,
must have this attribute declared in the stylesheet even if no element in the6

stylesheet uses the prefix.

Note in the example below how the XSLT namespace URI cannot be
used for the declaration for the xslo prefix, otherwise the xslo prefixed
elements would be interpreted as XSLT instructions.

Example 5–2 A stylesheet that produces a stylesheet

<?xml version="1.0"?> <!--xsl.xsl-->Line 1

<!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->2

3

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"4

 xmlns:xslo="any-URI" version="1.0">5

6

<xsl:output indent="yes"/>7

8

<xsl:namespace-alias stylesheet-prefix="xslo" 9

 result-prefix="xsl"/>10

11

<xsl:template match="/"> <!--root rule-->12

 <xslo:stylesheet version="1.0">13

 <xslo:template match="/">14

 <html>15

 <p>Hello world</p>16

 </html>17

 </xslo:template>18

 </xslo:stylesheet>19

</xsl:template>20

21

</xsl:stylesheet>22

When this particular stylesheet is run with itself (or any XML file)4

as the source, the XSLT processor will assign the “xslo:” prefix’s
URI used in the result tree with the URI for the “xsl” prefix as
indicated in the <xsl:namespace-alias> instruction, thus using
the XSLT URI when the result tree is serialized as XML markup:

Example 5–3 A stylesheet produced by a stylesheet

<xslo:stylesheet version="1.0" Line 1

xmlns:xslo="http://www.w3.org/1999/XSL/Transform">2

<xslo:template match="/">3

<html>4

<p>Hello world</p>5

</html>6

Namespace protection 5.1.3

5 The XSLT transformation environment 147

http://www.renderx.com

7 </xslo:template>
</xslo:stylesheet>8

When run with itself (or any XML file) as the source, the output4

will be:

Example 5–4 The result produced by the produced stylesheet

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">Line 1

<html>2

3 <p>Hello world</p>
</html>4

5.2 Communicating with the XSLT processor
5.2.1 Serializing the result tree

The <xsl:output> top-level element:

is a request to serialize the result tree as a sequence of bytes.4

The XSLT processor may choose to respect the request, but is not obliged.5

All attributes of <xsl:output> are optional.

The method="method-indication" attribute may take these values:4

method="html"5

uses the HTML vocabulary and SGML markup conventions, namely:6

empty elements,7

attribute minimization,7

built-in character entity referencing (ISO Latin 1),7

the entire set of HTML conventions (you cannot selectively turn on7

only a subset of them);
all conventions are used according to common practice,4

is considered the default in certain result tree conditions;6

the name of the document element node is HTML (case insensitive);7

the null namespace URI is used for the name (i.e.: there is no namespace7

prefix);
any preceding text nodes contain only whitespace,7

method="xml"5

uses arbitrary vocabulary and XML markup conventions, namely:6

empty elements,7

built-in character entity referencing,7

is the default when the default isn’t HTML,6

method="text"5

uses no vocabulary and no lexical or syntactic conventions,6

148 Definitive XSLT and XPath

5.1.3 Namespace protection

http://www.renderx.com

serializes only the text nodes of every element in the result tree,7

outputs all characters in clear text (no entities of any kind),7

is never the default,6

method="prefix:processor-recognized-method-name"5

uses the prefix defined by xmlns:prefix="processor-recognized-URI-ref-6

erence";
uses lexical and syntactic conventions recognized by the XSLT processor;6

in particular, serialization can be arbitrary (it is out of the scope of7

XSLT);
is never the default.6

Attributes related to the method are as follows:4

version="numeric-version"5

specifies the version of the output method,6

omit-xml-declaration="yes" or omit-xml-declaration="no"5

specifies the absence or presence of the XML declaration (if the result tree6

represents a document entity) or the text declaration (if the result tree rep-
resents an external general parsed entity),

standalone="yes" or standalone="no"5

specifies the presence or absence of a standalone document declaration,6

doctype-system="system-identifier"5

specifies the system identifier to use in the DOCTYPE declaration,6

doctype-public="public-identifier"5

specifies the public identifier to use in the DOCTYPE declaration,6

requires doctype-system= to also be specified if the output method is XML.6

Attributes related to the serialized markup syntax are as follows:4

indent="yes"5

asks the XSLT processor (at its discretion) to indent the result “nicely” with6

additional whitespace when using the xml method;
this may have implications for the downstream parsing processes if the7

whitespace is considered significant,
cdata-section-elements="list-of-element-type-names"5

gives a whitespace separated list of element types possibly used in the result,6

specifies those result tree elements whose text content is serialized within6

a CDATA section.

