
XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

Extensible Markup Language (XML)
1.0 (Third Edition)

W3C Recommendation 04 February 2004

This version:

http://www.w3.org/TR/2004/REC-xml-20040204

Latest version:

http://www.w3.org/TR/REC-xml

Previous version:

http://www.w3.org/TR/2003/PER-xml-20031030

Authors and Contributors:

Tim Bray (Textuality and Netscape) <tbray@textuality.com>
Jean Paoli (Microsoft) <jeanpa@microsoft.com>
C. M. Sperberg-McQueen (W3C) <cmsmcq@w3.org>
Eve Maler (Sun Microsystems, Inc.) <eve.maler@east.sun.com>
François Yergeau <francois@yergeau.com>

Copyright © 2004 W3C® (MIT, INRIA, Keio), All Rights Reserved.
W3C liability, trademark, document use, and software licensing rules apply.

Abstract

The Extensible Markup Language (XML) is a subset of SGML that is completely described in this document.
Its goal is to enable generic SGML to be served, received, and processed on the Web in the way that is
now possible with HTML. XML has been designed for ease of implementation and for interoperability
with both SGML and HTML.

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2003/PER-xml-20031030
mailto:tbray@textuality.com
mailto:jeanpa@microsoft.com
mailto:cmsmcq@w3.org
mailto:elm@east.sun.com
mailto:francois@yergeau.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Style/XSL
http://www.renderx.com/

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document is a Recommendation of the W3C. It has been reviewed by W3C Members and other
interested parties, and has been endorsed by the Director as a W3C Recommendation. It is a stable document
and may be used as reference material or cited as a normative reference from another document. W3C's
role in making the Recommendation is to draw attention to the specification and to promote its widespread
deployment. This enhances the functionality and interoperability of the Web.

This document specifies a syntax created by subsetting an existing, widely used international text processing
standard (Standard Generalized Markup Language, ISO 8879:1986(E) as amended and corrected) for use
on the World Wide Web. It is a product of the XML Core Working Group as part of the XML Activity.
The English version of this specification is the only normative version. However, for translations of this
document, see http://www.w3.org/2003/03/Translations/byTechnology?technology=REC-xml.

This third edition is not a new version of XML. As a convenience to readers, it incorporates the changes
dictated by the accumulated errata (available at http://www.w3.org/XML/xml-V10-2e-errata) to the Second
Edition of XML 1.0, dated 6 October 2000. In addition, markup has been introduced on a significant portion
of the prescriptions of the specification, clarifying when prescriptive keywords such as MUST, SHOULD
and MAY are used in the formal sense defined in [IETF RFC 2119]. For the convenience of readers, an
XHTML version with color-coded revision indicators is also provided; this version highlights each change
due to an erratum published in the errata list, together with a link to the particular erratum in that list. Most
of the errata in the list provide a rationale for the change.

An implementation report is available at http://www.w3.org/XML/2003/09/xml10-3e-implementation.html.

Documentation of intellectual property possibly relevant to this recommendation may be found at the
Working Group's public IPR disclosure page.

Please report errors in this document to xml-editor@w3.org; archives are available. The errata list for this
third edition is available at http://www.w3.org/XML/xml-V10-3e-errata.

A Test Suite is maintained to help assessing conformance to this specification.

ii

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.w3.org/TR/
http://www.w3.org/2003/06/Process-20030618/tr.html#RecsW3C
http://www.w3.org/XML/Core/
http://www.w3.org/XML/Activity
http://www.w3.org/2003/03/Translations/byTechnology?technology=REC-xml
http://www.w3.org/XML/xml-V10-2e-errata
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
REC-xml-20040204-review.html
http://www.w3.org/XML/xml-V10-2e-errata
http://www.w3.org/XML/2003/09/xml10-3e-implementation.html
http://www.w3.org/2002/08/xmlcore-IPR-statements
mailto:xml-editor@w3.org
http://lists.w3.org/Archives/Public/xml-editor/
http://www.w3.org/XML/xml-V10-3e-errata
http://www.w3.org/XML/Test/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents
1. Introduction .. 1

1.1. Origin and Goals .. 1

1.2. Terminology ... 2

2. Documents ... 3

2.1. Well-Formed XML Documents ... 3

2.2. Characters .. 3

2.3. Common Syntactic Constructs ... 4

2.4. Character Data and Markup ... 5

2.5. Comments .. 6

2.6. Processing Instructions .. 6

2.7. CDATA Sections .. 6

2.8. Prolog and Document Type Declaration .. 7

2.9. Standalone Document Declaration .. 9

2.10. White Space Handling ... 10

2.11. End-of-Line Handling .. 11

2.12. Language Identification ... 11

3. Logical Structures .. 12

3.1. Start-Tags, End-Tags, and Empty-Element Tags ... 12

3.2. Element Type Declarations .. 14
3.2.1. Element Content ... 14
3.2.2. Mixed Content .. 15

3.3. Attribute-List Declarations .. 16
3.3.1. Attribute Types ... 16
3.3.2. Attribute Defaults ... 18
3.3.3. Attribute-Value Normalization ... 19

3.4. Conditional Sections .. 20

4. Physical Structures ... 21

4.1. Character and Entity References .. 21

4.2. Entity Declarations ... 23
4.2.1. Internal Entities .. 23
4.2.2. External Entities ... 24

4.3. Parsed Entities .. 25
4.3.1. The Text Declaration .. 25
4.3.2. Well-Formed Parsed Entities .. 25
4.3.3. Character Encoding in Entities ... 25

4.4. XML Processor Treatment of Entities and References .. 27

iii

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.1. Not Recognized .. 27
4.4.2. Included .. 28
4.4.3. Included If Validating ... 28
4.4.4. Forbidden .. 28
4.4.5. Included in Literal .. 28
4.4.6. Notify .. 29
4.4.7. Bypassed ... 29
4.4.8. Included as PE .. 29
4.4.9. Error .. 29

4.5. Construction of Entity Replacement Text .. 29

4.6. Predefined Entities ... 30

4.7. Notation Declarations .. 30

4.8. Document Entity .. 31

5. Conformance ... 31

5.1. Validating and Non-Validating Processors ... 31

5.2. Using XML Processors .. 31

6. Notation ... 32

Appendices

A. References .. 33

A.1. Normative References ... 33

A.2. Other References ... 34

B. Character Classes .. 36

C. XML and SGML (Non-Normative) ... 38

D. Expansion of Entity and Character References (Non-Normative) 38

E. Deterministic Content Models (Non-Normative) .. 40

F. Autodetection of Character Encodings (Non-Normative) .. 40

F.1. Detection Without External Encoding Information ... 40

F.2. Priorities in the Presence of External Encoding Information .. 42

G. W3C XML Working Group (Non-Normative) ... 42

H. W3C XML Core Working Group (Non-Normative) .. 42

I. Production Notes (Non-Normative) .. 42

iv

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

1. Introduction
Extensible Markup Language, abbreviated XML, describes a class of data objects called XML documents
and partially describes the behavior of computer programs which process them. XML is an application
profile or restricted form of SGML, the Standard Generalized Markup Language [ISO 8879]. By construc-
tion, XML documents are conforming SGML documents.

XML documents are made up of storage units called entities, which contain either parsed or unparsed data.
Parsed data is made up of characters, some of which form character data, and some of which form markup.
Markup encodes a description of the document's storage layout and logical structure. XML provides a
mechanism to impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and provide access to their
content and structure. It is assumed that an XML processor is doing its work on behalf of another module,
called the application. This specification describes the required behavior of an XML processor in terms
of how it must read XML data and the information it must provide to the application.

1.1. Origin and Goals

XML was developed by an XML Working Group (originally known as the SGML Editorial Review Board)
formed under the auspices of the World Wide Web Consortium (W3C) in 1996. It was chaired by Jon
Bosak of Sun Microsystems with the active participation of an XML Special Interest Group (previously
known as the SGML Working Group) also organized by the W3C. The membership of the XML Working
Group is given in an appendix. Dan Connolly served as the Working Group's contact with the W3C.

The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode [Unicode] and ISO/IEC 10646 [ISO/IEC
10646] for characters, Internet RFC 3066 [IETF RFC 3066] for language identification tags, ISO 639 [ISO
639] for language name codes, and ISO 3166 [ISO 3166] for country name codes), provides all the infor-
mation necessary to understand XML Version 1.0 and construct computer programs to process it.

This version of the XML specification may be distributed freely, as long as all text and legal notices remain
intact.

Origin and Goals Page 1 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

1.2. Terminology

The terminology used to describe XML documents is defined in the body of this specification. The key
words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOM-
MENDED, MAY, and OPTIONAL, when EMPHASIZED, are to be interpreted as described in [IETF
RFC 2119]. In addition, the terms defined in the following list are used in building those definitions and
in describing the actions of an XML processor:

error

A violation of the rules of this specification; results are undefined. Unless otherwise specified,
failure to observe a prescription of this specification indicated by one of the keywords MUST,
REQUIRED, MUST NOT, SHALL and SHALL NOT is an error. Conforming software MAY
detect and report an error and MAY recover from it.

fatal error

An error which a conforming XML processor MUST detect and report to the application. After
encountering a fatal error, the processor MAY continue processing the data to search for further
errors and MAY report such errors to the application. In order to support correction of errors, the
processor MAY make unprocessed data from the document (with intermingled character data and
markup) available to the application. Once a fatal error is detected, however, the processor MUST
NOT continue normal processing (i.e., it MUST NOT continue to pass character data and informa-
tion about the document's logical structure to the application in the normal way).

at user option

Conforming software MAY or MUST (depending on the modal verb in the sentence) behave as
described; if it does, it MUST provide users a means to enable or disable the behavior described.

validity constraint

A rule which applies to all valid XML documents. Violations of validity constraints are errors;
they MUST, at user option, be reported by validating XML processors.

well-formedness constraint

A rule which applies to all well-formed XML documents. Violations of well-formedness constraints
are fatal errors.

match

(Of strings or names:) Two strings or names being compared MUST be identical. Characters with
multiple possible representations in ISO/IEC 10646 (e.g. characters with both precomposed and
base+diacritic forms) match only if they have the same representation in both strings. No case
folding is performed. (Of strings and rules in the grammar:) A string matches a grammatical pro-
duction if it belongs to the language generated by that production. (Of content and content models:)
An element matches its declaration when it conforms in the fashion described in the constraint
"Element Valid".

for compatibility

Marks a sentence describing a feature of XML included solely to ensure that XML remains com-
patible with SGML.

for interoperability

Marks a sentence describing a non-binding recommendation included to increase the chances that
XML documents can be processed by the existing installed base of SGML processors which predate
the WebSGML Adaptations Annex to ISO 8879.

Page 2 of 42 Introduction

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

2. Documents
A data object is an XML document if it is well-formed, as defined in this specification. A well-formed
XML document MAY in addition be valid if it meets certain further constraints.

Each XML document has both a logical and a physical structure. Physically, the document is composed
of units called entities. An entity MAY refer to other entities to cause their inclusion in the document. A
document begins in a “root” or document entity. Logically, the document is composed of declarations,
elements, comments, character references, and processing instructions, all of which are indicated in the
document by explicit markup. The logical and physical structures MUST nest properly, as described in
§ 4.3.2 – Well-Formed Parsed Entities on page 25.

2.1. Well-Formed XML Documents

A textual object is a well-formed XML document if:

1. Taken as a whole, it matches the production labeled document.

2. It meets all the well-formedness constraints given in this specification.

3. Each of the parsed entities which is referenced directly or indirectly within the document is well-
formed.

Document

prolog element Misc*::=document[1]

Matching the document production implies that:

1. It contains one or more elements.

2. There is exactly one element, called the root, or document element, no part of which appears in the
content of any other element. For all other elements, if the start-tag is in the content of another element,
the end-tag is in the content of the same element. More simply stated, the elements, delimited by start-
and end-tags, nest properly within each other.

As a consequence of this, for each non-root element C in the document, there is one other element P in
the document such that C is in the content of P, but is not in the content of any other element that is in the
content of P. P is referred to as the parent of C, and C as a child of P.

2.2. Characters

A parsed entity contains text, a sequence of characters, which may represent markup or character data. A
character is an atomic unit of text as specified by ISO/IEC 10646:2000 [ISO/IEC 10646]. Legal characters
are tab, carriage return, line feed, and the legal characters of Unicode and ISO/IEC 10646. The versions
of these standards cited in Appendix A.1 – Normative References on page 33 were current at the time this
document was prepared. New characters may be added to these standards by amendments or new editions.
Consequently, XML processors MUST accept any character in the range specified for Char.

