
XSL Formatting Objects in XEP 3.0
Abstract

This document describes the implementation of XSL Formatting Objects in XEP — an XSL Engine for
PDF developed by RenderX, Inc, version 3.0. It lists all supported formatting objects and their properties,
provides information about fallbacks for unsupported objects, and discusses details of XSL spec interpre-
tation adopted in the engine.

Table of Contents
1. XSL FO Support Summary ... 1

1.1. Formatting objects supported by XEP 3.0 ... 2
1.2. Formatting properties supported by XEP 3.0 .. 4
1.3. Notes on Formatting Objects Implementation .. 14
1.4. Supported Expressions .. 15

2. Non-Conformance Issues .. 16
3. Extensions to the XSL 1.0 Recommendation .. 18

3.1. Document Information .. 18
3.2. Document Outline (Bookmarks) ... 18
3.3. Indexes ... 19
3.4. Flow sections ... 19
3.5. Background Image Scaling ... 20

4. Graphic Formats .. 20
4.1. Bitmap Graphics .. 20
4.2. Vector Graphics ... 21

5. Fonts and Internationalization ... 21
5.1. Font Formats .. 21

5.1.1. Standard Adobe Fonts ... 22
5.1.1.1. Latin Adobe Fonts ... 22
5.1.1.2. Standard Fonts for CJK Versions of Acrobat 22

5.1.2. PostScript Type 1 fonts ... 22
5.1.3. TrueType Fonts ... 23

5.2. Line Breaking Algorithm .. 23
5.3. Bidirectionality .. 23
5.4. Hyphenation .. 24

1. XSL FO Support Summary
XEP 3.0 implements Extensible Stylesheet Language version 1.0 as specified in XSL 1.0 Recommendation
of October 15, 2001.

Page 1 of 24

http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/2001/REC-xsl-20011015/

1.1. Formatting objects supported by XEP 3.0

§ Object Name Implemented

6.4.2 ‹fo:root› Yes

6.4.3 ‹fo:declarations› No

6.4.4 ‹fo:color-profile› No

6.4.5 ‹fo:page-sequence› Yes

6.4.6 ‹fo:layout-master-set› Yes

6.4.7 ‹fo:page-sequence-master› Yes

6.4.8 ‹fo:single-page-master-reference› Yes

6.4.9 ‹fo:repeatable-page-master-reference› Yes

6.4.10 ‹fo:repeatable-page-master-alternatives› Yes

6.4.11 ‹fo:conditional-page-master-reference› Yes

6.4.12 ‹fo:simple-page-master› Yes

6.4.13 ‹fo:region-body› Yes

6.4.14 ‹fo:region-before› Yes

6.4.15 ‹fo:region-after› Yes

6.4.16 ‹fo:region-start› Yes

6.4.17 ‹fo:region-end› Yes

6.4.18 ‹fo:flow› Yes

6.4.19 ‹fo:static-content› Yes

6.4.20 ‹fo:title› No

6.5.2 ‹fo:block› Yes

6.5.3 ‹fo:block-container› Yes

6.6.2 ‹fo:bidi-override› Yes

6.6.3 ‹fo:character› Yes

6.6.4 ‹fo:initial-property-set› Yes

6.6.5 ‹fo:external-graphic› No

Page 2 of 24

§ Object Name Implemented

6.6.6 ‹fo:instream-foreign-object› Yes1

6.6.7 ‹fo:inline› Yes

6.6.8 ‹fo:inline-container› No2

6.6.9 ‹fo:leader› Yes3

6.6.10 ‹fo:page-number› Yes

6.6.11 ‹fo:page-number-citation› Yes

6.7.2 ‹fo:table-and-caption› Yes

6.7.3 ‹fo:table› Yes4

6.7.4 ‹fo:table-column› Yes

6.7.5 ‹fo:table-caption› Yes

6.7.6 ‹fo:table-header› Yes5

6.7.7 ‹fo:table-footer› Yes6

6.7.8 ‹fo:table-body› Yes

6.7.9 ‹fo:table-row› Yes

6.7.10 ‹fo:table-cell› Yes

6.8.2 ‹fo:list-block› Yes

6.8.3 ‹fo:list-item› Yes

6.8.4 ‹fo:list-item-body› Yes

6.8.5 ‹fo:list-item-label› Yes

6.9.2 ‹fo:basic-link› Yes

6.9.3 ‹fo:multi-switch› -

1 Repertory of elements supported inside ‹fo:instream-foreign-object› depends on availability of additional modules.
Core XEP 3.0 distribution does not include any handler for ‹fo:instream-foreign-object›.

