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Abstract

XPath is a language for addressing parts of an XML document, designed to be used by both XSLT and
XPointer.

Status of this document

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director as a W3C Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from other documents. W3C's role in making the Recommendation is to
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draw attention to the specification and to promote its widespread deployment. This enhances the function-
ality and interoperability of the Web.

The list of known errors in this specification is available at http://www.w3.org/1999/11/REC-xpath-
19991116-errata.

Comments on this specification may be sent to www-xpath-comments@w3.org; archives of the comments
are available.

The English version of this specification is the only normative version. However, for translations of this
document, see http://www.w3.org/Style/XSL/translations.html.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

This specification is joint work of the XSL Working Group and the XML Linking Working Group and so
is part of the W3C Style activity and of the W3C XML activity.
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1. Introduction
XPath is the result of an effort to provide a common syntax and semantics for functionality shared between
XSL Transformations [XSLT] and XPointer [XPointer]. The primary purpose of XPath is to address parts
of an XML [XML] document. In support of this primary purpose, it also provides basic facilities for
manipulation of strings, numbers and booleans. XPath uses a compact, non-XML syntax to facilitate use
of XPath within URIs and XML attribute values. XPath operates on the abstract, logical structure of an
XML document, rather than its surface syntax. XPath gets its name from its use of a path notation as in
URLs for navigating through the hierarchical structure of an XML document.

In addition to its use for addressing, XPath is also designed so that it has a natural subset that can be used
for matching (testing whether or not a node matches a pattern); this use of XPath is described in XSLT.

XPath models an XML document as a tree of nodes. There are different types of nodes, including element
nodes, attribute nodes and text nodes. XPath defines a way to compute a string-value for each type of node.
Some types of nodes also have names. XPath fully supports XML Namespaces [XML Names]. Thus, the
name of a node is modeled as a pair consisting of a local part and a possibly null namespace URI; this is
called an expanded-name. The data model is described in detail in § 5 – Data Model on page 19.

The primary syntactic construct in XPath is the expression. An expression matches the production Expr.
An expression is evaluated to yield an object, which has one of the following four basic types:

- node-set (an unordered collection of nodes without duplicates)
- boolean (true or false)
- number (a floating-point number)
- string (a sequence of UCS characters)

Expression evaluation occurs with respect to a context. XSLT and XPointer specify how the context is
determined for XPath expressions used in XSLT and XPointer respectively. The context consists of:

- a node (the context node)
- a pair of non-zero positive integers (the context position and the context size)
- a set of variable bindings
- a function library
- the set of namespace declarations in scope for the expression

The context position is always less than or equal to the context size.

The variable bindings consist of a mapping from variable names to variable values. The value of a variable
is an object, which can be of any of the types that are possible for the value of an expression, and may also
be of additional types not specified here.

The function library consists of a mapping from function names to functions. Each function takes zero or
more arguments and returns a single result. This document defines a core function library that all XPath
implementations must support (see § 4 – Core Function Library on page 14). For a function in the core
function library, arguments and result are of the four basic types. Both XSLT and XPointer extend XPath
by defining additional functions; some of these functions operate on the four basic types; others operate
on additional data types defined by XSLT and XPointer.

The namespace declarations consist of a mapping from prefixes to namespace URIs.

The variable bindings, function library and namespace declarations used to evaluate a subexpression are
always the same as those used to evaluate the containing expression. The context node, context position,
and context size used to evaluate a subexpression are sometimes different from those used to evaluate the
containing expression. Several kinds of expressions change the context node; only predicates change the
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context position and context size (see § 2.4 – Predicates on page 7). When the evaluation of a kind of
expression is described, it will always be explicitly stated if the context node, context position, and context
size change for the evaluation of subexpressions; if nothing is said about the context node, context position,
and context size, they remain unchanged for the evaluation of subexpressions of that kind of expression.

XPath expressions often occur in XML attributes. The grammar specified in this section applies to the
attribute value after XML 1.0 normalization. So, for example, if the grammar uses the character <, this
must not appear in the XML source as < but must be quoted according to XML 1.0 rules by, for example,
entering it as &lt;. Within expressions, literal strings are delimited by single or double quotation marks,
which are also used to delimit XML attributes. To avoid a quotation mark in an expression being interpreted
by the XML processor as terminating the attribute value the quotation mark can be entered as a character
reference (&quot; or &apos;). Alternatively, the expression can use single quotation marks if the XML
attribute is delimited with double quotation marks or vice-versa.

One important kind of expression is a location path. A location path selects a set of nodes relative to the
context node. The result of evaluating an expression that is a location path is the node-set containing the
nodes selected by the location path. Location paths can recursively contain expressions that are used to
filter sets of nodes. A location path matches the production LocationPath.

In the following grammar, the non-terminals QName and NCName are defined in [XML Names], and S
is defined in [XML]. The grammar uses the same EBNF notation as [XML] (except that grammar symbols
always have initial capital letters).

Expressions are parsed by first dividing the character string to be parsed into tokens and then parsing the
resulting sequence of tokens. Whitespace can be freely used between tokens. The tokenization process is
described in § 3.7 – Lexical Structure on page 13.

2. Location Paths
Although location paths are not the most general grammatical construct in the language (a LocationPath
is a special case of an Expr), they are the most important construct and will therefore be described first.

Every location path can be expressed using a straightforward but rather verbose syntax. There are also a
number of syntactic abbreviations that allow common cases to be expressed concisely. This section will
explain the semantics of location paths using the unabbreviated syntax. The abbreviated syntax will then
be explained by showing how it expands into the unabbreviated syntax (see § 2.5 – Abbreviated Syntax
on page 7).

Here are some examples of location paths using the unabbreviated syntax:

• child::para selects the para element children of the context node

• child::* selects all element children of the context node

• child::text() selects all text node children of the context node

• child::node() selects all the children of the context node, whatever their node type

• attribute::name selects the name attribute of the context node

• attribute::* selects all the attributes of the context node

• descendant::para selects the para element descendants of the context node

• ancestor::div selects all div ancestors of the context node
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• ancestor-or-self::div selects the div ancestors of the context node and, if the context node
is a div element, the context node as well

• descendant-or-self::para selects the para element descendants of the context node and, if
the context node is a para element, the context node as well

• self::para selects the context node if it is a para element, and otherwise selects nothing

• child::chapter/descendant::para selects the para element descendants of the chapter
element children of the context node

• child::*/child::para selects all para grandchildren of the context node

• / selects the document root (which is always the parent of the document element)

• /descendant::para selects all the para elements in the same document as the context node

• /descendant::olist/child::item selects all the item elements that have an olist parent
and that are in the same document as the context node

• child::para[position()=1] selects the first para child of the context node

• child::para[position()=last()] selects the last para child of the context node

• child::para[position()=last()-1] selects the last but one para child of the context node