Character Range

/* any Unicode character,
excluding the surrogate
blocks, FFFE, and FFFF. */

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] |
[#x10000-#x10FFFF]

::=Char[2]

Well-Formed XML Documents Page 3 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

The mechanism for encoding character code points into bit patterns MAY vary from entity to entity. All
XML processors MUST accept the UTF-8 and UTF-16 encodings of Unicode 3.1 [Unicode3]; the mecha-
nisms for signaling which of the two is in use, or for bringing other encodings into play, are discussed
later, in § 4.3.3 – Character Encoding in Entities on page 25.

Document authors are encouraged to avoid “compatibility characters”, as defined in section 6.8 of [Unicode] (see
also D21 in section 3.6 of [Unicode3]). The characters defined in the following ranges are also discouraged. They
are either control characters or permanently undefined Unicode characters:

☞

[#x7F-#x84], [#x86-#x9F], [#xFDD0-#xFDDF],

[#1FFFE-#x1FFFF], [#2FFFE-#x2FFFF], [#3FFFE-#x3FFFF],

[#4FFFE-#x4FFFF], [#5FFFE-#x5FFFF], [#6FFFE-#x6FFFF],

[#7FFFE-#x7FFFF], [#8FFFE-#x8FFFF], [#9FFFE-#x9FFFF],

[#AFFFE-#xAFFFF], [#BFFFE-#xBFFFF], [#CFFFE-#xCFFFF],

[#DFFFE-#xDFFFF], [#EFFFE-#xEFFFF], [#FFFFE-#xFFFFF],

[#10FFFE-#x10FFFF].

2.3. Common Syntactic Constructs

This section defines some symbols used widely in the grammar.

S (white space) consists of one or more space (#x20) characters, carriage returns, line feeds, or tabs.

White Space

(#x20 | #x9 | #xD | #xA)+::=S[3]

The presence of #xD in the above production is maintained purely for backward compatibility with the First Edition.
As explained in § 2.11 – End-of-Line Handling on page 11, all #xD characters literally present in an XML document☞
are either removed or replaced by #xA characters before any other processing is done. The only way to get a #xD
character to match this production is to use a character reference in an entity value literal.

Characters are classified for convenience as letters, digits, or other characters. A letter consists of an
alphabetic or syllabic base character or an ideographic character. Full definitions of the specific characters
in each class are given in Appendix B – Character Classes on page 36.

A Name is a token beginning with a letter or one of a few punctuation characters, and continuing with
letters, digits, hyphens, underscores, colons, or full stops, together known as name characters. Names
beginning with the string “xml”, or with any string which would match (('X'|'x') ('M'|'m')
('L'|'l')), are reserved for standardization in this or future versions of this specification.

The Namespaces in XML Recommendation [XML Names] assigns a meaning to names containing colon characters.
Therefore, authors should not use the colon in XML names except for namespace purposes, but XML processors
must accept the colon as a name character.

☞

An Nmtoken (name token) is any mixture of name characters.

Names and Tokens

Letter | Digit | '.' | '-' | '_' | ':' | CombiningChar | Extender::=NameChar[4]

(Letter | '_' | ':') (NameChar)*::=Name[5]

/* */Name (#x20 Name)*::=Names[6]

Page 4 of 42 Documents

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

(NameChar)+::=Nmtoken[7]

/* */Nmtoken (#x20 Nmtoken)*::=Nmtokens[8]

The Names and Nmtokens productions are used to define the validity of tokenized attribute values after normal-
ization (see § 3.3.1 – Attribute Types on page 16).☞

Literal data is any quoted string not containing the quotation mark used as a delimiter for that string. Lit-
erals are used for specifying the content of internal entities (EntityValue), the values of attributes
(AttValue), and external identifiers (SystemLiteral). Note that a SystemLiteral can be parsed without
scanning for markup.

Literals

'"' ([^%&"] | PEReference | Reference)* '"'::=EntityValue[9]
| "'" ([^%&'] | PEReference | Reference)* "'"

'"' ([^<&"] | Reference)* '"'::=AttValue[10]
| "'" ([^<&'] | Reference)* "'"

('"' [^"]* '"') | ("'" [^']* "'")::=SystemLiteral[11]

'"' PubidChar* '"' | "'" (PubidChar - "'")* "'"::=PubidLiteral[12]

#x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%]::=PubidChar[13]

Although the EntityValue production allows the definition of a general entity consisting of a single explicit < in
the literal (e.g., <!ENTITY mylt "<">), it is strongly advised to avoid this practice since any reference to that
entity will cause a well-formedness error.

☞

2.4. Character Data and Markup

Text consists of intermingled character data and markup. Markup takes the form of start-tags, end-tags,
empty-element tags, entity references, character references, comments, CDATA section delimiters, document
type declarations, processing instructions, XML declarations, text declarations, and any white space
that is at the top level of the document entity (that is, outside the document element and not inside any
other markup).

All text that is not markup constitutes the character data of the document.

The ampersand character (&) and the left angle bracket (<) MUST NOT appear in their literal form, except
when used as markup delimiters, or within a comment, a processing instruction, or a CDATA section. If
they are needed elsewhere, they MUST be escaped using either numeric character references or the strings
“&” and “<” respectively. The right angle bracket (>) MAY be represented using the string
“>”, and MUST, for compatibility, be escaped using either “>” or a character reference when it
appears in the string “]]>” in content, when that string is not marking the end of a CDATA section.

In the content of elements, character data is any string of characters which does not contain the start-
delimiter of any markup and does not include the CDATA-section-close delimiter, “]]>”. In a CDATA
section, character data is any string of characters not including the CDATA-section-close delimiter, “]]>”.

To allow attribute values to contain both single and double quotes, the apostrophe or single-quote character
(') MAY be represented as “'”, and the double-quote character (") as “"”.

Character Data and Markup Page 5 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Character Data

[^<&]* - ([^<&]* ']]>' [^<&]*)::=CharData[14]

2.5. Comments

Comments MAY appear anywhere in a document outside other markup; in addition, they MAY appear
within the document type declaration at places allowed by the grammar. They are not part of the document's
character data; an XML processor MAY, but need not, make it possible for an application to retrieve the
text of comments. For compatibility, the string “--” (double-hyphen) MUST NOT occur within comments.
Parameter entity references MUST NOT be recognized within comments.

Comments

'<!--' ((Char - '-') | ('-' (Char - '-')))* '-->'::=Comment[15]

An example of a comment:

<!-- declarations for <head> & <body> -->

Note that the grammar does not allow a comment ending in --->. The following example is not well-
formed.

<!-- B+, B, or B--->

2.6. Processing Instructions

Processing instructions (PIs) allow documents to contain instructions for applications.

Processing Instructions

'<?' PITarget (S (Char* - (Char* '?>' Char*)))? '?>'::=PI[16]

Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))::=PITarget[17]

PIs are not part of the document's character data, but MUST be passed through to the application. The PI
begins with a target (PITarget) used to identify the application to which the instruction is directed. The
target names “XML”, “xml”, and so on are reserved for standardization in this or future versions of this
specification. The XML Notation mechanism MAY be used for formal declaration of PI targets. Parameter
entity references MUST NOT be recognized within processing instructions.

2.7. CDATA Sections

CDATA sections MAY occur anywhere character data may occur; they are used to escape blocks of text
containing characters which would otherwise be recognized as markup. CDATA sections begin with the
string “<![CDATA[” and end with the string “]]>”:

CDATA Sections

CDStart CData CDEnd::=CDSect[18]

'<![CDATA['::=CDStart[19]

(Char* - (Char* ']]>' Char*))::=CData[20]

']]>'::=CDEnd[21]

Page 6 of 42 Documents

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Within a CDATA section, only the CDEnd string is recognized as markup, so that left angle brackets and
ampersands may occur in their literal form; they need not (and cannot) be escaped using “<” and
“&”. CDATA sections cannot nest.

An example of a CDATA section, in which “<greeting>” and “</greeting>” are recognized as
character data, not markup:

<![CDATA[<greeting>Hello, world!</greeting>]]>

2.8. Prolog and Document Type Declaration

XML documents SHOULD begin with an XML declaration which specifies the version of XML being
used. For example, the following is a complete XML document, well-formed but not valid:

<?xml version="1.0"?>

<greeting>Hello, world!</greeting>

and so is this:

<greeting>Hello, world!</greeting>

The function of the markup in an XML document is to describe its storage and logical structure and to
associate attribute name-value pairs with its logical structures. XML provides a mechanism, the document
type declaration, to define constraints on the logical structure and to support the use of predefined storage
units. An XML document is valid if it has an associated document type declaration and if the document
complies with the constraints expressed in it.

The document type declaration MUST appear before the first element in the document.

Prolog

XMLDecl? Misc* (doctypedecl Misc*)?::=prolog[22]

'<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>'::=XMLDecl[23]

S 'version' Eq ("'" VersionNum "'" | '"' VersionNum '"')::=VersionInfo[24]

S? '=' S?::=Eq[25]

/* */'1.0'::=VersionNum[26]

Comment | PI | S::=Misc[27]

The XML document type declaration contains or points to markup declarations that provide a grammar
for a class of documents. This grammar is known as a document type definition, or DTD. The document
type declaration can point to an external subset (a special kind of external entity) containing markup dec-
larations, or can contain the markup declarations directly in an internal subset, or can do both. The DTD
for a document consists of both subsets taken together.

A markup declaration is an element type declaration, an attribute-list declaration, an entity declaration,
or a notation declaration. These declarations MAY be contained in whole or in part within parameter
entities, as described in the well-formedness and validity constraints below. For further information, see
§ 4 – Physical Structures on page 21.

Document Type Definition

/* */'<!DOCTYPE' S Name (S ExternalID)? S? ('[' intSubset
']' S?)? '>'

::=doctypedecl[28]

Prolog and Document Type Declaration Page 7 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

PEReference | S::=DeclSep[29]

/* */(markupdecl | DeclSep)*::=intSubset[30]

elementdecl | AttlistDecl | EntityDecl | NotationDecl |
PI | Comment

::=markupdecl[31]

Note that it is possible to construct a well-formed document containing a doctypedecl that neither points
to an external subset nor contains an internal subset.

The markup declarations MAY be made up in whole or in part of the replacement text of parameter entities.
The productions later in this specification for individual nonterminals (elementdecl, AttlistDecl, and so
on) describe the declarations after all the parameter entities have been included.

Parameter entity references are recognized anywhere in the DTD (internal and external subsets and external
parameter entities), except in literals, processing instructions, comments, and the contents of ignored
conditional sections (see § 3.4 – Conditional Sections on page 20). They are also recognized in entity
value literals. The use of parameter entities in the internal subset is restricted as described below.

Validity Constraint: Root Element Type

The Name in the document type declaration MUST match the element type of the root element.

Validity Constraint: Proper Declaration/PE Nesting

Parameter-entity replacement text MUST be properly nested with markup declarations. That is to say, if
either the first character or the last character of a markup declaration (markupdecl above) is contained in
the replacement text for a parameter-entity reference, both MUST be contained in the same replacement
text.

Well-Formedness Constraint: PEs in Internal Subset

In the internal DTD subset, parameter-entity references MUST NOT occur within markup declarations;
they MAY occur where markup declarations can occur. (This does not apply to references that occur in
external parameter entities or to the external subset.)

Well-Formedness Constraint: External Subset

The external subset, if any, MUST match the production for extSubset.

Well-Formedness Constraint: PE Between Declarations

The replacement text of a parameter entity reference in a DeclSep MUST match the production extSub-
setDecl.

Like the internal subset, the external subset and any external parameter entities referenced in a DeclSep
MUST consist of a series of complete markup declarations of the types allowed by the non-terminal symbol
markupdecl, interspersed with white space or parameter-entity references. However, portions of the
contents of the external subset or of these external parameter entities MAY conditionally be ignored by
using the conditional section construct; this is not allowed in the internal subset but is allowed in external
parameter entities referenced in the internal subset.

Page 8 of 42 Documents

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

External Subset

TextDecl? extSubsetDecl::=extSubset[32]

(markupdecl | conditionalSect | DeclSep)*::=extSubsetDecl[33]

The external subset and external parameter entities also differ from the internal subset in that in them,
parameter-entity references are permitted within markup declarations, not only between markup declarations.

An example of an XML document with a document type declaration:

<?xml version="1.0"?>

<!DOCTYPE greeting SYSTEM "hello.dtd">

<greeting>Hello, world!</greeting>

The system identifier “hello.dtd” gives the address (a URI reference) of a DTD for the document.

The declarations can also be given locally, as in this example:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE greeting [

 <!ELEMENT greeting (#PCDATA)>

]>

<greeting>Hello, world!</greeting>

If both the external and internal subsets are used, the internal subset MUST be considered to occur before
the external subset. This has the effect that entity and attribute-list declarations in the internal subset take
precedence over those in the external subset.

2.9. Standalone Document Declaration

Markup declarations can affect the content of the document, as passed from an XML processor to an
application; examples are attribute defaults and entity declarations. The standalone document declaration,
which MAY appear as a component of the XML declaration, signals whether or not there are such decla-
rations which appear external to the document entity or in parameter entities. An external markup decla-
ration is defined as a markup declaration occurring in the external subset or in a parameter entity (external
or internal, the latter being included because non-validating processors are not required to read them).