2 All contents is placed inline.

3 In this version, only plain text can be put inside leaders with leader-pattern="use-content".

4 Table support is incomplete; see notes below.

5 Repeatable table headers work reliably only if column breaks are disabled within table cells; see comments below.

6 Repeatable table footers are not implemented: the footer is drawn once at the end of the table.

Page 3 of 24

§ Object Name Implemented

6.9.4 ‹fo:multi-case› -

6.9.5 ‹fo:multi-toggle› -

6.9.6 ‹fo:multi-properties› -

6.9.7 ‹fo:multi-property-set› -

6.10.2 ‹fo:float› Yes7

6.10.3 ‹fo:footnote› Yes8

6.10.4 ‹fo:footnote-body› Yes

6.11.2 ‹fo:wrapper› Yes

6.11.3 ‹fo:marker› Yes9

6.11.4 ‹fo:retrieve-marker› Yes

1.2. Formatting properties supported by XEP 3.0

§ Property Name Implemented

7.4.1 source-document No

7.4.2 role No

7.5.1 absolute-position Yes10

7.5.2 top Yes

7.5.3 right Yes

7.5.4 bottom Yes

7.5.5 left Yes

7.6.1 azimuth -

7.6.2 cue-after -

7.6.3 cue-before -

7.6.4 elevation -

7 Top-floats (float="before") area is drawn on top of the following page.

8 In a multi-column layout, footnotes are placed at the bottom of each column; see discussion below.

9 In the current version, markers cannot be specified as children of ‹fo:wrapper›.

10 absolute-position="fixed" works on ‹fo:block-container› only.

Page 4 of 24

§ Property Name Implemented

7.6.5 pause-after -

7.6.6 pause-before -

7.6.7 pitch -

7.6.8 pitch-range -

7.6.9 play-during -

7.6.10 richness -

7.6.11 speak -

7.6.12 speak-header -

7.6.13 speak-numeral -

7.6.14 speak-punctuation -

7.6.15 speech-rate -

7.6.16 stress -

7.6.17 voice-family -

7.6.18 volume -

7.7.1 background-attachment Yes

7.7.2 background-color Yes

7.7.3 background-image Yes

7.7.4 background-repeat Yes

7.7.5 background-position-horizontal Yes11

7.7.6 background-position-vertical Yes11

7.7.7 border-before-color Yes

7.7.8 border-before-style Yes

7.7.9 border-before-width Yes

7.7.10 border-after-color Yes

7.7.11 border-after-style Yes

7.7.12 border-after-width Yes

7.7.13 border-start-color Yes

11 When the background image is repeated along an axis, its offset on this axis is ignored.

Page 5 of 24

§ Property Name Implemented

7.7.14 border-start-style Yes

7.7.15 border-start-width Yes

7.7.16 border-end-color Yes

7.7.17 border-end-style Yes

7.7.18 border-end-width Yes

7.7.19 border-top-color Yes

7.7.20 border-top-style Yes

7.7.21 border-top-width Yes

7.7.22 border-bottom-color Yes

7.7.23 border-bottom-style Yes

7.7.24 border-bottom-width Yes

7.7.25 border-left-color Yes

7.7.26 border-left-style Yes

7.7.27 border-left-width Yes

7.7.28 border-right-color Yes

7.7.29 border-right-style Yes

7.7.30 border-right-width Yes

7.7.31 padding-before Yes

7.7.32 padding-after Yes

7.7.33 padding-start Yes

7.7.34 padding-end Yes

7.7.35 padding-top Yes

7.7.36 padding-bottom Yes

7.7.37 padding-left Yes

7.7.38 padding-right Yes

7.8.2 font-family Yes12

12 Multiple fonts inside font-family are not supported. See note to font-selection-strategy property.

Page 6 of 24

§ Property Name Implemented

7.8.3 font-selection-strategy No13

7.8.4 font-size Yes

7.8.5 font-stretch Yes

7.8.6 font-size-adjust Yes

7.8.7 font-style Yes

7.8.8 font-variant No

7.8.9 font-weight Yes

7.9.1 country No

7.9.2 language Yes

7.9.3 script No

7.9.4 hyphenate Yes

7.9.5 hyphenation-character Yes

7.9.6 hyphenation-push-character-count Yes

7.9.7 hyphenation-remain-character-count Yes

7.10.1 margin-top Yes

7.10.2 margin-bottom Yes

7.10.3 margin-left Yes

7.10.4 margin-right Yes

7.10.5 space-before Yes

7.10.6 space-after Yes14

7.10.7 start-indent Yes

7.10.8 end-indent Yes

7.11.1 space-end Yes

7.11.2 space-start Yes

13 Font selection algorithm does not look for availability of glyphs in the font. If you specify multiple choices in
the font-family attribute, the first one that is registered in the system will be selected; if a glyph misses from the
font, no attempt will be made to recover by trying alternative families (and the glyph will be replaced by a space).
Care should be taken to ensure that all used glyphs are covered by the current font.

14 space-after.conditionality="discard" is not implemented, fallback value is "retain".