• child::para[position()>1] selects all the para children of the context node other than the
first para child of the context node

• following-sibling::chapter[position()=1] selects the next chapter sibling of the
context node

• preceding-sibling::chapter[position()=1] selects the previous chapter sibling of
the context node

• /descendant::figure[position()=42] selects the forty-second figure element in the
document

• /child::doc/child::chapter[position()=5]/child::section[position()=2]
selects the second section of the fifth chapter of the doc document element

• child::para[attribute::type="warning"] selects all para children of the context node
that have a type attribute with value warning

• child::para[attribute::type='warning'][position()=5] selects the fifth para
child of the context node that has a type attribute with value warning

• child::para[position()=5][attribute::type="warning"] selects the fifth para
child of the context node if that child has a type attribute with value warning

• child::chapter[child::title='Introduction'] selects the chapter children of the
context node that have one or more title children with string-value equal to Introduction

• child::chapter[child::title] selects the chapter children of the context node that have
one or more title children

• child::*[self::chapter or self::appendix] selects the chapter and appendix
children of the context node

• child::*[self::chapter or self::appendix][position()=last()] selects the
last chapter or appendix child of the context node
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There are two kinds of location path: relative location paths and absolute location paths.

A relative location path consists of a sequence of one or more location steps separated by /. The steps in
a relative location path are composed together from left to right. Each step in turn selects a set of nodes
relative to a context node. An initial sequence of steps is composed together with a following step as follows.
The initial sequence of steps selects a set of nodes relative to a context node. Each node in that set is used
as a context node for the following step. The sets of nodes identified by that step are unioned together.
The set of nodes identified by the composition of the steps is this union. For example,
child::div/child::para selects the para element children of the div element children of the
context node, or, in other words, the para element grandchildren that have div parents.

An absolute location path consists of / optionally followed by a relative location path. A / by itself selects
the root node of the document containing the context node. If it is followed by a relative location path,
then the location path selects the set of nodes that would be selected by the relative location path relative
to the root node of the document containing the context node.

[1] LocationPath ::= RelativeLocationPath
| AbsoluteLocationPath

[15] AbsoluteLocationPath ::= '/' RelativeLocationPath?
| AbbreviatedAbsoluteLocationPath

[31] RelativeLocationPath ::= Step
| RelativeLocationPath '/' Step
| AbbreviatedRelativeLocationPath

2.1. Location Steps
A location step has three parts:

• an axis, which specifies the tree relationship between the nodes selected by the location step and the
context node,

• a node test, which specifies the node type and expanded-name of the nodes selected by the location
step, and

• zero or more predicates, which use arbitrary expressions to further refine the set of nodes selected by
the location step.

The syntax for a location step is the axis name and node test separated by a double colon, followed by zero
or more expressions each in square brackets. For example, in child::para[position()=1], child
is the name of the axis, para is the node test and [position()=1] is a predicate.

The node-set selected by the location step is the node-set that results from generating an initial node-set
from the axis and node-test, and then filtering that node-set by each of the predicates in turn.

The initial node-set consists of the nodes having the relationship to the context node specified by the axis,
and having the node type and expanded-name specified by the node test. For example, a location step
descendant::para selects the para element descendants of the context node: descendant specifies
that each node in the initial node-set must be a descendant of the context; para specifies that each node
in the initial node-set must be an element named para. The available axes are described in § 2.2 – Axes
on page 5. The available node tests are described in § 2.3 – Node Tests on page 6. The meaning of some
node tests is dependent on the axis.
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The initial node-set is filtered by the first predicate to generate a new node-set; this new node-set is then
filtered using the second predicate, and so on. The final node-set is the node-set selected by the location
step. The axis affects how the expression in each predicate is evaluated and so the semantics of a predicate
is defined with respect to an axis. See § 2.4 – Predicates on page 7.

[53] Step ::= AxisSpecifier NodeTest Predicate*
| AbbreviatedStep

[74] AxisSpecifier ::= AxisName '::'
| AbbreviatedAxisSpecifier

2.2. Axes
The following axes are available:

• the child axis contains the children of the context node

• the descendant axis contains the descendants of the context node; a descendant is a child or a child
of a child and so on; thus the descendant axis never contains attribute or namespace nodes

• the parent axis contains the parent of the context node, if there is one

• the ancestor axis contains the ancestors of the context node; the ancestors of the context node consist
of the parent of context node and the parent's parent and so on; thus, the ancestor axis will always
include the root node, unless the context node is the root node

• the following-sibling axis contains all the following siblings of the context node; if the context
node is an attribute node or namespace node, the following-sibling axis is empty

• the preceding-sibling axis contains all the preceding siblings of the context node; if the context
node is an attribute node or namespace node, the preceding-sibling axis is empty

• the following axis contains all nodes in the same document as the context node that are after the
context node in document order, excluding any descendants and excluding attribute nodes and namespace
nodes

• the preceding axis contains all nodes in the same document as the context node that are before the
context node in document order, excluding any ancestors and excluding attribute nodes and namespace
nodes

• the attribute axis contains the attributes of the context node; the axis will be empty unless the
context node is an element

• the namespace axis contains the namespace nodes of the context node; the axis will be empty unless
the context node is an element

• the self axis contains just the context node itself

• the descendant-or-self axis contains the context node and the descendants of the context node

• the ancestor-or-self axis contains the context node and the ancestors of the context node; thus,
the ancestor axis will always include the root node

☞ The ancestor, descendant, following, preceding and self axes partition a document (ignoring
attribute and namespace nodes): they do not overlap and together they contain all the nodes in the document.
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[90] AxisName ::= 'ancestor'
| 'ancestor-or-self'
| 'attribute'
| 'child'
| 'descendant'
| 'descendant-or-self'
| 'following'
| 'following-sibling'
| 'namespace'
| 'parent'
| 'preceding'
| 'preceding-sibling'
| 'self'

2.3. Node Tests
Every axis has a principal node type. If an axis can contain elements, then the principal node type is element;
otherwise, it is the type of the nodes that the axis can contain. Thus,

- For the attribute axis, the principal node type is attribute.
- For the namespace axis, the principal node type is namespace.
- For other axes, the principal node type is element.

A node test that is a QName is true if and only if the type of the node (see § 5 – Data Model on page 19)
is the principal node type and has an expanded-name equal to the expanded-name specified by the QName.
For example, child::para selects the para element children of the context node; if the context node
has no para children, it will select an empty set of nodes. attribute::href selects the href attribute
of the context node; if the context node has no href attribute, it will select an empty set of nodes.

A QName in the node test is expanded into an expanded-name using the namespace declarations from the
expression context. This is the same way expansion is done for element type names in start and end-tags
except that the default namespace declared with xmlns is not used: if the QName does not have a prefix,
then the namespace URI is null (this is the same way attribute names are expanded). It is an error if the
QName has a prefix for which there is no namespace declaration in the expression context.