Standalone Document Declaration

S 'standalone' Eq (("'" ('yes' | 'no') "'") | ('"' ('yes' | 'no') '"'))::=SDDecl[34]

In a standalone document declaration, the value yes indicates that there are no external markup declarations
which affect the information passed from the XML processor to the application. The value no indicates
that there are or may be such external markup declarations. Note that the standalone document declaration
only denotes the presence of external declarations; the presence, in a document, of references to external
entities, when those entities are internally declared, does not change its standalone status.

If there are no external markup declarations, the standalone document declaration has no meaning. If there
are external markup declarations but there is no standalone document declaration, the value no is assumed.

Any XML document for which standalone="no" holds can be converted algorithmically to a standalone
document, which may be desirable for some network delivery applications.

Standalone Document Declaration Page 9 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Validity Constraint: Standalone Document Declaration

The standalone document declaration MUST have the value no if any external markup declarations contain
declarations of:

• attributes with default values, if elements to which these attributes apply appear in the document
without specifications of values for these attributes, or

• entities (other than amp, lt, gt, apos, quot), if references to those entities appear in the document,
or

• attributes with tokenized types, where the attribute appears in the document with a value such that
normalization will produce a different value from that which would be produced in the absence of the
declaration, or

• element types with element content, if white space occurs directly within any instance of those types.

An example XML declaration with a standalone document declaration:

<?xml version="1.0" standalone='yes'?>

2.10. White Space Handling

In editing XML documents, it is often convenient to use “white space” (spaces, tabs, and blank lines) to
set apart the markup for greater readability. Such white space is typically not intended for inclusion in the
delivered version of the document. On the other hand, “significant” white space that should be preserved
in the delivered version is common, for example in poetry and source code.

An XML processor MUST always pass all characters in a document that are not markup through to the
application. A validating XML processor MUST also inform the application which of these characters
constitute white space appearing in element content.

A special attribute named xml:space MAY be attached to an element to signal an intention that in that
element, white space should be preserved by applications. In valid documents, this attribute, like any other,
MUST be declared if it is used. When declared, it MUST be given as an enumerated type whose values
are one or both of default and preserve. For example:

<!ATTLIST poem xml:space (default|preserve) 'preserve'>

<!ATTLIST pre xml:space (preserve) #FIXED 'preserve'>

The value default signals that applications' default white-space processing modes are acceptable for this
element; the value preserve indicates the intent that applications preserve all the white space. This declared
intent is considered to apply to all elements within the content of the element where it is specified, unless
overridden with another instance of the xml:space attribute. This specification does not give meaning to
any value of xml:space other than default and preserve. It is an error for other values to be specified; the
XML processor MAY report the error or MAY recover by ignoring the attribute specification or by
reporting the (erroneous) value to the application. Applications may ignore or reject erroneous values.

The root element of any document is considered to have signaled no intentions as regards application space
handling, unless it provides a value for this attribute or the attribute is declared with a default value.

Page 10 of 42 Documents

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

2.11. End-of-Line Handling

XML parsed entities are often stored in computer files which, for editing convenience, are organized into
lines. These lines are typically separated by some combination of the characters CARRIAGE RETURN
(#xD) and LINE FEED (#xA).

To simplify the tasks of applications, the XML processor MUST behave as if it normalized all line breaks
in external parsed entities (including the document entity) on input, before parsing, by translating both the
two-character sequence #xD #xA and any #xD that is not followed by #xA to a single #xA character.

2.12. Language Identification

In document processing, it is often useful to identify the natural or formal language in which the content
is written. A special attribute named xml:lang MAY be inserted in documents to specify the language used
in the contents and attribute values of any element in an XML document. In valid documents, this attribute,
like any other, MUST be declared if it is used. The values of the attribute are language identifiers as defined
by [IETF RFC 3066], Tags for the Identification of Languages, or its successor; in addition, the empty
string MAY be specified.

(Productions 33 through 38 have been removed.)

For example:

<p xml:lang="en">The quick brown fox jumps over the lazy dog.</p>

<p xml:lang="en-GB">What colour is it?</p>

<p xml:lang="en-US">What color is it?</p>

<sp who="Faust" desc='leise' xml:lang="de">

 <l>Habe nun, ach! Philosophie,</l>

 <l>Juristerei, und Medizin</l>

 <l>und leider auch Theologie</l>

 <l>durchaus studiert mit heißem Bemüh'n.</l>

</sp>

The intent declared with xml:lang is considered to apply to all attributes and content of the element where
it is specified, unless overridden with an instance of xml:lang on another element within that content. In
particular, the empty value of xml:lang is used on an element B to override a specification of xml:lang on
an enclosing element A, without specifying another language. Within B, it is considered that there is no
language information available, just as if xml:lang had not been specified on B or any of its ancestors.

Language information may also be provided by external transport protocols (e.g. HTTP or MIME). When available,
this information may be used by XML applications, but the more local information provided by xml:lang should
be considered to override it.

☞

A simple declaration for xml:lang might take the form

xml:lang CDATA #IMPLIED

but specific default values MAY also be given, if appropriate. In a collection of French poems for English
students, with glosses and notes in English, the xml:lang attribute might be declared this way:

<!ATTLIST poem xml:lang CDATA 'fr'>

<!ATTLIST gloss xml:lang CDATA 'en'>

<!ATTLIST note xml:lang CDATA 'en'>

End-of-Line Handling Page 11 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

3. Logical Structures
Each XML document contains one or more elements, the boundaries of which are either delimited by start-
tags and end-tags, or, for empty elements, by an empty-element tag. Each element has a type, identified
by name, sometimes called its “generic identifier” (GI), and MAY have a set of attribute specifications.
Each attribute specification has a name and a value.

Element

EmptyElemTag::=element[35]
| STag content ETag

This specification does not constrain the semantics, use, or (beyond syntax) names of the element types
and attributes, except that names beginning with a match to (('X'|'x')('M'|'m')('L'|'l'))
are reserved for standardization in this or future versions of this specification.

Well-Formedness Constraint: Element Type Match

The Name in an element's end-tag MUST match the element type in the start-tag.

Validity Constraint: Element Valid

An element is valid if there is a declaration matching elementdecl where the Name matches the element
type, and one of the following holds:

1. The declaration matches EMPTY and the element has no content (not even entity references, comments,
PIs or white space).

2. The declaration matches children and the sequence of child elements belongs to the language generated
by the regular expression in the content model, with optional white space, comments and PIs (i.e.
markup matching production [27] Misc) between the start-tag and the first child element, between
child elements, or between the last child element and the end-tag. Note that a CDATA section containing
only white space or a reference to an entity whose replacement text is character references expanding
to white space do not match the nonterminal S, and hence cannot appear in these positions; however,
a reference to an internal entity with a literal value consisting of character references expanding to
white space does match S, since its replacement text is the white space resulting from expansion of
the character references.

3. The declaration matches Mixed and the content (after replacing any entity references with their
replacement text) consists of character data, comments, PIs and child elements whose types match
names in the content model.

4. The declaration matches ANY, and the content (after replacing any entity references with their
replacement text) consists of character data and child elements whose types have been declared.

3.1. Start-Tags, End-Tags, and Empty-Element Tags

The beginning of every non-empty XML element is marked by a start-tag.

Start-tag

'<' Name (S Attribute)* S? '>'::=STag[36]

Page 12 of 42 Logical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Name Eq AttValue::=Attribute[37]

The Name in the start- and end-tags gives the element's type. The Name-AttValue pairs are referred to
as the attribute specifications of the element, with the Name in each pair referred to as the attribute name
and the content of the AttValue (the text between the ' or " delimiters) as the attribute value. Note that
the order of attribute specifications in a start-tag or empty-element tag is not significant.

Well-Formedness Constraint: Unique Att Spec

An attribute name MUST NOT appear more than once in the same start-tag or empty-element tag.

Validity Constraint: Attribute Value Type

The attribute MUST have been declared; the value MUST be of the type declared for it. (For attribute
types, see § 3.3 – Attribute-List Declarations on page 16.)

Well-Formedness Constraint: No External Entity References

Attribute values MUST NOT contain direct or indirect entity references to external entities.

Well-Formedness Constraint: No < in Attribute Values

The replacement text of any entity referred to directly or indirectly in an attribute value MUST NOT
contain a <.

An example of a start-tag:

<termdef id="dt-dog" term="dog">

The end of every element that begins with a start-tag MUST be marked by an end-tag containing a name
that echoes the element's type as given in the start-tag:

End-tag

'</' Name S? '>'::=ETag[38]

An example of an end-tag:

</termdef>

The text between the start-tag and end-tag is called the element's content:

Content of Elements

CharData? ((element | Reference | CDSect | PI | Com-
ment) CharData?)*

::=content[39]

An element with no content is said to be empty. The representation of an empty element is either a start-
tag immediately followed by an end-tag, or an empty-element tag. An empty-element tag takes a special
form:

Tags for Empty Elements

'<' Name (S Attribute)* S? '/>'::=EmptyElemTag[40]

Start-Tags, End-Tags, and Empty-Element Tags Page 13 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Empty-element tags MAY be used for any element which has no content, whether or not it is declared
using the keyword EMPTY. For interoperability, the empty-element tag SHOULD be used, and SHOULD
only be used, for elements which are declared EMPTY.

Examples of empty elements:

<IMG align="left"

 src="http://www.w3.org/Icons/WWW/w3c_home" />

</br>

3.2. Element Type Declarations

The element structure of an XML document MAY, for validation purposes, be constrained using element
type and attribute-list declarations. An element type declaration constrains the element's content.

Element type declarations often constrain which element types can appear as children of the element. At
user option, an XML processor MAY issue a warning when a declaration mentions an element type for
which no declaration is provided, but this is not an error.

An element type declaration takes the form:

Element Type Declaration

'<!ELEMENT' S Name S contentspec S? '>'::=elementdecl[41]

'EMPTY' | 'ANY' | Mixed | children::=contentspec[42]

where the Name gives the element type being declared.

Validity Constraint: Unique Element Type Declaration

An element type MUST NOT be declared more than once.

Examples of element type declarations:

<!ELEMENT br EMPTY>

<!ELEMENT p (#PCDATA|emph)* >

<!ELEMENT %name.para; %content.para; >

<!ELEMENT container ANY>

3.2.1. Element Content

An element type has element content when elements of that type MUST contain only child elements (no
character data), optionally separated by white space (characters matching the nonterminal S). In this case,
the constraint includes a content model, a simple grammar governing the allowed types of the child elements
and the order in which they are allowed to appear. The grammar is built on content particles (cps), which
consist of names, choice lists of content particles, or sequence lists of content particles:

Element-content Models

(choice | seq) ('?' | '*' | '+')?::=children[43]

(Name | choice | seq) ('?' | '*' | '+')?::=cp[44]

'(' S? cp (S? '|' S? cp)+ S? ')'::=choice[45]

Page 14 of 42 Logical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

'(' S? cp (S? ',' S? cp)* S? ')'::=seq[46]

where each Name is the type of an element which MAY appear as a child. Any content particle in a choice
list MAY appear in the element content at the location where the choice list appears in the grammar; content
particles occurring in a sequence list MUST each appear in the element content in the order given in the
list. The optional character following a name or list governs whether the element or the content particles
in the list may occur one or more (+), zero or more (*), or zero or one times (?). The absence of such an
operator means that the element or content particle MUST appear exactly once. This syntax and meaning
are identical to those used in the productions in this specification.

The content of an element matches a content model if and only if it is possible to trace out a path through
the content model, obeying the sequence, choice, and repetition operators and matching each element in
the content against an element type in the content model. For compatibility, it is an error if the content
model allows an element to match more than one occurrence of an element type in the content model. For
more information, see Appendix E – Deterministic Content Models on page 40.

Validity Constraint: Proper Group/PE Nesting

Parameter-entity replacement text MUST be properly nested with parenthesized groups. That is to say, if
either of the opening or closing parentheses in a choice, seq, or Mixed construct is contained in the
replacement text for a parameter entity, both MUST be contained in the same replacement text.

For interoperability, if a parameter-entity reference appears in a choice, seq, or Mixed construct, its
replacement text SHOULD contain at least one non-blank character, and neither the first nor last non-blank
character of the replacement text SHOULD be a connector (| or ,).

Examples of element-content models:

<!ELEMENT spec (front, body, back?)>

<!ELEMENT div1 (head, (p | list | note)*, div2*)>

<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

3.2.2. Mixed Content

An element type has mixed content when elements of that type MAY contain character data, optionally
interspersed with child elements. In this case, the types of the child elements MAY be constrained, but
not their order or their number of occurrences:

Mixed-content Declaration

'(' S? '#PCDATA' (S? '|' S? Name)* S? ')*'::=Mixed[47]
| '(' S? '#PCDATA' S? ')'

where the Names give the types of elements that may appear as children. The keyword #PCDATA derives
historically from the term “parsed character data.”