Page 7 of 24

§ Property Name Implemented

7.12.1 relative-position No

7.13.1 alignment-adjust Yes

7.13.2 alignment-baseline Yes

7.13.3 baseline-shift Yes

7.13.4 display-align Yes

7.13.5 dominant-baseline Yes

7.13.6 relative-align No

7.14.1 block-progression-dimension Yes

7.14.2 content-height Yes

7.14.3 content-width Yes

7.14.4 height Yes15

7.14.5 inline-progression-dimension Yes

7.14.6 max-height No

7.14.7 max-width No

7.14.8 min-height No

7.14.9 min-width No

7.14.10 scaling Yes

7.14.11 scaling-method No

7.14.12 width Yes16

7.15.1 hyphenation-keep No

7.15.2 hyphenation-ladder-count No

7.15.3 last-line-end-indent Yes

7.15.4 line-height Yes

7.15.5 line-height-shift-adjustment Yes

7.15.6 line-stacking-strategy Yes

15 Supported only on table rows and block containers. Not supported on images (‹fo:external-graphic› and
‹fo:external-foreign-object›).

16 Supported only on block containers. Not supported on images (‹fo:external-graphic› and ‹fo:external-foreign-
object›).

Page 8 of 24

§ Property Name Implemented

7.15.7 linefeed-treatment Yes17

7.15.8 white-space-treatment Yes18

7.15.9 text-align Yes19

7.15.10 text-align-last Yes

7.15.11 text-indent Yes

7.15.12 white-space-collapse Yes20

7.15.13 wrap-option Yes

7.16.1 character Yes

7.16.2 letter-spacing Yes

7.16.3 suppress-at-line-break No

7.16.4 text-decoration Yes

7.16.5 text-shadow No

7.16.6 text-transform Yes21

7.16.7 treat-as-word-space No

7.16.8 word-spacing Yes

7.17.1 color Yes

7.17.2 color-profile-name No

7.17.3 rendering-intent No

7.18.1 clear Yes

7.18.2 float Yes

17 Value "treat-as-zero-width-space" for linefeed-treatment is not implemented. This property doesn't work on
inlines.

18 Values "ignore-if-before-linefeed", "ignore-if-after-linefeed", "ignore-if-surrounding-linefeed" for white-space-
treatment are not implemented. Value "preserve" behaves like "ignore-if-surrounding-linefeed". This property
doesn't work on inlines.

19 ‹string› values for text-align are not implemented.

20 This property doesn't work on inlines.

21 To transform a Unicode character to uppercase/lowercase, XEP uses Java methods Character.toUpperCase()/Char-
acter.toLowerCase(). In order for this property to work as expected, you should use correct Unicode values for
glyphs in your fonts, and set up locale information in your Java machine properly.

Page 9 of 24

§ Property Name Implemented

7.18.3 intrusion-displace Yes22

7.19.1 break-after Yes

7.19.2 break-before Yes

7.19.3 keep-together Yes23

7.19.4 keep-with-next Yes23

7.19.5 keep-with-previous Yes23

7.19.6 orphans Yes

7.19.7 widows Yes

7.20.1 clip No

7.20.2 overflow No

7.20.3 reference-orientation Yes

7.20.4 span Yes

7.21.1 leader-alignment No

7.21.2 leader-pattern Yes

7.21.3 leader-pattern-width Yes

7.21.4 leader-length Yes

7.21.5 rule-style Yes

7.21.6 rule-thickness Yes

7.22.1 active-state -

7.22.2 auto-restore -

7.22.3 case-name -

7.22.4 case-title -

7.22.5 destination-placement-offset -

7.22.6 external-destination Yes24

22 "indent" value is not implemented.

23 .within-page component is unsupported; it is mapped to .within-column. Only "auto" and "always" values are
recognized properly: numeric values are treated as "always".

24 All external links are treated as URLs, and open in a browser.

Page 10 of 24

§ Property Name Implemented

7.22.7 indicate-destination -

7.22.8 internal-destination Yes

7.22.9 show-destination -

7.22.10 starting-state -

7.22.11 switch-to -

7.22.12 target-presentation-context -

7.22.13 target-processing-context -

7.22.14 target-stylesheet -

7.23.1 marker-class-name Yes

7.23.2 retrieve-class-name Yes

7.23.3 retrieve-position Yes

7.23.4 retrieve-boundary Yes

7.24.1 format Yes

7.24.2 grouping-separator No

7.24.3 grouping-size No

7.24.4 letter-value No

7.25.1 blank-or-not-blank Yes

7.25.2 column-count Yes

7.25.3 column-gap Yes

7.25.4 extent Yes

7.25.5 flow-name Yes

7.25.6 force-page-count Yes

7.25.7 initial-page-number Yes

7.25.8 master-name Yes

7.25.9 master-reference Yes

7.25.10 maximum-repeats Yes

7.25.11 media-usage No

7.25.12 odd-or-even Yes

7.25.13 page-height Yes

Page 11 of 24

§ Property Name Implemented

7.25.14 page-position Yes

7.25.15 page-width Yes

7.25.16 precedence Yes

7.25.17 region-name Yes

7.26.1 border-after-precedence No

7.26.2 border-before-precedence No

7.26.3 border-collapse No25

7.26.4 border-end-precedence No

7.26.5 border-separation Yes

7.26.6 border-start-precedence No

7.26.7 caption-side Yes26

7.26.8 column-number Yes

7.26.9 column-width Yes

7.26.10 empty-cells No27

7.26.11 ends-row Yes

7.26.12 number-columns-repeated Yes

7.26.13 number-columns-spanned Yes

7.26.14 number-rows-spanned Yes

7.26.15 starts-row Yes

7.26.16 table-layout No28

7.26.17 table-omit-footer-at-break No

25 border-collapse has a fixed value of "separate".