A node test * is true for any node of the principal node type. For example, child::* will select all element
children of the context node, and attribute::* will select all attributes of the context node.

A node test can have the form NCName:*. In this case, the prefix is expanded in the same way as with a
QName, using the context namespace declarations. It is an error if there is no namespace declaration for
the prefix in the expression context. The node test will be true for any node of the principal type whose
expanded-name has the namespace URI to which the prefix expands, regardless of the local part of the
name.

The node test text() is true for any text node. For example, child::text() will select the text node
children of the context node. Similarly, the node test comment() is true for any comment node, and the
node test processing-instruction() is true for any processing instruction. The processing-
instruction() test may have an argument that is Literal; in this case, it is true for any processing
instruction that has a name equal to the value of the Literal.

A node test node() is true for any node of any type whatsoever.

[134] NodeTest ::= NameTest
| NodeType '(' ')'
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| 'processing-instruction' '(' Literal ')'

2.4. Predicates
An axis is either a forward axis or a reverse axis. An axis that only ever contains the context node or nodes
that are after the context node in document order is a forward axis. An axis that only ever contains the
context node or nodes that are before the context node in document order is a reverse axis. Thus, the
ancestor, ancestor-or-self, preceding, and preceding-sibling axes are reverse axes; all other axes are forward
axes. Since the self axis always contains at most one node, it makes no difference whether it is a forward
or reverse axis. The proximity position of a member of a node-set with respect to an axis is defined to be
the position of the node in the node-set ordered in document order if the axis is a forward axis and ordered
in reverse document order if the axis is a reverse axis. The first position is 1.

A predicate filters a node-set with respect to an axis to produce a new node-set. For each node in the node-
set to be filtered, the PredicateExpr is evaluated with that node as the context node, with the number of
nodes in the node-set as the context size, and with the proximity position of the node in the node-set with
respect to the axis as the context position; if PredicateExpr evaluates to true for that node, the node is
included in the new node-set; otherwise, it is not included.

A PredicateExpr is evaluated by evaluating the Expr and converting the result to a boolean. If the result
is a number, the result will be converted to true if the number is equal to the context position and will be
converted to false otherwise; if the result is not a number, then the result will be converted as if by a call
to the boolean function. Thus a location path para[3] is equivalent to para[position()=3].

[155] Predicate ::= '[' PredicateExpr ']'

[166] PredicateExpr ::= Expr

2.5. Abbreviated Syntax
Here are some examples of location paths using abbreviated syntax:

• para selects the para element children of the context node

• * selects all element children of the context node

• text() selects all text node children of the context node

• @name selects the name attribute of the context node

• @* selects all the attributes of the context node

• para[1] selects the first para child of the context node

• para[last()] selects the last para child of the context node

• */para selects all para grandchildren of the context node

• /doc/chapter[5]/section[2] selects the second section of the fifth chapter of the doc

• chapter//para selects the para element descendants of the chapter element children of the
context node

• //para selects all the para descendants of the document root and thus selects all para elements in
the same document as the context node
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• //olist/item selects all the item elements in the same document as the context node that have
an olist parent

• . selects the context node

• .//para selects the para element descendants of the context node

.. selects the parent of the context node

• ../@lang selects the lang attribute of the parent of the context node

• para[@type="warning"] selects all para children of the context node that have a type attribute
with value warning

• para[@type="warning"][5] selects the fifth para child of the context node that has a type
attribute with value warning

• para[5][@type="warning"] selects the fifth para child of the context node if that child has a
type attribute with value warning

• chapter[title="Introduction"] selects the chapter children of the context node that have
one or more title children with string-value equal to Introduction

• chapter[title] selects the chapter children of the context node that have one or more title
children

• employee[@secretary and @assistant] selects all the employee children of the context
node that have both a secretary attribute and an assistant attribute

The most important abbreviation is that child:: can be omitted from a location step. In effect, child
is the default axis. For example, a location path div/para is short for child::div/child::para.

There is also an abbreviation for attributes: attribute:: can be abbreviated to @. For example, a
l o c a t i o n  p a t h  p a r a [ @ t y p e = " w a r n i n g " ]  i s  s h o r t  f o r
child::para[attribute::type="warning"] and so selects para children with a type attribute
with value equal to warning.

// is short for /descendant-or-self::node()/. For example, //para is short for /descen-
dant-or-self::node()/child::para and so will select any para element in the document (even
a para element that is a document element will be selected by //para since the document element node
is a child of the root node); div//para is short for div/descendant-or-
self::node()/child::para and so will select all para descendants of div children.

☞ The location path //para[1] does not mean the same as the location path /descendant::para[1]. The
latter selects the first descendant para element; the former selects all descendant para elements that are the first
para children of their parents.

A location step of . is short for self::node(). This is particularly useful in conjunction with //. For
example, the location path .//para is short for

self::node()/descendant-or-self::node()/child::para

and so will select all para descendant elements of the context node.

Similarly, a location step of .. is short for parent::node(). For example, ../title is short for
parent::node()/child::title and so will select the title children of the parent of the context
node.

Page 8 of 26 Location Paths
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[175] AbbreviatedAbsoluteLoca-
tionPath

::= '//' RelativeLocationPath

[185] AbbreviatedRelativeLoca-
tionPath

::= RelativeLocationPath '//' Step

[197] AbbreviatedStep ::= '.'
| '..'

[208] AbbreviatedAxisSpecifier ::= '@'?

3. Expressions
3.1. Basics
A VariableReference evaluates to the value to which the variable name is bound in the set of variable
bindings in the context. It is an error if the variable name is not bound to any value in the set of variable
bindings in the expression context.

Parentheses may be used for grouping.

[216] Expr ::= OrExpr

[225] PrimaryExpr ::= VariableReference
| '(' Expr ')'
| Literal
| Number
| FunctionCall

3.2. Function Calls
A FunctionCall expression is evaluated by using the FunctionName to identify a function in the expression
evaluation context function library, evaluating each of the Arguments, converting each argument to the
type required by the function, and finally calling the function, passing it the converted arguments. It is an
error if the number of arguments is wrong or if an argument cannot be converted to the required type. The
result of the FunctionCall expression is the result returned by the function.

An argument is converted to type string as if by calling the string function. An argument is converted to
type number as if by calling the number function. An argument is converted to type boolean as if by calling
the boolean function. An argument that is not of type node-set cannot be converted to a node-set.

[255] FunctionCall ::= FunctionName '(' ( Argument ( ',' Argument )* )? ')'

[271] Argument ::= Expr

3.3. Node-sets
A location path can be used as an expression. The expression returns the set of nodes selected by the path.

The | operator computes the union of its operands, which must be node-sets.
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Predicates are used to filter expressions in the same way that they are used in location paths. It is an error
if the expression to be filtered does not evaluate to a node-set. The Predicate filters the node-set with
respect to the child axis.