Validity Constraint: No Duplicate Types

The same name MUST NOT appear more than once in a single mixed-content declaration.

Element Type Declarations Page 15 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Examples of mixed content declarations:

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*>

<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)* >

<!ELEMENT b (#PCDATA)>

3.3. Attribute-List Declarations

Attributes are used to associate name-value pairs with elements. Attribute specifications MUST NOT
appear outside of start-tags and empty-element tags; thus, the productions used to recognize them appear
in § 3.1 – Start-Tags, End-Tags, and Empty-Element Tags on page 12. Attribute-list declarations MAY
be used:

• To define the set of attributes pertaining to a given element type.

• To establish type constraints for these attributes.

• To provide default values for attributes.

Attribute-list declarations specify the name, data type, and default value (if any) of each attribute associated
with a given element type:

Attribute-list Declaration

'<!ATTLIST' S Name AttDef* S? '>'::=AttlistDecl[48]

S Name S AttType S DefaultDecl::=AttDef[49]

The Name in the AttlistDecl rule is the type of an element. At user option, an XML processor MAY issue
a warning if attributes are declared for an element type not itself declared, but this is not an error. The
Name in the AttDef rule is the name of the attribute.

When more than one AttlistDecl is provided for a given element type, the contents of all those provided
are merged. When more than one definition is provided for the same attribute of a given element type, the
first declaration is binding and later declarations are ignored. For interoperability, writers of DTDs MAY
choose to provide at most one attribute-list declaration for a given element type, at most one attribute
definition for a given attribute name in an attribute-list declaration, and at least one attribute definition in
each attribute-list declaration. For interoperability, an XML processor MAY at user option issue a warning
when more than one attribute-list declaration is provided for a given element type, or more than one attribute
definition is provided for a given attribute, but this is not an error.

3.3.1. Attribute Types

XML attribute types are of three kinds: a string type, a set of tokenized types, and enumerated types. The
string type may take any literal string as a value; the tokenized types have varying lexical and semantic
constraints. The validity constraints noted in the grammar are applied after the attribute value has been
normalized as described in § 3.3.3 – Attribute-Value Normalization on page 19.

Attribute Types

StringType | TokenizedType | EnumeratedType::=AttType[50]

'CDATA'::=StringType[51]

'ID'::=TokenizedType[52]
| 'IDREF'

Page 16 of 42 Logical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

| 'IDREFS'
| 'ENTITY'
| 'ENTITIES'
| 'NMTOKEN'
| 'NMTOKENS'

Validity Constraint: ID

Values of type ID MUST match the Name production. A name MUST NOT appear more than once in an
XML document as a value of this type; i.e., ID values MUST uniquely identify the elements which bear
them.

Validity Constraint: One ID per Element Type

An element type MUST NOT have more than one ID attribute specified.

Validity Constraint: ID Attribute Default

An ID attribute MUST have a declared default of #IMPLIED or #REQUIRED.

Validity Constraint: IDREF

Values of type IDREF MUST match the Name production, and values of type IDREFS MUST match
Names; each Name MUST match the value of an ID attribute on some element in the XML document;
i.e. IDREF values MUST match the value of some ID attribute.

Validity Constraint: Entity Name

Values of type ENTITY MUST match the Name production, values of type ENTITIES MUST match
Names; each Name MUST match the name of an unparsed entity declared in the DTD.

Validity Constraint: Name Token

Values of type NMTOKEN MUST match the Nmtoken production; values of type NMTOKENS MUST match
Nmtokens.

Enumerated attributes MUST take one of a list of values provided in the declaration. There are two kinds
of enumerated types:

Enumerated Attribute Types

NotationType | Enumeration::=EnumeratedType[53]

'NOTATION' S '(' S? Name (S? '|' S? Name)* S? ')'::=NotationType[54]

'(' S? Nmtoken (S? '|' S? Nmtoken)* S? ')'::=Enumeration[55]

A NOTATION attribute identifies a notation, declared in the DTD with associated system and/or public
identifiers, to be used in interpreting the element to which the attribute is attached.

Validity Constraint: Notation Attributes

Values of this type MUST match one of the notation names included in the declaration; all notation names
in the declaration MUST be declared.

Attribute-List Declarations Page 17 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Validity Constraint: One Notation Per Element Type

An element type MUST NOT have more than one NOTATION attribute specified.

Validity Constraint: No Notation on Empty Element

For compatibility, an attribute of type NOTATION MUST NOT be declared on an element declared EMPTY.

Validity Constraint: No Duplicate Tokens

The notation names in a single NotationType attribute declaration, as well as the NmTokens in a single
Enumeration attribute declaration, MUST all be distinct.

Validity Constraint: Enumeration

Values of this type MUST match one of the Nmtoken tokens in the declaration.

For interoperability, the same Nmtoken SHOULD NOT occur more than once in the enumerated attribute
types of a single element type.

3.3.2. Attribute Defaults

An attribute declaration provides information on whether the attribute's presence is REQUIRED, and if
not, how an XML processor is to react if a declared attribute is absent in a document.

Attribute Defaults

'#REQUIRED' | '#IMPLIED'::=DefaultDecl[56]
| (('#FIXED' S)? AttValue)

In an attribute declaration, #REQUIRED means that the attribute MUST always be provided, #IMPLIED
that no default value is provided. If the declaration is neither #REQUIRED nor #IMPLIED, then the
AttValue value contains the declared default value; the #FIXED keyword states that the attribute MUST
always have the default value. When an XML processor encounters an element without a specification for
an attribute for which it has read a default value declaration, it MUST report the attribute with the declared
default value to the application.

Validity Constraint: Required Attribute

If the default declaration is the keyword #REQUIRED, then the attribute MUST be specified for all elements
of the type in the attribute-list declaration.

Validity Constraint: Attribute Default Value Syntactically Correct

The declared default value MUST meet the syntactic constraints of the declared attribute type.

Note that only the syntactic constraints of the type are required here; other constraints (e.g. that the value
be the name of a declared unparsed entity, for an attribute of type ENTITY) may come into play if the
declared default value is actually used (an element without a specification for this attribute occurs).

Page 18 of 42 Logical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Validity Constraint: Fixed Attribute Default

If an attribute has a default value declared with the #FIXED keyword, instances of that attribute MUST
match the default value.

Examples of attribute-list declarations:

<!ATTLIST termdef

 id ID #REQUIRED

 name CDATA #IMPLIED>

<!ATTLIST list

 type (bullets|ordered|glossary) "ordered">

<!ATTLIST form

 method CDATA #FIXED "POST">

3.3.3. Attribute-Value Normalization

Before the value of an attribute is passed to the application or checked for validity, the XML processor
MUST normalize the attribute value by applying the algorithm below, or by using some other method such
that the value passed to the application is the same as that produced by the algorithm.

1. All line breaks MUST have been normalized on input to #xA as described in § 2.11 – End-of-Line
Handling on page 11, so the rest of this algorithm operates on text normalized in this way.

2. Begin with a normalized value consisting of the empty string.

3. For each character, entity reference, or character reference in the unnormalized attribute value,
beginning with the first and continuing to the last, do the following:

• For a character reference, append the referenced character to the normalized value.

• For an entity reference, recursively apply step 3 of this algorithm to the replacement text of the
entity.

• For a white space character (#x20, #xD, #xA, #x9), append a space character (#x20) to the normal-
ized value.

• For another character, append the character to the normalized value.

If the attribute type is not CDATA, then the XML processor MUST further process the normalized attribute
value by discarding any leading and trailing space (#x20) characters, and by replacing sequences of space
(#x20) characters by a single space (#x20) character.

Note that if the unnormalized attribute value contains a character reference to a white space character other
than space (#x20), the normalized value contains the referenced character itself (#xD, #xA or #x9). This
contrasts with the case where the unnormalized value contains a white space character (not a reference),
which is replaced with a space character (#x20) in the normalized value and also contrasts with the case
where the unnormalized value contains an entity reference whose replacement text contains a white space
character; being recursively processed, the white space character is replaced with a space character (#x20)
in the normalized value.

All attributes for which no declaration has been read SHOULD be treated by a non-validating processor
as if declared CDATA.

It is an error if an attribute value contains a reference to an entity for which no declaration has been read.

Attribute-List Declarations Page 19 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Following are examples of attribute normalization. Given the following declarations:

<!ENTITY d "">

<!ENTITY a "
">

<!ENTITY da "
">

the attribute specifications in the left column below would be normalized to the character sequences of
the middle column if the attribute a is declared NMTOKENS and to those of the right columns if a is declared
CDATA.

a is CDATAa is NMTOKENSAttribute specification

#x20 #x20 x y zx y za="

xyz"

#x20 #x20 A #x20 #x20 #x20

 B #x20 #x20

A #x20 Ba="&d;&d;A&a; &a;B&da;"

#xD #xD A #xA #xA B #xD #xA#xD #xD A #xA #xA B

#xD #xA

a=

"A

B
"

Note that the last example is invalid (but well-formed) if a is declared to be of type NMTOKENS.

3.4. Conditional Sections

Conditional sections are portions of the document type declaration external subset or of external parameter
entities which are included in, or excluded from, the logical structure of the DTD based on the keyword
which governs them.

Conditional Section

includeSect | ignoreSect::=conditionalSect[57]

'<![' S? 'INCLUDE' S? '[' extSubsetDecl ']]>'::=includeSect[58]

'<![' S? 'IGNORE' S? '[' ignoreSectContents* ']]>'::=ignoreSect[59]

Ignore ('<![' ignoreSectContents ']]>' Ignore)*::=ignoreSectCon-
tents

[60]

Char* - (Char* ('<![' | ']]>') Char*)::=Ignore[61]

Validity Constraint: Proper Conditional Section/PE Nesting

If any of the "<![", "[", or "]]>" of a conditional section is contained in the replacement text for a
parameter-entity reference, all of them MUST be contained in the same replacement text.

Like the internal and external DTD subsets, a conditional section may contain one or more complete dec-
larations, comments, processing instructions, or nested conditional sections, intermingled with white space.

If the keyword of the conditional section is INCLUDE, then the contents of the conditional section MUST
be considered part of the DTD. If the keyword of the conditional section is IGNORE, then the contents of
the conditional section MUST be considered as not logically part of the DTD. If a conditional section with
a keyword of INCLUDE occurs within a larger conditional section with a keyword of IGNORE, both the

Page 20 of 42 Logical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

outer and the inner conditional sections MUST be ignored. The contents of an ignored conditional section
MUST be parsed by ignoring all characters after the "[" following the keyword, except conditional section
starts "<![" and ends "]]>", until the matching conditional section end is found. Parameter entity references
MUST NOT be recognized in this process.

If the keyword of the conditional section is a parameter-entity reference, the parameter entity MUST be
replaced by its content before the processor decides whether to include or ignore the conditional section.

An example:

<!ENTITY % draft 'INCLUDE' >

<!ENTITY % final 'IGNORE' >

<![%draft;[

<!ELEMENT book (comments*, title, body, supplements?)>

]]>

<![%final;[

<!ELEMENT book (title, body, supplements?)>

]]>

4. Physical Structures
An XML document may consist of one or many storage units. These are called entities; they all have
content and are all (except for the document entity and the external DTD subset) identified by entity name.
Each XML document has one entity called the document entity, which serves as the starting point for the
XML processor and may contain the whole document.

Entities may be either parsed or unparsed. The contents of a parsed entity are referred to as its replacement
text; this text is considered an integral part of the document.

An unparsed entity is a resource whose contents may or may not be text, and if text, may be other than
XML. Each unparsed entity has an associated notation, identified by name. Beyond a requirement that an
XML processor make the identifiers for the entity and notation available to the application, XML places
no constraints on the contents of unparsed entities.

Parsed entities are invoked by name using entity references; unparsed entities by name, given in the value
of ENTITY or ENTITIES attributes.

General entities are entities for use within the document content. In this specification, general entities are
sometimes referred to with the unqualified term entity when this leads to no ambiguity. Parameter entities
are parsed entities for use within the DTD. These two types of entities use different forms of reference
and are recognized in different contexts. Furthermore, they occupy different namespaces; a parameter
entity and a general entity with the same name are two distinct entities.

4.1. Character and Entity References

A character reference refers to a specific character in the ISO/IEC 10646 character set, for example one
not directly accessible from available input devices.

Character Reference

'&#' [0-9]+ ';'::=CharRef[62]

Character and Entity References Page 21 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

| '&#x' [0-9a-fA-F]+ ';'

Well-Formedness Constraint: Legal Character

Characters referred to using character references MUST match the production for Char.

If the character reference begins with “&#x”, the digits and letters up to the terminating ; provide a hex-
adecimal representation of the character's code point in ISO/IEC 10646. If it begins just with “&#”, the
digits up to the terminating ; provide a decimal representation of the character's code point.