26 Only "before" and "after" values are implemented: caption-side="start" falls back to "before", and caption-
side="end" falls back to "after".

27 In the current implementation, all cells present in the source document are shown regardless of their content being
empty; cells not present in the source aren't visible at all.

28 table-layout has a fixed value of "fixed".

Page 12 of 24

§ Property Name Implemented

7.26.18 table-omit-header-at-break Yes29

7.27.1 direction Yes

7.27.2 glyph-orientation-horizontal No

7.27.3 glyph-orientation-vertical No

7.27.4 text-altitude Yes

7.27.5 text-depth Yes

7.27.6 unicode-bidi Yes30

7.27.7 writing-mode Yes31

7.28.1 content-type Yes

7.28.2 id Yes

7.28.3 provisional-label-separation Yes

7.28.4 provisional-distance-between-starts Yes

7.28.5 ref-id Yes

7.28.6 score-spaces No

7.28.7 src Yes

7.28.8 visibility No

7.28.9 z-index No

7.29.1 background Yes

7.29.2 background-position Yes

7.29.3 border Yes

7.29.4 border-bottom Yes

7.29.5 border-color Yes

7.29.6 border-left Yes

7.29.7 border-right Yes

29 In the current implementation, repeatable table headers can be used reliably only if page breaks are disabled
within cells; see comments about ‹fo:table-header› implementation.

30 Bidi implementation differs from Unicode Bidi algorithm: any markup element opens a new level of embedding.
Consequently, unicode-bidi="normal" is not supported (treated as "embed"); see detailed discussion below.

31 Only "lr-tb" and "rl-tb" values are supported. All other values are treated as "lr-tb".

Page 13 of 24

§ Property Name Implemented

7.29.8 border-style Yes

7.29.9 border-spacing Yes

7.29.10 border-top Yes

7.29.11 border-width Yes

7.29.12 cue -

7.29.13 font Yes

7.29.14 margin Yes

7.29.15 padding Yes

7.29.16 page-break-after Yes

7.29.17 page-break-before Yes

7.29.18 page-break-inside Yes

7.29.19 pause -

7.29.20 position Yes

7.29.21 size Yes

7.29.22 vertical-align Yes

7.29.23 white-space Yes

7.29.24 xml:lang No

1.3. Notes on Formatting Objects Implementation
‹fo:bidi-override›

In the currrent implementation of bidi algorithm, any markup element opens a new level of
embedding. Consequently, unicode-bidi="normal" is not supported: ‹fo:bidi-override› behaves as
if unicode-bidi="embed" were specified.

‹fo:inline-container›

Unsupported; contents are placed inline.

‹fo:multi-switch›
‹fo:multi-case›
‹fo:multi-toggle›
‹fo:multi-properties›
‹fo:multi-property-set›

Unsupported; contents are ignored. These elements deal with interactivity. PDF/PostScript being
intrinsically static formats, none of them is applicable.

Page 14 of 24

‹fo:footnote›

Footnotes are placed inside a column (see notice below about conformance).

‹fo:footnote-body› inherits properties from its ‹fo:flow› ancestor, disregarding all intermediate
parents (see notice about conformance).

‹fo:float›

Like footnotes, before-floats are placed inside a column (see notice below about conformance).
The before-float appears on the top of the column next to the current one.

‹fo:float› inherits properties from its ‹fo:flow› ancestor, disregarding all intermediate parents (see
notice about conformance).

‹fo:table›

Table support has the following limitations:

• only fixed table layout is implemented;

• only separate borders model is implemented;

• only table headers can be repeated at page breaks.

‹fo:table-header›

Repeatable table header is implemented in a temporary, not conformant style: it is inserted after
all cells that may be pending from the previous column, and not on the top of the page. This means
that it only produces acceptable visual results when all cells have a keep-together.within-col-

umn="always" attribute.

‹fo:table-footer›

Table footer repetition is not implemented. The element contents is repeated once at the end of
table.

‹fo:table-caption›

Only "before" and "after" captions are implemented. Side captions are treated as follows: caption-

side="start" falls back to "before", and caption-side="end" falls back to "after".

‹fo:leader›

In this version, leaders with leader-pattern="use-content" can take only plain text inside; all for-
matting will be lost.

‹fo:marker›

This version cannot process markers specified as children of a ‹fo:wrapper›.

1.4. Supported Expressions
XEP 3.0 implements a subset of XSL expressions algebra. The following operators and functions are rec-
ognized:

• Arithmetical operators: +, -, *, div, mod

• floor()

• ceiling()

Page 15 of 24

• round()

• abs()

• max()

• min()

• rgb()

• rgb-icc() (supported partially — only RGB fallback value is used)

• from-nearest-specified-value()

• from-parent()

• from-table-column()

• inherited-property-value()

• proportional-column-width()

• body-start() (standalone use only, cannot be an operand in expressions)

• label-end() (standalone use only, cannot be an operand in expressions)

Support for expressions is subject to the following limitations:

1. For compound expressions, the result of evaluation of all intermediate subexpressions should have a
valid XSL type. For example, expression (2in * 2in) div 1in is not supported (because its
first subexpression yields dimensionality of square inches that is not a valid XSL unit), while 2in *
(2in div 1in) works.