☞ The meaning of a Predicate depends crucially on which axis applies. For example, preceding::foo[1] returns
the first foo element in reverse document order, because the axis that applies to the [1] predicate is the preceding
axis; by contrast, (preceding::foo)[1] returns the first foo element in document order, because the axis
that applies to the [1] predicate is the child axis.

The / and // operators compose an expression and a relative location path. It is an error if the expression
does not evaluate to a node-set. The / operator does composition in the same way as when / is used in a
location path. As in location paths, // is short for /descendant-or-self::node()/.

There are no types of objects that can be converted to node-sets.

[280] UnionExpr ::= PathExpr
| UnionExpr '|' PathExpr

[297] PathExpr ::= LocationPath
| FilterExpr
| FilterExpr '/' RelativeLocationPath
| FilterExpr '//' RelativeLocationPath

[327] FilterExpr ::= PrimaryExpr
| FilterExpr Predicate

3.4. Booleans
An object of type boolean can have one of two values, true and false.

An or expression is evaluated by evaluating each operand and converting its value to a boolean as if by
a call to the boolean function. The result is true if either value is true and false otherwise. The right operand
is not evaluated if the left operand evaluates to true.

An and expression is evaluated by evaluating each operand and converting its value to a boolean as if by
a call to the boolean function. The result is true if both values are true and false otherwise. The right
operand is not evaluated if the left operand evaluates to false.

An EqualityExpr (that is not just a RelationalExpr) or a RelationalExpr (that is not just an AdditiveExpr)
is evaluated by comparing the objects that result from evaluating the two operands. Comparison of the
resulting objects is defined in the following three paragraphs. First, comparisons that involve node-sets
are defined in terms of comparisons that do not involve node-sets; this is defined uniformly for =, !=, <=,
<, >= and >. Second, comparisons that do not involve node-sets are defined for = and !=. Third, compar-
isons that do not involve node-sets are defined for <=, <, >= and >.

If both objects to be compared are node-sets, then the comparison will be true if and only if there is a node
in the first node-set and a node in the second node-set such that the result of performing the comparison
on the string-values of the two nodes is true. If one object to be compared is a node-set and the other is a
number, then the comparison will be true if and only if there is a node in the node-set such that the result
of performing the comparison on the number to be compared and on the result of converting the string-
value of that node to a number using the number function is true. If one object to be compared is a node-
set and the other is a string, then the comparison will be true if and only if there is a node in the node-set
such that the result of performing the comparison on the string-value of the node and the other string is
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true. If one object to be compared is a node-set and the other is a boolean, then the comparison will be
true if and only if the result of performing the comparison on the boolean and on the result of converting
the node-set to a boolean using the boolean function is true.

When neither object to be compared is a node-set and the operator is = or !=, then the objects are compared
by converting them to a common type as follows and then comparing them. If at least one object to be
compared is a boolean, then each object to be compared is converted to a boolean as if by applying the
boolean function. Otherwise, if at least one object to be compared is a number, then each object to be
compared is converted to a number as if by applying the number function. Otherwise, both objects to be
compared are converted to strings as if by applying the string function. The = comparison will be true if
and only if the objects are equal; the != comparison will be true if and only if the objects are not equal.
Numbers are compared for equality according to IEEE 754 [IEEE 754]. Two booleans are equal if either
both are true or both are false. Two strings are equal if and only if they consist of the same sequence of
UCS characters.

☞ If $x is bound to a node-set, then $x="foo" does not mean the same as not($x!="foo"): the former is true
if and only if some node in $x has the string-value foo; the latter is true if and only if all nodes in $x have the
string-value foo.

When neither object to be compared is a node-set and the operator is <=, <, >= or >, then the objects are
compared by converting both objects to numbers and comparing the numbers according to IEEE 754. The
< comparison will be true if and only if the first number is less than the second number. The <= comparison
will be true if and only if the first number is less than or equal to the second number. The > comparison
will be true if and only if the first number is greater than the second number. The >= comparison will be
true if and only if the first number is greater than or equal to the second number.

☞ When an XPath expression occurs in an XML document, any < and <= operators must be quoted according to
XML 1.0 rules by using, for example, &lt; and &lt;=. In the following example the value of the test attribute
is an XPath expression:

<xsl:if test="@value &lt; 10">...</xsl:if>

[344] OrExpr ::= AndExpr
| OrExpr 'or' AndExpr

[361] AndExpr ::= EqualityExpr
| AndExpr 'and' EqualityExpr

[378] EqualityExpr ::= RelationalExpr
| EqualityExpr '=' RelationalExpr
| EqualityExpr '!=' RelationalExpr

[403] RelationalExpr ::= AdditiveExpr
| RelationalExpr '<' AdditiveExpr
| RelationalExpr '>' AdditiveExpr
| RelationalExpr '<=' AdditiveExpr
| RelationalExpr '>=' AdditiveExpr

☞ The effect of the above grammar is that the order of precedence is (lowest precedence first):

• or

• and

• =, !=
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• <=, <, >=, >

and the operators are all left associative.

For example, 3 > 2 > 1 is equivalent to (3 > 2) > 1, which evaluates to false.

3.5. Numbers
A number represents a floating-point number. A number can have any double-precision 64-bit format
IEEE 754 value [IEEE 754]. These include a special “Not-a-Number” (NaN) value, positive and negative
infinity, and positive and negative zero. See Section 4.2.3 of [JLS] for a summary of the key rules of the
IEEE 754 standard.

The numeric operators convert their operands to numbers as if by calling the number function.

The + operator performs addition.

The - operator performs subtraction.

☞ Since XML allows - in names, the - operator typically needs to be preceded by whitespace. For example, foo-
bar evaluates to a node-set containing the child elements named foo-bar; foo - bar evaluates to the difference
of the result of converting the string-value of the first foo child element to a number and the result of converting
the string-value of the first bar child to a number.

The div operator performs floating-point division according to IEEE 754.

The mod operator returns the remainder from a truncating division. For example,

• 5 mod 2 returns 1

• 5 mod -2 returns 1

• -5 mod 2 returns -1

• -5 mod -2 returns -1

☞ This is the same as the % operator in Java and ECMAScript.

☞ This is not the same as the IEEE 754 remainder operation, which returns the remainder from a rounding division.

[444] AdditiveExpr ::= MultiplicativeExpr
| AdditiveExpr '+' MultiplicativeExpr
| AdditiveExpr '-' MultiplicativeExpr

[469] MultiplicativeExpr ::= UnaryExpr
| MultiplicativeExpr MultiplyOperator UnaryExpr
| MultiplicativeExpr 'div' UnaryExpr
| MultiplicativeExpr 'mod' UnaryExpr

[505] UnaryExpr ::= UnionExpr
| '-' UnaryExpr
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3.6. Strings
Strings consist of a sequence of zero or more characters, where a character is defined as in the XML Rec-
ommendation [XML]. A single character in XPath thus corresponds to a single Unicode abstract character
with a single corresponding Unicode scalar value (see [Unicode]); this is not the same thing as a 16-bit
Unicode code value: the Unicode coded character representation for an abstract character with Unicode
scalar value greater that U+FFFF is a pair of 16-bit Unicode code values (a surrogate pair). In many pro-
gramming languages, a string is represented by a sequence of 16-bit Unicode code values; implementations
of XPath in such languages must take care to ensure that a surrogate pair is correctly treated as a single
XPath character.