An entity reference refers to the content of a named entity. References to parsed general entities use
ampersand (&) and semicolon (;) as delimiters. Parameter-entity references use percent-sign (%) and
semicolon (;) as delimiters.

Entity Reference

EntityRef | CharRef::=Reference[63]

'&' Name ';'::=EntityRef[64]

'%' Name ';'::=PEReference[65]

Well-Formedness Constraint: Entity Declared

In a document without any DTD, a document with only an internal DTD subset which contains no
parameter entity references, or a document with “standalone='yes'”, for an entity reference that
does not occur within the external subset or a parameter entity, the Name given in the entity reference
MUST match that in an entity declaration that does not occur within the external subset or a parameter
entity, except that well-formed documents need not declare any of the following entities: amp, lt, gt,
apos, quot. The declaration of a general entity MUST precede any reference to it which appears in a
default value in an attribute-list declaration.

Note that non-validating processors are not obligated to to read and process entity declarations occurring
in parameter entities or in the external subset; for such documents, the rule that an entity must be declared
is a well-formedness constraint only if standalone='yes'.

Validity Constraint: Entity Declared

In a document with an external subset or external parameter entities with “standalone='no'”, the
Name given in the entity reference MUST match that in an entity declaration. For interoperability, valid
documents SHOULD declare the entities amp, lt, gt, apos, quot, in the form specified in § 4.6 –
Predefined Entities on page 30. The declaration of a parameter entity MUST precede any reference to it.
Similarly, the declaration of a general entity MUST precede any attribute-list declaration containing a
default value with a direct or indirect reference to that general entity.

Well-Formedness Constraint: Parsed Entity

An entity reference MUST NOT contain the name of an unparsed entity. Unparsed entities may be referred
to only in attribute values declared to be of type ENTITY or ENTITIES.

Well-Formedness Constraint: No Recursion

A parsed entity MUST NOT contain a recursive reference to itself, either directly or indirectly.

Page 22 of 42 Physical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Well-Formedness Constraint: In DTD

Parameter-entity references MUST NOT appear outside the DTD.

Examples of character and entity references:

Type <key>less-than</key> (<) to save options.

This document was prepared on &docdate; and

is classified &security-level;.

Example of a parameter-entity reference:

<!-- declare the parameter entity "ISOLat2"... -->

<!ENTITY % ISOLat2

 SYSTEM "http://www.xml.com/iso/isolat2-xml.entities" >

<!-- ... now reference it. -->

%ISOLat2;

4.2. Entity Declarations

Entities are declared thus:

Entity Declaration

GEDecl | PEDecl::=EntityDecl[66]

'<!ENTITY' S Name S EntityDef S? '>'::=GEDecl[67]

'<!ENTITY' S '%' S Name S PEDef S? '>'::=PEDecl[68]

EntityValue| (ExternalID NDataDecl?)::=EntityDef[69]

EntityValue | ExternalID::=PEDef[70]

The Name identifies the entity in an entity reference or, in the case of an unparsed entity, in the value of
an ENTITY or ENTITIES attribute. If the same entity is declared more than once, the first declaration
encountered is binding; at user option, an XML processor MAY issue a warning if entities are declared
multiple times.

4.2.1. Internal Entities

If the entity definition is an EntityValue, the defined entity is called an internal entity. There is no separate
physical storage object, and the content of the entity is given in the declaration. Note that some processing
of entity and character references in the literal entity value may be required to produce the correct
replacement text: see § 4.5 – Construction of Entity Replacement Text on page 29.

An internal entity is a parsed entity.

Example of an internal entity declaration:

<!ENTITY Pub-Status "This is a pre-release of the

 specification.">

Entity Declarations Page 23 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

4.2.2. External Entities

If the entity is not internal, it is an external entity, declared as follows:

External Entity Declaration

'SYSTEM' S SystemLiteral::=ExternalID[71]
| 'PUBLIC' S PubidLiteral S SystemLiteral

S 'NDATA' S Name::=NDataDecl[72]

If the NDataDecl is present, this is a general unparsed entity; otherwise it is a parsed entity.

Validity Constraint: Notation Declared

The Name MUST match the declared name of a notation.

The SystemLiteral is called the entity's system identifier. It is meant to be converted to a URI reference
(as defined in [IETF RFC 2396], updated by [IETF RFC 2732]), as part of the process of dereferencing it
to obtain input for the XML processor to construct the entity's replacement text. It is an error for a fragment
identifier (beginning with a # character) to be part of a system identifier. Unless otherwise provided by
information outside the scope of this specification (e.g. a special XML element type defined by a particular
DTD, or a processing instruction defined by a particular application specification), relative URIs are relative
to the location of the resource within which the entity declaration occurs. This is defined to be the external
entity containing the '<' which starts the declaration, at the point when it is parsed as a declaration. A URI
might thus be relative to the document entity, to the entity containing the external DTD subset, or to some
other external parameter entity. Attempts to retrieve the resource identified by a URI MAY be redirected
at the parser level (for example, in an entity resolver) or below (at the protocol level, for example, via an
HTTP Location: header). In the absence of additional information outside the scope of this specification
within the resource, the base URI of a resource is always the URI of the actual resource returned. In other
words, it is the URI of the resource retrieved after all redirection has occurred.

System identifiers (and other XML strings meant to be used as URI references) MAY contain characters
that, according to [IETF RFC 2396] and [IETF RFC 2732], must be escaped before a URI can be used to
retrieve the referenced resource. The characters to be escaped are the control characters #x0 to #x1F and
#x7F (most of which cannot appear in XML), space #x20, the delimiters '<' #x3C, '>' #x3E and '"' #x22,
the unwise characters '{' #x7B, '}' #x7D, '|' #x7C, '\' #x5C, '^' #x5E and '`' #x60, as well as all characters
above #x7F. Since escaping is not always a fully reversible process, it MUST be performed only when
absolutely necessary and as late as possible in a processing chain. In particular, neither the process of
converting a relative URI to an absolute one nor the process of passing a URI reference to a process or
software component responsible for dereferencing it SHOULD trigger escaping. When escaping does
occur, it MUST be performed as follows:

1. Each character to be escaped is represented in UTF-8 [Unicode3] as one or more bytes.

2. The resulting bytes are escaped with the URI escaping mechanism (that is, converted to %HH, where
HH is the hexadecimal notation of the byte value).

3. The original character is replaced by the resulting character sequence.

In addition to a system identifier, an external identifier MAY include a public identifier. An XML processor
attempting to retrieve the entity's content MAY use any combination of the public and system identifiers
as well as additional information outside the scope of this specification to try to generate an alternative
URI reference. If the processor is unable to do so, it MUST use the URI reference specified in the system

Page 24 of 42 Physical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

literal. Before a match is attempted, all strings of white space in the public identifier MUST be normalized
to single space characters (#x20), and leading and trailing white space MUST be removed.

Examples of external entity declarations:

<!ENTITY open-hatch

 SYSTEM "http://www.textuality.com/boilerplate/OpenHatch.xml">

<!ENTITY open-hatch

 PUBLIC "-//Textuality//TEXT Standard open-hatch boilerplate//EN"

 "http://www.textuality.com/boilerplate/OpenHatch.xml">

<!ENTITY hatch-pic

 SYSTEM "../grafix/OpenHatch.gif"

 NDATA gif >

4.3. Parsed Entities

4.3.1. The Text Declaration

External parsed entities SHOULD each begin with a text declaration.

Text Declaration

'<?xml' VersionInfo? EncodingDecl S? '?>'::=TextDecl[73]

The text declaration MUST be provided literally, not by reference to a parsed entity. The text declaration
MUST NOT appear at any position other than the beginning of an external parsed entity. The text declaration
in an external parsed entity is not considered part of its replacement text.

4.3.2. Well-Formed Parsed Entities

The document entity is well-formed if it matches the production labeled document. An external general
parsed entity is well-formed if it matches the production labeled extParsedEnt. All external parameter
entities are well-formed by definition.

Well-Formed External Parsed Entity

TextDecl? content::=extParsedEnt[74]

An internal general parsed entity is well-formed if its replacement text matches the production labeled
content. All internal parameter entities are well-formed by definition.

A consequence of well-formedness in general entities is that the logical and physical structures in an XML
document are properly nested; no start-tag, end-tag, empty-element tag, element, comment, processing
instruction, character reference, or entity reference can begin in one entity and end in another.

4.3.3. Character Encoding in Entities

Each external parsed entity in an XML document MAY use a different encoding for its characters. All
XML processors MUST be able to read entities in both the UTF-8 and UTF-16 encodings. The terms
“UTF-8” and “UTF-16” in this specification do not apply to character encodings with any other labels,
even if the encodings or labels are very similar to UTF-8 or UTF-16.

Entities encoded in UTF-16 MUST and entities encoded in UTF-8 MAY begin with the Byte Order Mark
described by Annex H of [ISO/IEC 10646:2000], section 2.4 of [Unicode], and section 2.7 of [Unicode3]

Parsed Entities Page 25 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

(the ZERO WIDTH NO-BREAK SPACE character, #xFEFF). This is an encoding signature, not part of
either the markup or the character data of the XML document. XML processors MUST be able to use this
character to differentiate between UTF-8 and UTF-16 encoded documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-16 encodings, it is
recognized that other encodings are used around the world, and it may be desired for XML processors to
read entities that use them. In the absence of external character encoding information (such as MIME
headers), parsed entities which are stored in an encoding other than UTF-8 or UTF-16 MUST begin with
a text declaration (see § 4.3.1 – The Text Declaration on page 25) containing an encoding declaration:

Encoding Declaration

S 'encoding' Eq ('"' EncName '"' | "'" EncName "'")::=EncodingDecl[75]

/* Encoding name contains
only Latin characters */

[A-Za-z] ([A-Za-z0-9._] | '-')*::=EncName[76]

In the document entity, the encoding declaration is part of the XML declaration. The EncName is the
name of the encoding used.

In an encoding declaration, the values “UTF-8”, “UTF-16”, “ISO-10646-UCS-2”, and “ISO-10646-
UCS-4” SHOULD be used for the various encodings and transformations of Unicode / ISO/IEC 10646,
the values “ISO-8859-1”, “ISO-8859-2”, ... “ISO-8859-n” (where n is the part number) SHOULD
be used for the parts of ISO 8859, and the values “ISO-2022-JP”, “Shift_JIS”, and “EUC-JP”
SHOULD be used for the various encoded forms of JIS X-0208-1997. It is RECOMMENDED that char-
acter encodings registered (as charsets) with the Internet Assigned Numbers Authority [IANA-CHARSETS],
other than those just listed, be referred to using their registered names; other encodings SHOULD use
names starting with an “x-” prefix. XML processors SHOULD match character encoding names in a case-
insensitive way and SHOULD either interpret an IANA-registered name as the encoding registered at
IANA for that name or treat it as unknown (processors are, of course, not required to support all IANA-
registered encodings).

In the absence of information provided by an external transport protocol (e.g. HTTP or MIME), it is a fatal
error for an entity including an encoding declaration to be presented to the XML processor in an encoding
other than that named in the declaration, or for an entity which begins with neither a Byte Order Mark nor
an encoding declaration to use an encoding other than UTF-8. Note that since ASCII is a subset of UTF-
8, ordinary ASCII entities do not strictly need an encoding declaration.

It is a fatal error for a TextDecl to occur other than at the beginning of an external entity.

It is a fatal error when an XML processor encounters an entity with an encoding that it is unable to process.
It is a fatal error if an XML entity is determined (via default, encoding declaration, or higher-level protocol)
to be in a certain encoding but contains byte sequences that are not legal in that encoding. Specifically, it
is a fatal error if an entity encoded in UTF-8 contains any irregular code unit sequences, as defined in
Unicode 3.1 [Unicode3]. Unless an encoding is determined by a higher-level protocol, it is also a fatal
error if an XML entity contains no encoding declaration and its content is not legal UTF-8 or UTF-16.

Examples of text declarations containing encoding declarations:

<?xml encoding='UTF-8'?>

<?xml encoding='EUC-JP'?>

Page 26 of 42 Physical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4. XML Processor Treatment of Entities and References

The table below summarizes the contexts in which character references, entity references, and invocations
of unparsed entities might appear and the REQUIRED behavior of an XML processor in each case. The
labels in the leftmost column describe the recognition context:

Reference in Content

as a reference anywhere after the start-tag and before the end-tag of an element; corresponds to
the nonterminal content.

Reference in Attribute Value

as a reference within either the value of an attribute in a start-tag, or a default value in an attribute
declaration; corresponds to the nonterminal AttValue.

Occurs as Attribute Value

as a Name, not a reference, appearing either as the value of an attribute which has been declared
as type ENTITY, or as one of the space-separated tokens in the value of an attribute which has
been declared as type ENTITIES.