2. Expressions that require knowledge of layout to evaluate (e.g. block widths expressed in percents) can
only be used as standalone expressions, not parts of a bigger expression, and cannot be referenced by
property-value functions. The same limitation applies also to body-start() and label-end() functions.

3. Property value functions (from-nearest-specified-value(), from-parent(), from-table-column(),
inherited-property-value()) cannot be used in shorthands, and cannot take shorthand property names
as their arguments.

4. Property value functions that take start-indent/end-indent as arguments may work incorrectly if the
block with indents is placed into another block that has CSS-style margin-* attributes. For safety, we
recommend using either expressions with indents, or CSS margins; mixing these two coding styles in
the same stylesheet may yield inpredictable results.

2. Non-Conformance Issues
XEP 3.0 is known to have the following non-conformities to the XSL 1.0 Recommendation:

Area placement for footnotes and before-floats with multiple columns

The conditional area for footnotes is subtracted from the column area, rather than from the page
area (as prescribed by the spec). This influences the layout when multiple columns are present:

Page 16 of 24

the spec expects all footnotes to be formatted into a single one-column region at the bottom of the
page, whereas XEP distributes them into columns where the respective footnote reference occurs.

Inherited properties on ‹fo:footnote-body› and ‹fo:float› elements

In the XSL 1.0 Recommendation, ‹fo:footnote-body› and ‹fo:float› obey common inheritance
rules. It implies that they get inherited properties from the anchor point — despite being formatted
into a separate area. This scheme turned out to be extremely unpractical: footnotes/floats would
inherit font attributes from inline elements, keep-together constraints from headings, indents from
lists etc. To ensure that footnotes and floats look uniformly in the XSL Recommendation model,
a stylesheet writer would have to care to specify an explicit value for virtually every inhertable
property on each ‹fo:footnote-body›/‹fo:float›.

In this situation, we could not help sacrifying conformance to usability. In XEP 3.0 as in previous
versions of XEP, out-of-line elements inherit properties from their ancestor ‹fo:flow›, thus intro-
ducing a kind of “region-to-region” inheritance — from body-region to its conditional subregions.

Inherited start-indent and end-indent on reference areas

Another situation where holistic inheritance scheme adopted in XSL Recommendation produces
indesirable side effects. According to the spec, indents are inherited from ‹fo:table› to its descen-
dants, i.e. table cells. But inside cells, indents are measured from another reference edge! Appar-
ently, this has the following effect: when you specify an indent for the table, the contents of each
cell is shifted by the same amount from the edge of the cell.

XEP breaks inheritance at this point: if an object introduces a new reference area, start-indent and
end-indent for it are not inherited from its parent. In particular, this applies to ‹fo:table-cell›,
‹fo:block-container›, and ‹fo:inline-container›.

Border and padding on regions

In the XSL Recommendation, border and padding properties are permitted on region elements
(‹fo:region-body›, ‹fo:region-before›, ‹fo:region-after›, ‹fo:region-start›, and ‹fo:region-end›); but
the spec says they only may accept values of 0 (sic!). In XEP, we dare give a natural interpretation
to non-zero values of these properties — draw a border around the respective region area, and pad
its content rectangle by the specified amount. No warning is issued.

Treatment of empty blocks

By the spec, an empty block that has a non-null padding and/or border should be visible. XEP
suppresses all blocks that have no visible contents regardless of their border or padding attributes.

Table layout and border model

Current version implements only the separate border model (border-collapse="separate") and
fixed table layout (table-layout="fixed"). However, the default values for these properties are
different (border-collapse="collapse", table-layout="automatic"). To ensure future portability,
it is recommended to put an explicit value for these properties on each table; otherwise your doc-
uments may behave differently in future XSL FO implementations with support for automatic
layout and/or collapsing borders.

Page 17 of 24

3. Extensions to the XSL 1.0 Recommendation
XEP implements several extensions to the Specification, placed into a separate namespace:
xmlns:rx="http://www.renderx.com/XSL/Extensions". They add support for useful functionality that
cannot be expressed by XSL Formatting Objects.

3.1. Document Information
This extension permits passing a set of name/value pairs to the generator of the output format. A typical
application is setting PDF document info fields (‘Author’ and ‘Title’). Implementation uses two extension
elements: ‹rx:meta-info› and ‹rx:meta-field›.

‹rx:meta-info›

This element is merely a container for one or more ‹rx:meta-field› elements. It should be the first
child of ‹fo:root›.