☞ It is possible in Unicode for there to be two strings that should be treated as identical even though they consist of
the distinct sequences of Unicode abstract characters. For example, some accented characters may be represented
in either a precomposed or decomposed form. Therefore, XPath expressions may return unexpected results unless
both the characters in the XPath expression and in the XML document have been normalized into a canonical form.
See [Character Model].

3.7. Lexical Structure
When tokenizing, the longest possible token is always returned.

For readability, whitespace may be used in expressions even though not explicitly allowed by the grammar:
ExprWhitespace may be freely added within patterns before or after any ExprToken.

The following special tokenization rules must be applied in the order specified to disambiguate the
ExprToken grammar:

• If there is a preceding token and the preceding token is not one of @, ::, (, [, , or an Operator, then
a * must be recognized as a MultiplyOperator and an NCName must be recognized as an Operator-
Name.

• If the character following an NCName (possibly after intervening ExprWhitespace) is (, then the
token must be recognized as a NodeType or a FunctionName.

• If the two characters following an NCName (possibly after intervening ExprWhitespace) are ::, then
the token must be recognized as an AxisName.

• Otherwise, the token must not be recognized as a MultiplyOperator, an OperatorName, a NodeType,
a FunctionName, or an AxisName.

[519] ExprToken ::= '(' | ')' | '[' | ']' | '.' | '..' | '@' | ',' | '::'
| NameTest
| NodeType
| Operator
| FunctionName
| AxisName
| Literal
| Number
| VariableReference

[567] Literal ::= '"' [^"]* '"'
| "'" [^']* "'"

[578] Number ::= Digits ('.' Digits?)?
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| '.' Digits

[596] Digits ::= [0-9]+

[604] Operator ::= OperatorName
| MultiplyOperator
| '/' | '//' | '|' | '+' | '-' | '=' | '!=' | '<' | '<=' | '>' | '>='

[621] OperatorName ::= 'and' | 'or' | 'mod' | 'div'

[629] MultiplyOperator ::= '*'

[637] FunctionName ::= QName - NodeType

[651] VariableReference ::= '$' QName

[661] NameTest ::= '*'
| NCName ':' '*'
| QName

[680] NodeType ::= 'comment'
| 'text'
| 'processing-instruction'
| 'node'

[697] ExprWhitespace ::= S

4. Core Function Library
This section describes functions that XPath implementations must always include in the function library
that is used to evaluate expressions.

Each function in the function library is specified using a function prototype, which gives the return type,
the name of the function, and the type of the arguments. If an argument type is followed by a question
mark, then the argument is optional; otherwise, the argument is required.

4.1. Node Set Functions
Function: number last()

The last function returns a number equal to the context size from the expression evaluation context.

Function: number position()

The position function returns a number equal to the context position from the expression evaluation context.

Function: number count(node-set)

The count function returns the number of nodes in the argument node-set.

Function: node-set id(object)

The id function selects elements by their unique ID (see § 5.2.1 – Unique IDs on page 21). When the
argument to id is of type node-set, then the result is the union of the result of applying id to the string-value
of each of the nodes in the argument node-set. When the argument to id is of any other type, the argument
is converted to a string as if by a call to the string function; the string is split into a whitespace-separated
list of tokens (whitespace is any sequence of characters matching the production S); the result is a node-
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set containing the elements in the same document as the context node that have a unique ID equal to any
of the tokens in the list.

• id("foo") selects the element with unique ID foo

• id("foo")/child::para[position()=5] selects the fifth para child of the element with
unique ID foo

Function: string local-name(node-set?)

The local-name function returns the local part of the expanded-name of the node in the argument node-
set that is first in document order. If the argument node-set is empty or the first node has no expanded-
name, an empty string is returned. If the argument is omitted, it defaults to a node-set with the context
node as its only member.

Function: string namespace-uri(node-set?)

The namespace-uri function returns the namespace URI of the expanded-name of the node in the argument
node-set that is first in document order. If the argument node-set is empty, the first node has no expanded-
name, or the namespace URI of the expanded-name is null, an empty string is returned. If the argument
is omitted, it defaults to a node-set with the context node as its only member.

☞ The string returned by the namespace-uri function will be empty except for element nodes and attribute nodes.

Function: string name(node-set?)

The name function returns a string containing a QName representing the expanded-name of the node in
the argument node-set that is first in document order. The QName must represent the expanded-name with
respect to the namespace declarations in effect on the node whose expanded-name is being represented.
Typically, this will be the QName that occurred in the XML source. This need not be the case if there are
namespace declarations in effect on the node that associate multiple prefixes with the same namespace.
However, an implementation may include information about the original prefix in its representation of
nodes; in this case, an implementation can ensure that the returned string is always the same as the QName
used in the XML source. If the argument node-set is empty or the first node has no expanded-name, an
empty string is returned. If the argument it omitted, it defaults to a node-set with the context node as its
only member.

☞ The string returned by the name function will be the same as the string returned by the local-name function except
for element nodes and attribute nodes.

4.2. String Functions
Function: string string(object?)

The string function converts an object to a string as follows:

• A node-set is converted to a string by returning the string-value of the node in the node-set that is first
in document order. If the node-set is empty, an empty string is returned.

• A number is converted to a string as follows

- NaN is converted to the string NaN

- positive zero is converted to the string 0
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- negative zero is converted to the string 0

- positive infinity is converted to the string Infinity

- negative infinity is converted to the string -Infinity

- if the number is an integer, the number is represented in decimal form as a Number with no decimal
point and no leading zeros, preceded by a minus sign (-) if the number is negative

- otherwise, the number is represented in decimal form as a Number including a decimal point with
at least one digit before the decimal point and at least one digit after the decimal point, preceded
by a minus sign (-) if the number is negative; there must be no leading zeros before the decimal
point apart possibly from the one required digit immediately before the decimal point; beyond the
one required digit after the decimal point there must be as many, but only as many, more digits as
are needed to uniquely distinguish the number from all other IEEE 754 numeric values.

• The boolean false value is converted to the string false. The boolean true value is converted to the
string true.

• An object of a type other than the four basic types is converted to a string in a way that is dependent
on that type.

If the argument is omitted, it defaults to a node-set with the context node as its only member.

☞ The string function is not intended for converting numbers into strings for presentation to users. The format-
number function and xsl:number element in [XSLT] provide this functionality.