Reference in Entity Value

as a reference within a parameter or internal entity's literal entity value in the entity's declaration;
corresponds to the nonterminal EntityValue.

Reference in DTD

as a reference within either the internal or external subsets of the DTD, but outside of an Entity-
Value, AttValue, PI, Comment, SystemLiteral, PubidLiteral, or the contents of an ignored
conditional section (see § 3.4 – Conditional Sections on page 20).

.

CharacterEntity Type

Unparsed
External Parsed

GeneralInternal GeneralParameter

IncludedForbiddenIncluded if validat-
ing

IncludedNot recognizedReference in Content

IncludedForbiddenForbiddenIncluded in lit-
eral

Not recognizedReference in
Attribute Value

Not recog-
nized

NotifyForbiddenForbiddenNot recognizedOccurs as Attribute
Value

IncludedErrorBypassedBypassedIncluded in literalReference in Entity-
Value

ForbiddenForbiddenForbiddenForbiddenIncluded as PEReference in DTD

4.4.1. Not Recognized

Outside the DTD, the % character has no special significance; thus, what would be parameter entity refer-
ences in the DTD are not recognized as markup in content. Similarly, the names of unparsed entities are
not recognized except when they appear in the value of an appropriately declared attribute.

XML Processor Treatment of Entities and References Page 27 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.2. Included

An entity is included when its replacement text is retrieved and processed, in place of the reference itself,
as though it were part of the document at the location the reference was recognized. The replacement text
MAY contain both character data and (except for parameter entities) markup, which MUST be recognized
in the usual way. (The string “AT&T;” expands to “AT&T;” and the remaining ampersand is not
recognized as an entity-reference delimiter.) A character reference is included when the indicated character
is processed in place of the reference itself.

4.4.3. Included If Validating

When an XML processor recognizes a reference to a parsed entity, in order to validate the document, the
processor MUST include its replacement text. If the entity is external, and the processor is not attempting
to validate the XML document, the processor MAY, but need not, include the entity's replacement text.
If a non-validating processor does not include the replacement text, it MUST inform the application that
it recognized, but did not read, the entity.

This rule is based on the recognition that the automatic inclusion provided by the SGML and XML entity
mechanism, primarily designed to support modularity in authoring, is not necessarily appropriate for other
applications, in particular document browsing. Browsers, for example, when encountering an external
parsed entity reference, might choose to provide a visual indication of the entity's presence and retrieve it
for display only on demand.

4.4.4. Forbidden

The following are forbidden, and constitute fatal errors:

• the appearance of a reference to an unparsed entity, except in the EntityValue in an entity declaration.

• the appearance of any character or general-entity reference in the DTD except within an EntityValue
or AttValue.

• a reference to an external entity in an attribute value.

4.4.5. Included in Literal

When an entity reference appears in an attribute value, or a parameter entity reference appears in a literal
entity value, its replacement text MUST be processed in place of the reference itself as though it were part
of the document at the location the reference was recognized, except that a single or double quote character
in the replacement text MUST always be treated as a normal data character and MUST NOT terminate
the literal. For example, this is well-formed:

<!ENTITY % YN '"Yes"' >

<!ENTITY WhatHeSaid "He said %YN;" >

while this is not:

<!ENTITY EndAttr "27'" >

<element attribute='a-&EndAttr;>

Page 28 of 42 Physical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

4.4.6. Notify

When the name of an unparsed entity appears as a token in the value of an attribute of declared type
ENTITY or ENTITIES, a validating processor MUST inform the application of the system and public (if
any) identifiers for both the entity and its associated notation.

4.4.7. Bypassed

When a general entity reference appears in the EntityValue in an entity declaration, it MUST be bypassed
and left as is.

4.4.8. Included as PE

Just as with external parsed entities, parameter entities need only be included if validating. When a
parameter-entity reference is recognized in the DTD and included, its replacement text MUST be enlarged
by the attachment of one leading and one following space (#x20) character; the intent is to constrain the
replacement text of parameter entities to contain an integral number of grammatical tokens in the DTD.
This behavior MUST NOT apply to parameter entity references within entity values; these are described
in § 4.4.5 – Included in Literal on page 28.

4.4.9. Error

It is an error for a reference to an unparsed entity to appear in the EntityValue in an entity declaration.

4.5. Construction of Entity Replacement Text

In discussing the treatment of entities, it is useful to distinguish two forms of the entity's value. For an
internal entity, the literal entity value is the quoted string actually present in the entity declaration, corre-
sponding to the non-terminal EntityValue. For an external entity, the literal entity value is the exact text
contained in the entity. For an internal entity, the replacement text is the content of the entity, after
replacement of character references and parameter-entity references. For an external entity, the replacement
text is the content of the entity, after stripping the text declaration (leaving any surrounding whitespace)
if there is one but without any replacement of character references or parameter-entity references.

The literal entity value as given in an internal entity declaration (EntityValue) MAY contain character,
parameter-entity, and general-entity references. Such references MUST be contained entirely within the
literal entity value. The actual replacement text that is included (or) as described above MUST contain
the replacement text of any parameter entities referred to, and MUST contain the character referred to, in
place of any character references in the literal entity value; however, general-entity references MUST be
left as-is, unexpanded. For example, given the following declarations:

<!ENTITY % pub "Éditions Gallimard" >

<!ENTITY rights "All rights reserved" >

<!ENTITY book "La Peste: Albert Camus,

© 1947 %pub;. &rights;" >

then the replacement text for the entity “book” is:

La Peste: Albert Camus,

© 1947 Éditions Gallimard. &rights;

The general-entity reference “&rights;” would be expanded should the reference “&book;” appear in
the document's content or an attribute value.

Construction of Entity Replacement Text Page 29 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

These simple rules may have complex interactions; for a detailed discussion of a difficult example, see
Appendix D – Expansion of Entity and Character References on page 38.

4.6. Predefined Entities

Entity and character references MAY both be used to escape the left angle bracket, ampersand, and other
delimiters. A set of general entities (amp, lt, gt, apos, quot) is specified for this purpose. Numeric
character references MAY also be used; they are expanded immediately when recognized and MUST be
treated as character data, so the numeric character references “<” and “&” MAY be used to
escape < and & when they occur in character data.

All XML processors MUST recognize these entities whether they are declared or not. For interoperability,
valid XML documents SHOULD declare these entities, like any others, before using them. If the entities
lt or amp are declared, they MUST be declared as internal entities whose replacement text is a character
reference to the respective character (less-than sign or ampersand) being escaped; the double escaping is
REQUIRED for these entities so that references to them produce a well-formed result. If the entities gt,
apos, or quot are declared, they MUST be declared as internal entities whose replacement text is the
single character being escaped (or a character reference to that character; the double escaping here is
OPTIONAL but harmless). For example:

<!ENTITY lt "&#60;">

<!ENTITY gt ">">

<!ENTITY amp "&#38;">

<!ENTITY apos "'">

<!ENTITY quot """>

4.7. Notation Declarations

Notations identify by name the format of unparsed entities, the format of elements which bear a notation
attribute, or the application to which a processing instruction is addressed.

Notation declarations provide a name for the notation, for use in entity and attribute-list declarations and
in attribute specifications, and an external identifier for the notation which may allow an XML processor
or its client application to locate a helper application capable of processing data in the given notation.

Notation Declarations

'<!NOTATION' S Name S (ExternalID | PublicID) S? '>'::=NotationDecl[77]

'PUBLIC' S PubidLiteral::=PublicID[78]

Validity Constraint: Unique Notation Name

A given Name MUST NOT be declared in more than one notation declaration.

XML processors MUST provide applications with the name and external identifier(s) of any notation
declared and referred to in an attribute value, attribute definition, or entity declaration. They MAY addi-
tionally resolve the external identifier into the system identifier, file name, or other information needed to
allow the application to call a processor for data in the notation described. (It is not an error, however, for
XML documents to declare and refer to notations for which notation-specific applications are not available
on the system where the XML processor or application is running.)

Page 30 of 42 Physical Structures

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

4.8. Document Entity

The document entity serves as the root of the entity tree and a starting-point for an XML processor. This
specification does not specify how the document entity is to be located by an XML processor; unlike other
entities, the document entity has no name and might well appear on a processor input stream without any
identification at all.

5. Conformance
5.1. Validating and Non-Validating Processors

Conforming XML processors fall into two classes: validating and non-validating.

Validating and non-validating processors alike MUST report violations of this specification's well-
formedness constraints in the content of the document entity and any other parsed entities that they read.

Validating processors MUST, at user option, report violations of the constraints expressed by the declara-
tions in the DTD, and failures to fulfill the validity constraints given in this specification. To accomplish
this, validating XML processors MUST read and process the entire DTD and all external parsed entities
referenced in the document.

Non-validating processors are REQUIRED to check only the document entity, including the entire internal
DTD subset, for well-formedness. While they are not required to check the document for validity, they
are REQUIRED to process all the declarations they read in the internal DTD subset and in any parameter
entity that they read, up to the first reference to a parameter entity that they do not read; that is to say, they
MUST use the information in those declarations to normalize attribute values, include the replacement
text of internal entities, and supply default attribute values. Except when standalone="yes", they
MUST NOT process entity declarations or attribute-list declarations encountered after a reference to a
parameter entity that is not read, since the entity may have contained overriding declarations; when
standalone="yes", processors MUST process these declarations.

Note that when processing invalid documents with a non-validating processor the application may not be
presented with consistent information. For example, several requirements for uniqueness within the docu-
ment may not be met, including more than one element with the same id, duplicate declarations of elements
or notations with the same name, etc. In these cases the behavior of the parser with respect to reporting
such information to the application is undefined.

5.2. Using XML Processors

The behavior of a validating XML processor is highly predictable; it must read every piece of a document
and report all well-formedness and validity violations. Less is required of a non-validating processor; it
need not read any part of the document other than the document entity. This has two effects that may be
important to users of XML processors:

• Certain well-formedness errors, specifically those that require reading external entities, may fail to be
detected by a non-validating processor. Examples include the constraints entitled Entity Declared,
Parsed Entity, and No Recursion, as well as some of the cases described as forbidden in § 4.4 – XML
Processor Treatment of Entities and References on page 27.

• The information passed from the processor to the application may vary, depending on whether the
processor reads parameter and external entities. For example, a non-validating processor may fail to

Document Entity Page 31 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

normalize attribute values, include the replacement text of internal entities, or supply default attribute
values, where doing so depends on having read declarations in external or parameter entities.

For maximum reliability in interoperating between different XML processors, applications which use non-
validating processors SHOULD NOT rely on any behaviors not required of such processors. Applications
which require DTD facilities not related to validation (such as the declaration of default attributes and
internal entities that are or may be specified in external entities) SHOULD use validating XML processors.

6. Notation
The formal grammar of XML is given in this specification using a simple Extended Backus-Naur Form
(EBNF) notation. Each rule in the grammar defines one symbol, in the form

symbol ::= expression

Symbols are written with an initial capital letter if they are the start symbol of a regular language, otherwise
with an initial lowercase letter. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are used to match strings
of one or more characters:

#xN

where N is a hexadecimal integer, the expression matches the character whose number (code point)
in ISO/IEC 10646 is N. The number of leading zeros in the #xN form is insignificant.

[a-zA-Z], [#xN-#xN]

matches any Char with a value in the range(s) indicated (inclusive).

[abc], [#xN#xN#xN]

matches any Char with a value among the characters enumerated. Enumerations and ranges can
be mixed in one set of brackets.

[^a-z], [^#xN-#xN]

matches any Char with a value outside the range indicated.

[^abc], [^#xN#xN#xN]

matches any Char with a value not among the characters given. Enumerations and ranges of for-
bidden values can be mixed in one set of brackets.

"string"

matches a literal string matching that given inside the double quotes.

'string'

matches a literal string matching that given inside the single quotes.

These symbols may be combined to match more complex patterns as follows, where A and B represent
simple expressions:

(expression)

expression is treated as a unit and may be combined as described in this list.

A?

matches A or nothing; optional A.

Page 32 of 42 Notation

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

A B

matches A followed by B. This operator has higher precedence than alternation; thus A B | C
D is identical to (A B) | (C D).

A | B

matches A or B.

A - B

matches any string that matches A but does not match B.

A+

matches one or more occurrences of A. Concatenation has higher precedence than alternation; thus
A+ | B+ is identical to (A+) | (B+).

A*

matches zero or more occurrences of A. Concatenation has higher precedence than alternation;
thus A* | B* is identical to (A*) | (B*).

Other notations used in the productions are:

/* ... */

comment.

[wfc: ...]

well-formedness constraint; this identifies by name a constraint on well-formed documents asso-
ciated with a production.

[vc: ...]

validity constraint; this identifies by name a constraint on valid documents associated with a pro-
duction.