Attributes related to the encoding are as follows:4

encoding="encoding"5

requests (if supported by the processor) the character set encoding output6

of the emitted result tree,
has the value which should match the encoding= pseudo-attribute described6

by the XML Recommendation for the XML declaration,
media-type="media-type"5

specifies the MIME content type (without specifying the charset parame-6

ter).

Serializing the result tree 5.2.1

5 The XSLT transformation environment 149

http://www.renderx.com

5.2.2 Illustration of output methods

Consider a simple XML file nodein.xml created using the 8-bit ISO
character set for Western European languages Latin–1, a.k.a.
ISO–8859–1 (note the copyright symbol seen here is encoded in the
file using the hexadecimal character 0xA9):

Example 5–5 An XML source file with characters sensitive to processing

Line 1 <?xml version="1.0" encoding="iso-8859-1"?>
<p>Test with © and < and & in it</p>2

Figure 5–1 illustrates the node tree that is created by the XSL processor.

Note how the markup used to represent the sensitive XML characters
is lost. The node tree shown would also be created identically by the
following markup:

Example 5–6 The same information using a CDATA section

Line 1 <?xml version="1.0" encoding="iso-8859-1"?>
<p><![CDATA[Test with © and < and & in it]]></p>2

All character values in text nodes are maintained as UCS–2 (Universal
Character Set — Two Octet) characters. The UCS character set is a
32-bit (4 octet) repertoire with a 16-bit (2 octet) repertoire subset
(equivalent to Unicode) that can be serialized as either 16-bit (2 octet)
characters or, using an encoding called UTF–8, as a sequence of 8-bit
(1 octet) characters.

Utilizing an extension element defined in XT providing for multiple
result trees, one can copy the source node tree to each of three result

Illustration of Node Tree CharactersFigure 5–1

150 Definitive XSLT and XPath

5.2.2 Illustration of output methods

http://www.renderx.com

trees, such that each result tree is identical to the source tree, and
interpret each result tree differently:

Example 5–7 Emission of the source tree using three different output methods

<?xml version="1.0"?> <!--nodeout.xsl-->Line 1

<!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->2

<!--XT (see http://www.jclark.com/xml/xt.html)-->3

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"4

 version="1.0"5

 xmlns:xt="http://www.jclark.com/xt"6

 extension-element-prefixes="xt">7

8

<xsl:template match="/">9

 <xt:document method="xml" href="nodeout.xml"10

 omit-xml-declaration="yes">11

 <xsl:copy-of select="."/>12

 </xt:document>13

 <xt:document method="html" href="nodeout.htm">14

 <xsl:copy-of select="."/>15

 </xt:document>16

 <xt:document method="text" href="nodeout.txt">17

 <xsl:copy-of select="."/>18

 </xt:document>19

</xsl:template>20

21

</xsl:stylesheet>22

There is a nuance here regarding the use of the extension element: the
<xt:document> element creates a separate result tree, and is not a result
tree element itself that resides in a single “master” result tree as might
be evident.

The use of method="xml" emits the same nodes using the UCS charac-
ters of the text nodes while using the built-in XML entities where
necessary:

Example 5–8 XML output method emission of sample instance

<p>Test with © and < and & in it</p>

Note the two-character UTF–8 hexadecimal representation of the4

copyright symbol is 0xC2 0xA9 which would both be revealed in a
non-UTF–8 presentation environment such as an ISO–8859–1
Latin–1 environment as follows:

<p>Test with Â© and < and & in it</p>

Illustration of output methods 5.2.2

5 The XSLT transformation environment 151

http://www.renderx.com

The use of method="html" recognizes known built-in HTML entities
and uses the entity references where necessary:

Example 5–9 HTML output method emission of sample instance

<p>Test with © and < and & in it</p>

The use of method="text" ignores all element start and end tags and
puts out the UCS characters of all the text nodes while not using any
built-in entities:

Example 5–10 Text output method emission of sample instance

Test with © and < and & in it

Note again in a non-UTF–8 environment this text file would appear4

as two characters as in the ISO–8859–1 Latin–1 environment:
Test with Â© and < and & in it