Function: string concat(string, string, string)

The concat function returns the concatenation of its arguments.

Function: boolean starts-with(string, string)

The starts-with function returns true if the first argument string starts with the second argument string,
and otherwise returns false.

Function: boolean contains(string, string)

The contains function returns true if the first argument string contains the second argument string, and
otherwise returns false.

Function: string substring-before(string, string)

The substring-before function returns the substring of the first argument string that precedes the first
occurrence of the second argument string in the first argument string, or the empty string if the first argument
string does not contain the second argument string. For example, substring-
before("1999/04/01","/") returns 1999.

Function: string substring-after(string, string)

The substring-after function returns the substring of the first argument string that follows the first occurrence
of the second argument string in the first argument string, or the empty string if the first argument string
does not contain the second argument string. For example, substring-after("1999/04/01","/")
returns 04/01, and substring-after("1999/04/01","19") returns 99/04/01.

Function: string substring(string, number, number?)

The substring function returns the substring of the first argument starting at the position specified in the
second argument with length specified in the third argument. For example, substring("12345",2,3)
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returns "234". If the third argument is not specified, it returns the substring starting at the position spec-
ified in the second argument and continuing to the end of the string. For example, sub-
string("12345",2) returns "2345".

More precisely, each character in the string (see § 3.6 – Strings on page 13) is considered to have a numeric
position: the position of the first character is 1, the position of the second character is 2 and so on.

☞ This differs from Java and ECMAScript, in which the String.substring method treats the position of the
first character as 0.

The returned substring contains those characters for which the position of the character is greater than or
equal to the rounded value of the second argument and, if the third argument is specified, less than the
sum of the rounded value of the second argument and the rounded value of the third argument; the com-
parisons and addition used for the above follow the standard IEEE 754 rules; rounding is done as if by a
call to the round function. The following examples illustrate various unusual cases:

• substring("12345", 1.5, 2.6) returns "234"

• substring("12345", 0, 3) returns "12"

• substring("12345", 0 div 0, 3) returns ""

• substring("12345", 1, 0 div 0) returns ""

• substring("12345", -42, 1 div 0) returns "12345"

• substring("12345", -1 div 0, 1 div 0) returns ""

Function: number string-length(string?)

The string-length returns the number of characters in the string (see § 3.6 – Strings on page 13). If the
argument is omitted, it defaults to the context node converted to a string, in other words the string-value
of the context node.

Function: string normalize-space(string?)

The normalize-space function returns the argument string with whitespace normalized by stripping leading
and trailing whitespace and replacing sequences of whitespace characters by a single space. Whitespace
characters are the same as those allowed by the S production in XML. If the argument is omitted, it defaults
to the context node converted to a string, in other words the string-value of the context node.

Function: string translate(string, string, string)

The translate function returns the first argument string with occurrences of characters in the second
argument string replaced by the character at the corresponding position in the third argument string. For
example, translate("bar","abc","ABC") returns the string BAr. If there is a character in the
second argument string with no character at a corresponding position in the third argument string (because
the second argument string is longer than the third argument string), then occurrences of that character in
the first argument string are removed. For example, translate("--aaa--","abc-","ABC")
returns "AAA". If a character occurs more than once in the second argument string, then the first occurrence
determines the replacement character. If the third argument string is longer than the second argument
string, then excess characters are ignored.

☞ The translate function is not a sufficient solution for case conversion in all languages. A future version of XPath
may provide additional functions for case conversion.
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4.3. Boolean Functions
Function: boolean boolean(object)

The boolean function converts its argument to a boolean as follows:

• a number is true if and only if it is neither positive or negative zero nor NaN

• a node-set is true if and only if it is non-empty

• a string is true if and only if its length is non-zero

• an object of a type other than the four basic types is converted to a boolean in a way that is dependent
on that type

Function: boolean not(boolean)

The not function returns true if its argument is false, and false otherwise.

Function: boolean true()

The true function returns true.

Function: boolean false()

The false function returns false.

Function: boolean lang(string)

The lang function returns true or false depending on whether the language of the context node as specified
by xml:lang attributes is the same as or is a sublanguage of the language specified by the argument
string. The language of the context node is determined by the value of the xml:lang attribute on the
context node, or, if the context node has no xml:lang attribute, by the value of the xml:lang attribute
on the nearest ancestor of the context node that has an xml:lang attribute. If there is no such attribute,
then lang returns false. If there is such an attribute, then lang returns true if the attribute value is equal to
the argument ignoring case, or if there is some suffix starting with - such that the attribute value is equal
to the argument ignoring that suffix of the attribute value and ignoring case. For example, lang("en")
would return true if the context node is any of these five elements:

<para xml:lang="en"/>
<div xml:lang="en"><para/></div>
<para xml:lang="EN"/>
<para xml:lang="en-us"/>

4.4. Number Functions
Function: number number(object?)

The number function converts its argument to a number as follows:

• a string that consists of optional whitespace followed by an optional minus sign followed by a Number
followed by whitespace is converted to the IEEE 754 number that is nearest (according to the IEEE
754 round-to-nearest rule) to the mathematical value represented by the string; any other string is
converted to NaN

• boolean true is converted to 1; boolean false is converted to 0

• a node-set is first converted to a string as if by a call to the string function and then converted in the
same way as a string argument
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• an object of a type other than the four basic types is converted to a number in a way that is dependent
on that type

If the argument is omitted, it defaults to a node-set with the context node as its only member.

☞ The number function should not be used for conversion of numeric data occurring in an element in an XML document
unless the element is of a type that represents numeric data in a language-neutral format (which would typically
be transformed into a language-specific format for presentation to a user). In addition, the number function cannot
be used unless the language-neutral format used by the element is consistent with the XPath syntax for a Number.

Function: number sum(node-set)

The sum function returns the sum, for each node in the argument node-set, of the result of converting the
string-values of the node to a number.

Function: number floor(number)

The floor function returns the largest (closest to positive infinity) number that is not greater than the
argument and that is an integer.

Function: number ceiling(number)

The ceiling function returns the smallest (closest to negative infinity) number that is not less than the
argument and that is an integer.

Function: number round(number)

The round function returns the number that is closest to the argument and that is an integer. If there are
two such numbers, then the one that is closest to positive infinity is returned. If the argument is NaN, then
NaN is returned. If the argument is positive infinity, then positive infinity is returned. If the argument is
negative infinity, then negative infinity is returned. If the argument is positive zero, then positive zero is
returned. If the argument is negative zero, then negative zero is returned. If the argument is less than zero,
but greater than or equal to -0.5, then negative zero is returned.

☞ For these last two cases, the result of calling the round function is not the same as the result of adding 0.5 and then
calling the floor function.