Appendix A. References
A.1. Normative References

IANA-CHARSETS

(Internet Assigned Numbers Authority) Official Names for Character Sets, ed. Keld Simonsen et
al. Available at http://www.iana.org/assignments/character-sets.

IETF RFC 2119

IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate
Requirement Levels. Scott Bradner, 1997. Available at
http://www.ietf.org/rfc/rfc2119.txt.

IETF RFC 2396

IETF (Internet Engineering Task Force). RFC 2396: Uniform Resource Identifiers (URI): Generic
Syntax. T. Berners-Lee, R. Fielding, L. Masinter. 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt.

Normative References Page 33 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

IETF RFC 2732

IETF (Internet Engineering Task Force). RFC 2732: Format for Literal IPv6 Addresses in URL's.
R. Hinden, B. Carpenter, L. Masinter. 1999. Available at
http://www.ietf.org/rfc/rfc2732.txt.

IETF RFC 3066

IETF (Internet Engineering Task Force). RFC 3066: Tags for the Identification of Languages, ed.
H. Alvestrand. 2001. Available at http://www.ietf.org/rfc/rfc3066.txt.

ISO/IEC 10646

ISO (International Organization for Standardization). ISO/IEC 10646-1:2000. Information tech-
nology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture and Basic
Multilingual Plane and ISO/IEC 10646-2:2001. Information technology — Universal Multiple-
Octet Coded Character Set (UCS) — Part 2: Supplementary Planes, as, from time to time, amended,
replaced by a new edition or expanded by the addition of new parts. [Geneva]: International
Organization for Standardization. (See http://www.iso.ch for the latest version.)

ISO/IEC 10646:2000

ISO (International Organization for Standardization). ISO/IEC 10646-1:2000. Information tech-
nology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture and Basic
Multilingual Plane. [Geneva]: International Organization for Standardization, 2000.

Unicode

The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

Unicode3

The Unicode Consortium. The Unicode Standard, Version 3.2, defined by: The Unicode Standard,
Version 3.0 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), as amended by the
Unicode Standard Annex #27: Unicode 3.1 (http://www.unicode.org/reports/tr27) and the Unicode
Standard Annex #28: Unicode 3.2 (http://www.unicode.org/reports/tr28).

A.2. Other References

Aho/Ullman

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Reading: Addison-Wesley, 1986, rpt. corr. 1988.

Brüggemann-Klein

Brüggemann-Klein, Anne. Formal Models in Document Processing. Habilitationsschrift. Faculty
of Mathematics at the University of Freiburg, 1993. Available at ftp://ftp.infor-
matik.uni-freiburg.de/documents/papers/brueggem/habil.ps.

Brüggemann-Klein and Wood

Brüggemann-Klein, Anne, and Derick Wood. Deterministic Regular Languages. Universität
Freiburg, Institut für Informatik, Bericht 38, Oktober 1991. Extended abstract in A. Finkel, M.
Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag, Berlin 1992. Lecture Notes in Computer
Science 577. Full version titled One-Unambiguous Regular Languages in Information and Com-
putation 140 (2): 229-253, February 1998.

Page 34 of 42 References

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.iso.ch
http://www.unicode.org/reports/tr27/
http://www.unicode.org/reports/tr28/
ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps
ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Clark

James Clark. Comparison of SGML and XML. Available at http://www.w3.org/TR/NOTE-
sgml-xml-971215.

IANA-LANGCODES

(Internet Assigned Numbers Authority) Registry of Language Tags, ed. Keld Simonsen et al.
Available at http://www.iana.org/assignments/language-tags.

IETF RFC 2141

IETF (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R. Moats. 1997. Available
at http://www.ietf.org/rfc/rfc2141.txt.

IETF RFC 3023

IETF (Internet Engineering Task Force). RFC 3023: XML Media Types. eds. M. Murata, S.
St.Laurent, D. Kohn. 2001. Available at http://www.ietf.org/rfc/rfc3023.txt.

IETF RFC 2781

IETF (Internet Engineering Task Force). RFC 2781: UTF-16, an encoding of ISO 10646, ed. P.
Hoffman, F. Yergeau. 2000. Available at http://www.ietf.org/rfc/rfc2781.txt.

ISO 639

(International Organization for Standardization). ISO 639:1988 (E). Code for the representation
of names of languages. [Geneva]: International Organization for Standardization, 1988.

ISO 3166

(International Organization for Standardization). ISO 3166-1:1997 (E). Codes for the representation
of names of countries and their subdivisions — Part 1: Country codes [Geneva]: International
Organization for Standardization, 1997.

ISO 8879

ISO (International Organization for Standardization). ISO 8879:1986(E). Information processing
— Text and Office Systems — Standard Generalized Markup Language (SGML). First edition —
1986-10-15. [Geneva]: International Organization for Standardization, 1986.

ISO/IEC 10744

ISO (International Organization for Standardization). ISO/IEC 10744-1992 (E). Information
technology — Hypermedia/Time-based Structuring Language (HyTime). [Geneva]: International
Organization for Standardization, 1992. Extended Facilities Annexe. [Geneva]: International
Organization for Standardization, 1996.

WEBSGML

ISO (International Organization for Standardization). ISO 8879:1986 TC2. Information technology
— Document Description and Processing Languages. [Geneva]: International Organization for
Standardization, 1998. Available at http://www.sgmlsource.com/8879/n0029.htm.

XML Names

Tim Bray, Dave Hollander, and Andrew Layman, editors. Namespaces in XML. Textuality, Hewlett-
Packard, and Microsoft. World Wide Web Consortium, 1999. Available at
http://www.w3.org/TR/REC-xml-names/.

Other References Page 35 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.iana.org/assignments/language-tags
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.sgmlsource.com/8879/n0029.htm
http://www.sgmlsource.com/8879/n0029.htm
http://www.sgmlsource.com/8879/n0029.htm
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix B. Character Classes
Following the characteristics defined in the Unicode standard, characters are classed as base characters
(among others, these contain the alphabetic characters of the Latin alphabet), ideographic characters, and
combining characters (among others, this class contains most diacritics). Digits and extenders are also
distinguished.

Characters

BaseChar | Ideographic::=Letter[79]

[#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6]
| [#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131]

::=BaseChar[80]

| [#x0134-#x013E] | [#x0141-#x0148] | [#x014A-#x017E]
| [#x0180-#x01C3] | [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1]
| #x0386 | [#x0388-#x038A] | #x038C | [#x038E-#x03A1]
| [#x03A3-#x03CE] | [#x03D0-#x03D6] | #x03DA
| #x03DC | #x03DE | #x03E0 | [#x03E2-#x03F3] | [#x0401-
#x040C] | [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-
#x0481] | [#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-
#x04CC] | [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-
#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] | [#x0621-
#x063A] | [#x0641-#x064A] | [#x0671-#x06B7] | [#x06BA-
#x06BE] | [#x06C0-#x06CE] | [#x06D0-#x06D3] | #x06D5
| [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D | [#x0958-
#x0961] | [#x0985-#x098C] | [#x098F-#x0990] | [#x0993-
#x09A8] | [#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9]
| [#x09DC-#x09DD] | [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10] | [#x0A13-
#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33]
| [#x0A35-#x0A36] | [#x0A38-#x0A39] | [#x0A59-
#x0A5C] | #x0A5E | [#x0A72-#x0A74] | [#x0A85-
#x0A8B] | #x0A8D | [#x0A8F-#x0A91] | [#x0A93-
#x0AA8] | [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3]
| [#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-
#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-#x0B28]
| [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39]
| #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-
#x0B95] | [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F]
| [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-
#x0BB5] | [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28] | [#x0C2A-
#x0C33] | [#x0C35-#x0C39] | [#x0C60-#x0C61] | [#x0C85-
#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CA8]
| [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE
| [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-
#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39]
| [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30
| [#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-#x0E82]
| #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D | [#x0E94-
#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-#x0EA3] | #x0EA5

Page 36 of 42 Character Classes

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

| #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE]
| #x0EB0 | [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-
#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69] | [#x10A0-
#x10C5] | [#x10D0-#x10F6] | #x1100 | [#x1102-#x1103]
| [#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-
#x1112] | #x113C | #x113E | #x1140 | #x114C | #x114E
| #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-#x1161]
| #x1163 | #x1165 | #x1167 | #x1169 | [#x116D-#x116E]
| [#x1172-#x1173] | #x1175 | #x119E | #x11A8 | #x11AB
| [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA
| [#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9 | [#x1E00-
#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15] | [#x1F18-
#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D] | [#x1F50-
#x1F57] | #x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D]
| [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE
| [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-
#x1FD3] | [#x1FD6-#x1FDB] | [#x1FE0-#x1FEC]
| [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-
#x212B] | #x212E | [#x2180-#x2182] | [#x3041-#x3094]
| [#x30A1-#x30FA] | [#x3105-#x312C] | [#xAC00-
#xD7A3]

[#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]::=Ideographic[81]

[#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486]
| [#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD]

::=CombiningChar[82]

| #x05BF | [#x05C1-#x05C2] | #x05C4 | [#x064B-#x0652]
| #x0670 | [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED]
| [#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D
| [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983]
| #x09BC | #x09BE | #x09BF | [#x09C0-#x09C4]
| [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7
| [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F
| [#x0A40-#x0A42] | [#x0A47-#x0A48] | [#x0A4B-
#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83]
| #x0ABC | [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C
| [#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-
#x0B4D] | [#x0B56-#x0B57] | [#x0B82-#x0B83]
| [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-
#x0BCD] | #x0BD7 | [#x0C01-#x0C03] | [#x0C3E-#x0C44]
| [#x0C46-#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-
#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4]
| [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-
#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43]
| [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57
| #x0E31 | [#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1
| [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-
#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39
| #x0F3E | #x0F3F | [#x0F71-#x0F84] | [#x0F86-#x0F8B]
| [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-
#x0FB7] | #x0FB9 | [#x20D0-#x20DC] | #x20E1
| [#x302A-#x302F] | #x3099 | #x309A

Page 37 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

[#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9]
| [#x0966-#x096F] | [#x09E6-#x09EF] | [#x0A66-#x0A6F]

::=Digit[83]

| [#x0AE6-#x0AEF] | [#x0B66-#x0B6F] | [#x0BE7-
#x0BEF] | [#x0C66-#x0C6F] | [#x0CE6-#x0CEF]
| [#x0D66-#x0D6F] | [#x0E50-#x0E59] | [#x0ED0-
#x0ED9] | [#x0F20-#x0F29]

#x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46
| #x0EC6 | #x3005 | [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

::=Extender[84]

The character classes defined here can be derived from the Unicode 2.0 character database as follows:

• Name start characters must have one of the categories Ll, Lu, Lo, Lt, Nl.

• Name characters other than Name-start characters must have one of the categories Mc, Me, Mn, Lm,
or Nd.

• Characters in the compatibility area (i.e. with character code greater than #xF900 and less than #xFFFE)
are not allowed in XML names.

• Characters which have a font or compatibility decomposition (i.e. those with a “compatibility formatting
tag” in field 5 of the database -- marked by field 5 beginning with a “<”) are not allowed.

• The following characters are treated as name-start characters rather than name characters, because the
property file classifies them as Alphabetic: [#x02BB-#x02C1], #x0559, #x06E5, #x06E6.

• Characters #x20DD-#x20E0 are excluded (in accordance with Unicode 2.0, section 5.14).

• Character #x00B7 is classified as an extender, because the property list so identifies it.

• Character #x0387 is added as a name character, because #x00B7 is its canonical equivalent.

• Characters ':' and '_' are allowed as name-start characters.

• Characters '-' and '.' are allowed as name characters.

Appendix C. XML and SGML (Non-Normative)
XML is designed to be a subset of SGML, in that every XML document should also be a conforming
SGML document. For a detailed comparison of the additional restrictions that XML places on documents
beyond those of SGML, see [Clark].

Appendix D. Expansion of Entity and Character References
(Non-Normative)
This appendix contains some examples illustrating the sequence of entity- and character-reference recog-
nition and expansion, as specified in § 4.4 – XML Processor Treatment of Entities and References on
page 27.

If the DTD contains the declaration

Page 38 of 42 XML and SGML

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

<!ENTITY example "<p>An ampersand (&#38;) may be escaped

numerically (&#38;#38;) or with a general entity

(&amp;).</p>" >

then the XML processor will recognize the character references when it parses the entity declaration, and
resolve them before storing the following string as the value of the entity “example”:

<p>An ampersand (&) may be escaped

numerically (&#38;) or with a general entity

(&amp;).</p>

A reference in the document to “&example;” will cause the text to be reparsed, at which time the start-
and end-tags of the p element will be recognized and the three references will be recognized and expanded,
resulting in a p element with the following content (all data, no delimiters or markup):

An ampersand (&) may be escaped

numerically (&) or with a general entity

(&).

A more complex example will illustrate the rules and their effects fully. In the following example, the line
numbers are solely for reference.