‹rx:meta-field›

This element specifies a single name/value pair. It has two mandatory attributes: name and value.
Current implementation of the PDF and PostScript generators recognizes four possible values for
name:

• name="author" fills the ‘Author’ field in the resulting PDF file with a string specified by the
value property;

• name="title" fills the ‘Title’ field;

• name="subject" fills the ‘Subject’ field;

• name="keywords" fills the ‘Keywords’ field.

All other values for name are ignored. The ‘Creator’ field in the PDF file is set to "XEP 3.0";
there is no means to control it from the source file.

In the PostScript generator module, the document info fields are added using pdfmark operator;
the respective fields will be filled when PostScript is converted to PDF using Adobe Acrobat
Distiller or GhostScript.

3.2. Document Outline (Bookmarks)
An often requested feature for PDF rendering component. Implementation uses three extension elements:
‹rx:outline›, ‹rx:bookmark›, and ‹rx:bookmark-label›.

‹rx:outline›

Top-level element of the document outline tree. Should be located before any ‹fo:page-sequence›

elements, but after ‹fo:layout-master-set› and ‹fo:declarations› (if present). Contains one or more
‹rx:bookmark› elements.

‹rx:bookmark›

This element contains information about a single bookmark. It contains a mandatory ‹rx:bookmark-

label› element as its first child, and zero or more nested ‹rx:bookmark› elements that describe

Page 18 of 24

subordinated bookmarks. Bookmark destination is expressed either by internal-destination property
(for internal navigation), or by external-destination (for extra-document links).

‹rx:bookmark-label›

This element contains text of a bookmark label; it must be the first child of its parent ‹fo:bookmark›.
Contents of this element is plain text.

3.3. Indexes
Building page number lists for indexes is not possible within XSL 1.0. XEP 3.0 provides this functionality
via extension elements/properties.

rx:key

This attribute can be specified on any element that can carry an id (and thus be a target to ‹fo:page-

number-citation›). Its content is a term used to group element references in an index entry. Unlike
id, rx:key need not be unique across the document.

‹rx:page-index›

This element creates a list of page numbers for an index entry. It groups page numbers for all
formatting objects with a given rx:key, removing duplicates and eventually merging consequent
pages into sequences. The element accepts the following properties:

ref-key (required)

Selects elements for the index entry. All elements whose rx:key equals the value of this attribute,
and only those, will be selected for processing.

list-separator

String used to separate page numbers in the list. Default is comma plus space: ", ".

range-separator

String used to separate page numbers that form a continuous range. Default is en dash: "–"

(U+2013).

merge-subsequent-page-numbers

Controls whether sequences of adjacent page numbers should be merged into ranges. Default is
"true".

☞ In XEP 3.0, ‹rx:index› only searches elements preceding it in the document. No forward references
are implemented.

3.4. Flow sections
Flow sections are a generalization of blocks with span="all". They permit to split the flow into subflows
with different column counts in each subflow. The following element does it:

‹rx:flow-section›

This element must be a direct child of ‹fo:flow›; it can be mixed with other block-level elements.
It explicitly creates a span-reference-area with column-count and column-gap traits taken from
the respective properties of ‹rx:flow-section›.

Page 19 of 24

3.5. Background Image Scaling
In XSL 1.0, there is no provision to scale/size a background image. XEP 3.0 implements this functionality
via extension properties.

rx:background-content-height
rx:background-content-width
rx:background-scaling

These properties have exactly the same semantics as content-height, content-width, and scaling,
respectively. They apply to the image specified in background-image property (or inside back-

ground shorthand).

4. Graphic Formats

4.1. Bitmap Graphics
XEP 3.0 supports the following graphics formats:

GIF

GIF support is limited to non-interlaced images only. Moreover, if the image palette contains less
than 256 colors (2, 4, or 16), there is a limit on the maximum image size (approximately 5,200
bytes; the exact figure depends on the palette size).

GIF transparency is supported in PDF output.

JPEG

Grayscale, RGB, and CMYK JPEGs are supported. Data stream is copied directly from the image
file to the resultant PDF or PostScript, so there's no additional loss of quality.

PNG

XEP 3.0 recognizes all types of PNG images described in the PNG specification, and reproduces
them with the following limitations:

• Alpha channel is completely ignored — sample values are not adjusted by the alpha.

• 16-bit component colors are trimmed down to 8-bit.

Single-color transparency is supported in PDF output only. For indexed-color images with alpha,
the first completely transparent color in the palette is used.

☞ Combining single-color transparency with 16-bit color is not safe in XEP 3.0 because of color depth
reduction and consequent merging of adjacent colors.

If the image has an explicit gamma, it is corrected to the sRGB value of 2.2.

TIFF

XEP supports the following principal TIFF flavors:

• Strip-based TIFFs: uncompressed/PackBits/LZW, grayscale/RGB/CMYK;

• Bilevel images with CCITT compression;

Page 20 of 24

• Tiled TIFFs: grayscale/RGB (no CMYK), uncompressed/PackBits (no LZW).

TIFF images with separate color planes (PlanarConfiguration=2) and/or associated alpha
channel (ExtraSamples=1) are not supported.