5.2.3 Communicating with the outside environment

These instructions are used for communication between the stylesheet
and the XSLT processor and the operator:

stylesheet to operator: <xsl:message>4

it contains an arbitrary message such as —5

status of progress,6

content violation;6

the specific mechanism of communication is not standardized;5

the processor may choose to not support relating the message,5

the content is any template (static or calculated),5

this instruction can contain the terminate="yes" attribute —5

which gives an instruction to stop any further processing of the stylesheet6

and source files,
this instruction allows the stylesheet to report on semantic validation;5

when content has been detected as being incorrect, messages can report6

problems to the operator;
structural well-formedness correctness has already been determined by the6

XML processor inside the XSLT processor;
stylesheet could also use XPath to determine structural validity if the XSLT6

processor does not use a validating XML processor;
this instruction allows the stylesheet to report progress when manipulating5

large data sets,

operator to stylesheet: <xsl:param>4

152 Definitive XSLT and XPath

5.2.2 Illustration of output methods

http://www.renderx.com

it provides an invocation-time parameterized value for a globally scoped bound5

variable;
the specific mechanism of communication is not standardized;5

the processor may choose to not support value specification;5

a default value can be specified should no value be supplied at invocation,5

processor to stylesheet:4

to obtain the value of a system property, use:5

system-property('prefix:property-name')

use XSLT namespace to indicate reserved system properties:5

xsl:version6

returns a decimal number (not a string) of the XSLT processor’s7

implementation level in order to test the level of functionality for a
given stylesheet;

xsl:vendor and xsl:vendor-url6

each returns a string indicating, respectively, the name and URL7

(Uniform Resource Locator — RFC–1738/RFC–1808/RFC–2396)
of the vendor of the executing XSL processor;

use other namespaces to indicate extension system properties:5

xmlns:prefix="processor-recognized-URI-reference"

system-property('prefix:property-name')

the processor returns the empty string for an unrecognized property.6

The following example illustrates how to tell the operator the stylesheet
uses features not supported by the processor.

Example 5–11 An example of utilizing available system properties

 <xsl:choose>Line 1

 <xsl:when test="system-property('xsl:version') >= 2.0">2

 <xsl:feature-of-2.0/>3

 </xsl:when>4

 <xsl:otherwise>5

 <xsl:message terminate="yes">6

Sorry, this stylesheet requires XSLT 2.07

Complain to: '<xsl:value-of 8

 select="system-property('xsl:vendor')"/>'9

at '<xsl:value-of select="system-property('xsl:vendor-url')"/>'.10

 </xsl:message>11

12 </xsl:otherwise>
 </xsl:choose>13

Communicating with the outside environment 5.2.3

5 The XSLT transformation environment 153

http://www.renderx.com

5.2.4 Uncontrolled processes

There is no recommendation-based user or stylesheet control over or
communication available regarding the following processes implement-
ed by the XSLT processor.

Result tree attribute order:4

the XSLT processor may choose to serialize attribute nodes found in the result5

tree in any order.

Result tree serialization instance markup:4

the XSLT processor may choose any way it desires to serialize the content of5

text nodes when the stylesheet does not instruct a given element to be emitted
as a CDATA section —

using XML built-in character entities for markup-sensitive characters,6

using numeric character entities for markup-sensitive characters or characters6

not present in the encoding character set,
using piecemeal CDATA sections;6

any original markup syntax from the source file is lost when the source file is5

abstracted into the source node tree;
other than an entire element emitted as a CDATA section, there is no control5

available in the stylesheet over which serialization methods are used for text
content.

Result tree construction:4

the stylesheet writer is responsible for dictating the final content of the result5

tree;
the XSLT processor can use any means to effect the final result as described in5

the Recommendation without necessarily implementing the prose description
found therein;
the side-effect free nature of the XSLT design (including the inability to change5

the value of bound variables) allows an XSLT processor to process portions of
the input in parallel and combine the intermediate results into the single final
result tree;
the of XSLT allows the processor to choose to not preserve the result node tree5

when serializing the transformed information to an output instance, thus the
result may never actually exist as a complete tree within the processor.

154 Definitive XSLT and XPath

5.2.3 Communicating with the outside environment

http://www.renderx.com