5. Data Model
XPath operates on an XML document as a tree. This section describes how XPath models an XML document
as a tree. This model is conceptual only and does not mandate any particular implementation. The relation-
ship of this model to the XML Information Set [XML Infoset] is described in Appendix B – XML Infor-
mation Set Mapping on page 25.

XML documents operated on by XPath must conform to the XML Namespaces Recommendation [XML
Names].

The tree contains nodes. There are seven types of node:

• root nodes

• element nodes

• text nodes

• attribute nodes
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• namespace nodes

• processing instruction nodes

• comment nodes

For every type of node, there is a way of determining a string-value for a node of that type. For some types
of node, the string-value is part of the node; for other types of node, the string-value is computed from the
string-value of descendant nodes.

☞ For element nodes and root nodes, the string-value of a node is not the same as the string returned by the DOM
nodeValue method (see [DOM]).

Some types of node also have an expanded-name, which is a pair consisting of a local part and a namespace
URI. The local part is a string. The namespace URI is either null or a string. The namespace URI specified
in the XML document can be a URI reference as defined in [RFC2396]; this means it can have a fragment
identifier and can be relative. A relative URI should be resolved into an absolute URI during namespace
processing: the namespace URIs of expanded-names of nodes in the data model should be absolute. Two
expanded-names are equal if they have the same local part, and either both have a null namespace URI or
both have non-null namespace URIs that are equal.

There is an ordering, document order, defined on all the nodes in the document corresponding to the order
in which the first character of the XML representation of each node occurs in the XML representation of
the document after expansion of general entities. Thus, the root node will be the first node. Element nodes
occur before their children. Thus, document order orders element nodes in order of the occurrence of their
start-tag in the XML (after expansion of entities). The attribute nodes and namespace nodes of an element
occur before the children of the element. The namespace nodes are defined to occur before the attribute
nodes. The relative order of namespace nodes is implementation-dependent. The relative order of attribute
nodes is implementation-dependent. Reverse document order is the reverse of document order.

Root nodes and element nodes have an ordered list of child nodes. Nodes never share children: if one node
is not the same node as another node, then none of the children of the one node will be the same node as
any of the children of another node. Every node other than the root node has exactly one parent, which is
either an element node or the root node. A root node or an element node is the parent of each of its child
nodes. The descendants of a node are the children of the node and the descendants of the children of the
node.

5.1. Root Node
The root node is the root of the tree. A root node does not occur except as the root of the tree. The element
node for the document element is a child of the root node. The root node also has as children processing
instruction and comment nodes for processing instructions and comments that occur in the prolog and after
the end of the document element.

The string-value of the root node is the concatenation of the string-values of all text node descendants of
the root node in document order.

The root node does not have an expanded-name.

5.2. Element Nodes
There is an element node for every element in the document. An element node has an expanded-name
computed by expanding the QName of the element specified in the tag in accordance with the XML
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Namespaces Recommendation [XML Names]. The namespace URI of the element's expanded-name will
be null if the QName has no prefix and there is no applicable default namespace.

☞ In the notation of Appendix A.3 of [XML Names], the local part of the expanded-name corresponds to the type
attribute of the ExpEType element; the namespace URI of the expanded-name corresponds to the ns attribute of
the ExpEType element, and is null if the ns attribute of the ExpEType element is omitted.

The children of an element node are the element nodes, comment nodes, processing instruction nodes and
text nodes for its content. Entity references to both internal and external entities are expanded. Character
references are resolved.

The string-value of an element node is the concatenation of the string-values of all text node descendants
of the element node in document order.

5.2.1. Unique IDs

An element node may have a unique identifier (ID). This is the value of the attribute that is declared in
the DTD as type ID. No two elements in a document may have the same unique ID. If an XML processor
reports two elements in a document as having the same unique ID (which is possible only if the document
is invalid) then the second element in document order must be treated as not having a unique ID.

☞ If a document does not have a DTD, then no element in the document will have a unique ID.

5.3. Attribute Nodes
Each element node has an associated set of attribute nodes; the element is the parent of each of these
attribute nodes; however, an attribute node is not a child of its parent element.

☞ This is different from the DOM, which does not treat the element bearing an attribute as the parent of the attribute
(see [DOM]).

Elements never share attribute nodes: if one element node is not the same node as another element node,
then none of the attribute nodes of the one element node will be the same node as the attribute nodes of
another element node.

☞ The = operator tests whether two nodes have the same value, not whether they are the same node. Thus attributes
of two different elements may compare as equal using =, even though they are not the same node.

A defaulted attribute is treated the same as a specified attribute. If an attribute was declared for the element
type in the DTD, but the default was declared as #IMPLIED, and the attribute was not specified on the
element, then the element's attribute set does not contain a node for the attribute.

Some attributes, such as xml:lang and xml:space, have the semantics that they apply to all elements
that are descendants of the element bearing the attribute, unless overridden with an instance of the same
attribute on another descendant element. However, this does not affect where attribute nodes appear in the
tree: an element has attribute nodes only for attributes that were explicitly specified in the start-tag or
empty-element tag of that element or that were explicitly declared in the DTD with a default value.

An attribute node has an expanded-name and a string-value. The expanded-name is computed by
expanding the QName specified in the tag in the XML document in accordance with the XML Namespaces
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Recommendation [XML Names]. The namespace URI of the attribute's name will be null if the QName
of the attribute does not have a prefix.

☞ In the notation of Appendix A.3 of [XML Names], the local part of the expanded-name corresponds to the name
attribute of the ExpAName element; the namespace URI of the expanded-name corresponds to the ns attribute of
the ExpAName element, and is null if the ns attribute of the ExpAName element is omitted.

An attribute node has a string-value. The string-value is the normalized value as specified by the XML
Recommendation [XML]. An attribute whose normalized value is a zero-length string is not treated specially:
it results in an attribute node whose string-value is a zero-length string.

☞ It is possible for default attributes to be declared in an external DTD or an external parameter entity. The XML
Recommendation does not require an XML processor to read an external DTD or an external parameter unless it
is validating. A stylesheet or other facility that assumes that the XPath tree contains default attribute values declared
in an external DTD or parameter entity may not work with some non-validating XML processors.

There are no attribute nodes corresponding to attributes that declare namespaces (see [XML Names]).

5.4. Namespace Nodes
Each element has an associated set of namespace nodes, one for each distinct namespace prefix that is in
scope for the element (including the xml prefix, which is implicitly declared by the XML Namespaces
Recommendation [XML Names]) and one for the default namespace if one is in scope for the element.
The element is the parent of each of these namespace nodes; however, a namespace node is not a child of
its parent element. Elements never share namespace nodes: if one element node is not the same node as
another element node, then none of the namespace nodes of the one element node will be the same node
as the namespace nodes of another element node. This means that an element will have a namespace node:

• for every attribute on the element whose name starts with xmlns:;

• for every attribute on an ancestor element whose name starts xmlns: unless the element itself or a
nearer ancestor redeclares the prefix;

• for an xmlns attribute, if the element or some ancestor has an xmlns attribute, and the value of the
xmlns attribute for the nearest such element is non-empty

☞ An attribute xmlns="" “undeclares” the default namespace (see [XML Names]).