1 <?xml version='1.0'?>

2 <!DOCTYPE test [

3 <!ELEMENT test (#PCDATA) >

4 <!ENTITY % xx '%zz;'>

5 <!ENTITY % zz '<!ENTITY tricky "error-prone" >' >

6 %xx;

7]>

8 <test>This sample shows a &tricky; method.</test>

This produces the following:

• in line 4, the reference to character 37 is expanded immediately, and the parameter entity “xx” is stored
in the symbol table with the value “%zz;”. Since the replacement text is not rescanned, the reference
to parameter entity “zz” is not recognized. (And it would be an error if it were, since “zz” is not yet
declared.)

• in line 5, the character reference “<” is expanded immediately and the parameter entity “zz” is
stored with the replacement text “<!ENTITY tricky "error-prone" >”, which is a well-
formed entity declaration.

• in line 6, the reference to “xx” is recognized, and the replacement text of “xx” (namely “%zz;”) is
parsed. The reference to “zz” is recognized in its turn, and its replacement text (“<!ENTITY tricky
"error-prone" >”) is parsed. The general entity “tricky” has now been declared, with the
replacement text “error-prone”.

• in line 8, the reference to the general entity “tricky” is recognized, and it is expanded, so the full
content of the test element is the self-describing (and ungrammatical) string This sample shows a error-
prone method.

Page 39 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Appendix E. Deterministic Content Models (Non-Normative)
As noted in § 3.2.1 – Element Content on page 14, it is required that content models in element type dec-
larations be deterministic. This requirement is for compatibility with SGML (which calls deterministic
content models “unambiguous”); XML processors built using SGML systems may flag non-deterministic
content models as errors.

For example, the content model ((b, c) | (b, d)) is non-deterministic, because given an initial b
the XML processor cannot know which b in the model is being matched without looking ahead to see
which element follows the b. In this case, the two references to b can be collapsed into a single reference,
making the model read (b, (c | d)). An initial b now clearly matches only a single name in the
content model. The processor doesn't need to look ahead to see what follows; either c or d would be
accepted.

More formally: a finite state automaton may be constructed from the content model using the standard
algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Ullman [Aho/Ullman]. In many such
algorithms, a follow set is constructed for each position in the regular expression (i.e., each leaf node in
the syntax tree for the regular expression); if any position has a follow set in which more than one following
position is labeled with the same element type name, then the content model is in error and may be reported
as an error.

Algorithms exist which allow many but not all non-deterministic content models to be reduced automatically
to equivalent deterministic models; see Brüggemann-Klein 1991 [Brüggemann-Klein].

Appendix F. Autodetection of Character Encodings
(Non-Normative)
The XML encoding declaration functions as an internal label on each entity, indicating which character
encoding is in use. Before an XML processor can read the internal label, however, it apparently has to
know what character encoding is in use—which is what the internal label is trying to indicate. In the general
case, this is a hopeless situation. It is not entirely hopeless in XML, however, because XML limits the
general case in two ways: each implementation is assumed to support only a finite set of character encodings,
and the XML encoding declaration is restricted in position and content in order to make it feasible to
autodetect the character encoding in use in each entity in normal cases. Also, in many cases other sources
of information are available in addition to the XML data stream itself. Two cases may be distinguished,
depending on whether the XML entity is presented to the processor without, or with, any accompanying
(external) information. We consider the first case first.

F.1. Detection Without External Encoding Information

Because each XML entity not accompanied by external encoding information and not in UTF-8 or UTF-
16 encoding must begin with an XML encoding declaration, in which the first characters must be '<?xml',
any conforming processor can detect, after two to four octets of input, which of the following cases apply.
In reading this list, it may help to know that in UCS-4, '<' is “#x0000003C” and '?' is “#x0000003F”,
and the Byte Order Mark required of UTF-16 data streams is “#xFEFF”. The notation ## is used to denote
any byte value except that two consecutive ##s cannot be both 00.

With a Byte Order Mark:

UCS-4, big-endian machine (1234 order)00 00 FE FF

Page 40 of 42 Deterministic Content Models

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

UCS-4, little-endian machine (4321 order)FF FE 00 00

UCS-4, unusual octet order (2143)00 00 FF FE

UCS-4, unusual octet order (3412)FE FF 00 00

UTF-16, big-endianFE FF ## ##

UTF-16, little-endianFF FE ## ##

UTF-8EF BB BF

Without a Byte Order Mark:

UCS-4 or other encoding with a 32-bit code unit and ASCII characters encoded as ASCII values, in respectively
big-endian (1234), little-endian (4321) and two unusual byte orders (2143 and 3412). The encoding declaration
must be read to determine which of UCS-4 or other supported 32-bit encodings applies.

00 00 00 3C

3C 00 00 00

00 00 3C 00

00 3C 00 00

UTF-16BE or big-endian ISO-10646-UCS-2 or other encoding with a 16-bit code unit in big-endian order and
ASCII characters encoded as ASCII values (the encoding declaration must be read to determine which)

00 3C 00 3F

UTF-16LE or little-endian ISO-10646-UCS-2 or other encoding with a 16-bit code unit in little-endian order
and ASCII characters encoded as ASCII values (the encoding declaration must be read to determine which)

3C 00 3F 00

UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any other 7-bit, 8-bit, or mixed-width
encoding which ensures that the characters of ASCII have their normal positions, width, and values; the actual
encoding declaration must be read to detect which of these applies, but since all of these encodings use the
same bit patterns for the relevant ASCII characters, the encoding declaration itself may be read reliably

3C 3F 78 6D

EBCDIC (in some flavor; the full encoding declaration must be read to tell which code page is in use)4C 6F A7 94

UTF-8 without an encoding declaration, or else the data stream is mislabeled (lacking a required encoding
declaration), corrupt, fragmentary, or enclosed in a wrapper of some kind

Other

In cases above which do not require reading the encoding declaration to determine the encoding, section 4.3.3 still
requires that the encoding declaration, if present, be read and that the encoding name be checked to match the actual☞
encoding of the entity. Also, it is possible that new character encodings will be invented that will make it necessary
to use the encoding declaration to determine the encoding, in cases where this is not required at present.

This level of autodetection is enough to read the XML encoding declaration and parse the character-
encoding identifier, which is still necessary to distinguish the individual members of each family of
encodings (e.g. to tell UTF-8 from 8859, and the parts of 8859 from each other, or to distinguish the specific
EBCDIC code page in use, and so on).

Because the contents of the encoding declaration are restricted to characters from the ASCII repertoire
(however encoded), a processor can reliably read the entire encoding declaration as soon as it has detected
which family of encodings is in use. Since in practice, all widely used character encodings fall into one
of the categories above, the XML encoding declaration allows reasonably reliable in-band labeling of
character encodings, even when external sources of information at the operating-system or transport-pro-
tocol level are unreliable. Character encodings such as UTF-7 that make overloaded usage of ASCII-valued
bytes may fail to be reliably detected.

Once the processor has detected the character encoding in use, it can act appropriately, whether by
invoking a separate input routine for each case, or by calling the proper conversion function on each
character of input.

Like any self-labeling system, the XML encoding declaration will not work if any software changes the
entity's character set or encoding without updating the encoding declaration. Implementors of character-
encoding routines should be careful to ensure the accuracy of the internal and external information used
to label the entity.

Detection Without External Encoding Information Page 41 of 42

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

F.2. Priorities in the Presence of External Encoding Information

The second possible case occurs when the XML entity is accompanied by encoding information, as in
some file systems and some network protocols. When multiple sources of information are available, their
relative priority and the preferred method of handling conflict should be specified as part of the higher-
level protocol used to deliver XML. In particular, please refer to [IETF RFC 3023] or its successor, which
defines the text/xml and application/xml MIME types and provides some useful guidance. In
the interests of interoperability, however, the following rule is recommended.

• If an XML entity is in a file, the Byte-Order Mark and encoding declaration are used (if present) to
determine the character encoding.

Appendix G. W3C XML Working Group (Non-Normative)
This specification was prepared and approved for publication by the W3C XML Working Group (WG).
WG approval of this specification does not necessarily imply that all WG members voted for its approval.
The current and former participants of the XML WG are:

Jon Bosak, Sun (Chair); James Clark (Technical Lead); Tim Bray, Textuality and Netscape (XML Co-
editor); Jean Paoli, Microsoft (XML Co-editor); C. M. Sperberg-McQueen, U. of Ill. (XML Co-editor);
Dan Connolly, W3C (W3C Liaison); Paula Angerstein, Texcel; Steve DeRose, INSO; Dave Hollander,
HP; Eliot Kimber, ISOGEN; Eve Maler, ArborText; Tom Magliery, NCSA; Murray Maloney, SoftQuad,
Grif SA, Muzmo and Veo Systems; MURATA Makoto (FAMILY Given), Fuji Xerox Information Systems;
Joel Nava, Adobe; Conleth O'Connell, Vignette; Peter Sharpe, SoftQuad; John Tigue, DataChannel

Appendix H. W3C XML Core Working Group
(Non-Normative)
The third edition of this specification was prepared by the W3C XML Core Working Group (WG). The
participants in the WG at the time of publication of this edition were:

Leonid Arbouzov, Sun Microsystems; Mary Brady; John Cowan; John Evdemon, Microsoft; Andrew
Fang, Arbortext; Paul Grosso, Arbortext (Co-Chair); Arnaud Le Hors, IBM; Dmitry Lenkov, Oracle;
Anjana Manian, Oracle; Glenn Marcy, IBM; Jonathan Marsh, Microsoft; Sandra Martinez, NIST; Liam
Quin, W3C (Staff Contact); Lew Shannon; Richard Tobin, University of Edinburgh; Daniel Veillard;
Norman Walsh, Sun Microsystems (Co-Chair); François Yergeau (Third Edition Editor)

Appendix I. Production Notes (Non-Normative)
This Third Edition was encoded in a slightly modified version of the XMLspec DTD, v2.5. The XHTML
versions were produced with a combination of the xmlspec.xsl, diffspec.xsl, and REC-xml-3e.xsl XSLT
stylesheets.

Page 42 of 42 W3C XML Working Group

XML to PDF by RenderX XEP - http://www.renderx.com, XSL to PDF and XSL to Postscript formatter

XSL•FO
RenderX

http://www.w3.org/2002/xmlspec/dtd/2.5/xmlspec.dtd
http://www.w3.org/2002/xmlspec/xhtml/1.9/xmlspec.xsl
http://www.w3.org/2002/xmlspec/xhtml/1.9/diffspec.xsl
REC-xml-3e.xsl
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

	Colophon
	Abstract
	Status of this document

	Table of Contents
	1. Introduction
	1.1. Origin and Goals
	1.2. Terminology

	2. Documents
	2.1. Well-Formed XML Documents
	2.2. Characters
	2.3. Common Syntactic Constructs
	2.4. Character Data and Markup
	2.5. Comments
	2.6. Processing Instructions
	2.7. CDATA Sections
	2.8. Prolog and Document Type Declaration
	2.9. Standalone Document Declaration
	2.10. White Space Handling
	2.11. End-of-Line Handling
	2.12. Language Identification

	3. Logical Structures
	3.1. Start-Tags, End-Tags, and Empty-Element Tags
	3.2. Element Type Declarations
	3.2.1. Element Content
	3.2.2. Mixed Content

	3.3. Attribute-List Declarations
	3.3.1. Attribute Types
	3.3.2. Attribute Defaults
	3.3.3. Attribute-Value Normalization

	3.4. Conditional Sections

	4. Physical Structures
	4.1. Character and Entity References
	4.2. Entity Declarations
	4.2.1. Internal Entities
	4.2.2. External Entities

	4.3. Parsed Entities
	4.3.1. The Text Declaration
	4.3.2. Well-Formed Parsed Entities
	4.3.3. Character Encoding in Entities

	4.4. XML Processor Treatment of Entities and References
	4.4.1. Not Recognized
	4.4.2. Included
	4.4.3. Included If Validating
	4.4.4. Forbidden
	4.4.5. Included in Literal
	4.4.6. Notify
	4.4.7. Bypassed
	4.4.8. Included as PE
	4.4.9. Error

	4.5. Construction of Entity Replacement Text
	4.6. Predefined Entities
	4.7. Notation Declarations
	4.8. Document Entity

	5. Conformance
	5.1. Validating and Non-Validating Processors
	5.2. Using XML Processors

	6. Notation
	A. References
	A.1. Normative References
	A.2. Other References

	B. Character Classes
	C. XML and SGML (Non-Normative)
	D. Expansion of Entity and Character References (Non-Normative)
	E. Deterministic Content Models (Non-Normative)
	F. Autodetection of Character Encodings (Non-Normative)
	F.1. Detection Without External Encoding Information
	F.2. Priorities in the Presence of External Encoding Information

	G. W3C XML Working Group (Non-Normative)
	H. W3C XML Core Working Group (Non-Normative)
	I. Production Notes (Non-Normative)