☞ In XEP 3.0, processing of tiled TIFFs and bilevel images with CCITT compression requires Java 2
AWT (JDK/JRE 1.2 or higher). On Java 1.1.8 and MS JVM, XEP only supports basic TIFF flavors:
strip-based, uncompressed/PackBits/LZW, grayscale/RGB/CMYK.

When a bitmap graphic has no built-in resolution or dimension data (this is always the case for GIF images,
but may also occur in other image types), its resolution defaults to 120 dpi (5 dots of a 600-dpi printer) as
prescribed by the CSS2 Spec. This differs from XSL specification that suggests, though not mandates,
using 0.28 mm as a pixel size. In our opinion, a smaller pixel size gives better print results: the proportion
between pixel size and page width is similar to that of a computer screen. With lower resolutions, it often
happens that large GIF/JPEG images fit onto a screen but not into the printable area on the page.

4.2. Vector Graphics
In XEP 3.0 the only supported vector graphics format is EPS. EPS images are supported in PostScript
generator only. In the PDF generation module, they are replaced by a bitmap preview image (EPSI or
TIFF) if available; otherwise, the correspondent area is left blank.

5. Fonts and Internationalization

5.1. Font Formats
XEP 3.0 can use the following types of fonts:

• Adobe standard fonts (including OpenType fonts from CJK font packs);

• PostScript Type 1 fonts;

• TrueType fonts (for PDF output only).

All fonts except for OpenType CJK can be embedded into the output file, or specified as external fonts;
in the latter case, the resulting file will only be viewable on systems that have the correspondent font
configured for use with viewing/printing application. Typically, all fonts are embedded except for standard
Adobe PDF fonts; for some applications, embedding basic fonts may also be required.

An embedded font can be subsetted: instead of storing the entire font in the document, it is possible to
leave only those glyphs that are actually used in the text. This option reduces the document size but makes
it unsuitable for subsequent editing. Subsetting is implemented for both TrueType and PostScript fonts.

☞ Some fonts may contain internal flags that prohibit their embedding or subsetting. XEP honors these flags,
and may refuse to embed or subset your font if the respective action is not authorized by the flags inside it.

Page 21 of 24

5.1.1. Standard Adobe Fonts

5.1.1.1. Latin Adobe Fonts

XEP supports all characters in the Extended Roman character set used in standard Adobe Acrobat fonts
— Times, Helvetica, and Courier. This character set is a union of WinAnsi (that is in turn a
superset of ISO-8859-1), MacRoman, and AdobeStandard character sets. To insert a glyph, common
XML rules apply: every encoding recognized by Xerces is usable with XEP.

XEP also supports Symbol and ZapfDingbats fonts. Symbols from these fonts are also accessed by
Unicode values. For Symbol, mapping of Unicode to glyph names is contained in the Adobe Glyph List
(http://partners.adobe.com/asn/developer/typeforum/glyphlist.txt; hereinafter, AGL); for ZapfDingbats,
the mapping was taken from a separate document, also available at the Adobe technical support site:
http://partners.adobe.com/asn/developer/typeforum/zapfdingbats.txt.

Some glyphs in ZapfDingbats (decorated brackets) have no correspondences in Unicode 3.0; such glyphs
are assigned codes in the Adobe corporate-use area. Be careful when using them with PostScript output:
many common versions of ZapfDingbats font don’t contain these glyphs. For example, you won’t be able
to view/print them from Aladdin GhostView.

XEP samples include three files where all glyphs available from standard Adobe fonts are listed, with their
Adobe glyph names and Unicode values:

• adobe-standard.pdf lists all glyphs from Roman Extended character set;

• symbol.pdf lists all glyphs from Symbol character set;

• zapf-dingbats.pdf lists all glyphs from Zapf Dingbats character set;

5.1.1.2. Standard Fonts for CJK Versions of Acrobat

Asian versions of Adobe Acrobat Reader use additional fonts to display characters for Chinese, Japanese,
and Korean. XEP configuration files already contain descriptors for Adobe fonts included into Chinese
Simplified, Chinese Traditional, Japanese, and Korean font packs; however, you should make the fonts
themselves accessible to the formatter in order to use them with XEP. Please refer to “XEP 3.0 User
Guide” for instructions.

5.1.2. PostScript Type 1 fonts

In version 3.0, there are limitations on the characters that can be included into the PDF or PostScript output:

• for fonts in standard encoding (having StandardEncoding or AdobeStandardEncoding in the
Encoding field in the AFM file), accessible characters should belong either to one of the predefined
Adobe encodings (WinAnsi or MacRoman), or to the built-in encoding of the font;

• for all other fonts (having FontSpecific encoding in the AFM), only characters from the built-in
encoding are accessible.

Type 1 font support in XEP is based on direct mapping of Unicode characters to glyph names. Built-in
character codes aren’t used in the formatting; however, they determine character repertory available for a
particular output format.