A namespace node has an expanded-name: the local part is the namespace prefix (this is empty if the
namespace node is for the default namespace); the namespace URI is always null.

The string-value of a namespace node is the namespace URI that is being bound to the namespace prefix;
if it is relative, it must be resolved just like a namespace URI in an expanded-name.

5.5. Processing Instruction Nodes
There is a processing instruction node for every processing instruction, except for any processing instruction
that occurs within the document type declaration.

A processing instruction has an expanded-name: the local part is the processing instruction's target; the
namespace URI is null. The string-value of a processing instruction node is the part of the processing
instruction following the target and any whitespace. It does not include the terminating ?>.
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☞ The XML declaration is not a processing instruction. Therefore, there is no processing instruction node corresponding
to the XML declaration.

5.6. Comment Nodes
There is a comment node for every comment, except for any comment that occurs within the document
type declaration.

The string-value of comment is the content of the comment not including the opening <!-- or the closing
-->.

A comment node does not have an expanded-name.

5.7. Text Nodes
Character data is grouped into text nodes. As much character data as possible is grouped into each text
node: a text node never has an immediately following or preceding sibling that is a text node. The string-
value of a text node is the character data. A text node always has at least one character of data.

Each character within a CDATA section is treated as character data. Thus, <![CDATA[<]]> in the source
document will treated the same as &lt;. Both will result in a single < character in a text node in the tree.
Thus, a CDATA section is treated as if the <![CDATA[ and ]]> were removed and every occurrence of
< and & were replaced by &lt; and &amp; respectively.

☞ When a text node that contains a < character is written out as XML, the < character must be escaped by, for
example, using &lt;, or including it in a CDATA section.

Characters inside comments, processing instructions and attribute values do not produce text nodes. Line-
endings in external entities are normalized to #xA as specified in the XML Recommendation [XML].

A text node does not have an expanded-name.

6. Conformance
XPath is intended primarily as a component that can be used by other specifications. Therefore, XPath
relies on specifications that use XPath (such as [XPointer] and [XSLT]) to specify criteria for conformance
of implementations of XPath and does not define any conformance criteria for independent implementations
of XPath.

Appendix A. References
A.1. Normative References
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Institute of Electrical and Electronics Engineers. IEEE Standard for Binary Floating-Point Arith-
metic. ANSI/IEEE Std 754-1985.
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World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C Recommendation.
See http://www.w3.org/TR/1998/REC-xml-19980210

XML Names

World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.org/TR/REC-xml-names

A.2. Other References
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World Wide Web Consortium. Character Model for the World Wide Web. W3C Working Draft.
See http://www.w3.org/TR/WD-charmod

DOM

World Wide Web Consortium. Document Object Model (DOM) Level 1 Specification. W3C
Recommendation. See http://www.w3.org/TR/REC-DOM-Level-1

JLS

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. See
http://java.sun.com/docs/books/jls/index.html.

ISO/IEC 10646

ISO (International Organization for Standardization). ISO/IEC 10646-1:1993, Information tech-
nology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic
Multilingual Plane. International Standard. See http://www.iso.ch/cate/d18741.html.

TEI

C.M. Sperberg-McQueen, L. Burnard Guidelines for Electronic Text Encoding and Interchange.
See http://etext.virginia.edu/TEI.html.

Unicode

Unicode Consortium. The Unicode Standard. See http://www.unicode.org/unicode/standard/stan-
dard.html.

XML Infoset

World Wide Web Consortium. XML Information Set. W3C Working Draft. See
http://www.w3.org/TR/xml-infoset

XPointer

World Wide Web Consortium. XML Pointer Language (XPointer). W3C Working Draft. See
http://www.w3.org/TR/WD-xptr

Page 24 of 26 References

Rendered from XML to PDF by XEP - www.RenderX.com XSL to PDF and XSL to Postscript formatter

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/WD-charmod
http://www.w3.org/TR/REC-DOM-Level-1
http://java.sun.com/docs/books/jls/index.html
http://www.iso.ch/cate/d18741.html
http://etext.virginia.edu/TEI.html
http://www.unicode.org/unicode/standard/standard.html
http://www.unicode.org/unicode/standard/standard.html
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/WD-xptr
http://www.renderx.com


XQL

J. Robie, J. Lapp, D. Schach. XML Query Language (XQL). See
http://www.w3.org/TandS/QL/QL98/pp/xql.html

XSLT

World Wide Web Consortium. XSL Transformations (XSLT). W3C Recommendation. See
http://www.w3.org/TR/xslt

Appendix B. XML Information Set Mapping (Non-Normative)
The nodes in the XPath data model can be derived from the information items provided by the XML
Information Set [XML Infoset] as follows:

☞ A new version of the XML Information Set Working Draft, which will replace the May 17 version, was close to
completion at the time when the preparation of this version of XPath was completed and was expected to be released
at the same time or shortly after the release of this version of XPath. The mapping is given for this new version of
the XML Information Set Working Draft. If the new version of the XML Information Set Working has not yet been
released, W3C members may consult the internal Working Group version 
http://www.w3.org/XML/Group/1999/09/WD-xml-infoset-19990915.html (members only).

• The root node comes from the document information item. The children of the root node come from
the children and children - comments properties.

• An element node comes from an element information item. The children of an element node come
from the children and children - comments properties. The attributes of an element node come from
the attributes property. The namespaces of an element node come from the in-scope namespaces
property. The local part of the expanded-name of the element node comes from the local name property.
The namespace URI of the expanded-name of the element node comes from the namespace URI
property. The unique ID of the element node comes from the children property of the attribute informa-
tion item in the attributes property that has an attribute type property equal to ID.

• An attribute node comes from an attribute information item. The local part of the expanded-name of
the attribute node comes from the local name property. The namespace URI of the expanded-name of
the attribute node comes from the namespace URI property. The string-value of the node comes from
concatenating the character code property of each member of the children property.

• A text node comes from a sequence of one or more consecutive character information items. The string-
value of the node comes from concatenating the character code property of each of the character
information items.

• A processing instruction node comes from a processing instruction information item. The local part of
the expanded-name of the node comes from the target property. (The namespace URI part of the
expanded-name of the node is null.) The string-value of the node comes from the content property.
There are no processing instruction nodes for processing instruction items that are children of document
type declaration information item.

• A comment node comes from a comment information item. The string-value of the node comes from
the content property. There are no comment nodes for comment information items that are children of
document type declaration information item.
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• A namespace node comes from a namespace declaration information item. The local part of the
expanded-name of the node comes from the prefix property. (The namespace URI part of the expanded-
name of the node is null.) The string-value of the node comes from the namespace URI property.
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