Page 22 of 24

http://partners.adobe.com/asn/developer/typeforum/glyphlist.txt
http://partners.adobe.com/asn/developer/typeforum/zapfdingbats.txt

Mapping of Unicode values to glyph names is described in the Adobe document “Unicode and Glyph
Names” (see http://partners.adobe.com/asn/developer/typeforum/unicodegn.html). By default, the Adobe
Glyph List (http://partners.adobe.com/asn/developer/typeforum/glyphlist.txt; hereinafter, AGL) is used to
determine mapping from Unicode to glyph names; it is hardwired inside XEP. For fonts having non-standard
glyph names (e.g. for alphabets not included in the AGL) there is a possibility to specify an explicit code-
to-name mapping via an external glyph list.

5.1.3. TrueType Fonts

TrueType fonts in XEP 3.0 are supported in the PDF generator only. PostScript generator can only use
Type1 fonts.

To be usable by XEP 3.0, a TrueType font must be Unicode-enabled (i.e. have an internal cmap table for
mapping glyph IDs to Unicode). XEP can access a full range of glyphs from a TrueType font.

5.2. Line Breaking Algorithm
XEP uses the following line breaking algorithm:

1. Line break is forced by explicit linefeed characters: U+000A, U+000D, U+2028, U+2029, unless
they are suppressed by linefeed normalization;

2. Line break is permitted at space characters: U+0009, U+0020, U+2000—U+200B, U+3000;

3. If hyphenate trait is set to "true" and all hyphenation conditions (hyphenation-push-character-count,
hyphenation-remain-character-count, etc.) are satisfied, then line break is permitted after a soft hyphen:
U+00AD. The instance of soft hyphen at the end of line is replaced by text specified in hyphenation-

character trait; all other instances of U+00AD are suppressed.

4. Unless permitted by the above rules, line break is inhibited in the following conditions:

• before and after non-breaking spaces, hyphens, and joiners: U+00A0, U+200C, U+200D, U+2011,
U+202F;

• before trailing punctuation characters, closing brackets and quotes, small Katakana and Hiragana
characters, superscript characters, etc.;

• after opening brackets and quotes, Spanish leading punctuations, currency symbols, etc.;

5. Unless prohibited by the above rules, line break is permitted before or after Kanji, Katakana, Hiragana,
and Hangul characters;

6. Otherwise, line break is prohibited.

The algorithm is evidently oversimplified; it will be refined in further versions of XEP when more feedback
about non-European scripting systems is received.

5.3. Bidirectionality
XEP 3.0 provides a limited support for bidirectionality. Implicit ordering of glyphs in an inline area that
contains only text (no intervening markup) is governed by a simplified version of Unicode bidi algorithm:

• only one level of embedding is opened — no nested spans;

Page 23 of 24

http://partners.adobe.com/asn/developer/typeforum/unicodegn.html
http://partners.adobe.com/asn/developer/typeforum/glyphlist.txt

• positional variant substitution and ligaturization are not supported: all glyphs appear exactly as they
were coded in the XSL FO source.

Moreover, bidirectional reordering does not work across markup: any intruding tag splits the sequence
into separate pieces that are ordered according to the dominant direction.

XEP 3.0 supports explicit redefinition of writing direction (using ‹fo:bidi-override› element and its direction

attribute). Use it wherever possible to avoid dependencies on implicit bidi reordering.

5.4. Hyphenation
XEP 3.0 uses Unicode soft hyphen characters (U+00AD) to mark possible hyphenation points. These
characters can be contained in the source XSL FO document (e.g. come from an external hyphenation
software). XEP can also add them inside: it contains a hyphenator class that inserts soft hyphens to all text
data before they are passed to the formatter.

The hyphenator implements a simplified version of Liang’s algorithm (the same as used in TeX), and
reuses TeX hyphenation patterns. Unlike TeX, hyphenation points aren’t prioritized: all possible word
breaks are considered equivalent.

XEP’s distribution includes patterns for the following languages: English (American and British), French,
German, Spanish, and Russian. All patterns were borrowed from CTAN (the Comprehensive TeX Archive
Network, http://www.ctan.org), with some modifications for non-English patterns. More patterns can be
added if necessary; the procedure is described in “XEP 3.0 User Guide”.

Page 24 of 24

http://www.ctan.org/

	Table of Contents
	1. XSL FO Support Summary
	1.1. Formatting objects supported by XEP 3.0
	1.2. Formatting properties supported by XEP 3.0
	1.3. Notes on Formatting Objects Implementation
	1.4. Supported Expressions

	2. Non-Conformance Issues
	3. Extensions to the XSL 1.0 Recommendation
	3.1. Document Information
	3.2. Document Outline (Bookmarks)
	3.3. Indexes
	3.4. Flow sections
	3.5. Background Image Scaling

	4. Graphic Formats
	4.1. Bitmap Graphics
	4.2. Vector Graphics

	5. Fonts and Internationalization
	5.1. Font Formats
	5.1.1. Standard Adobe Fonts
	5.1.1.1. Latin Adobe Fonts
	5.1.1.2. Standard Fonts for CJK Versions of Acrobat

	5.1.2. PostScript Type 1 fonts
	5.1.3. TrueType Fonts

	5.2. Line Breaking Algorithm
	5.3. Bidirectionality
	5.4. Hyphenation

