Dive Into Python

Python from novice to pro

Mark Pilgrim

Dive Into Python: Python from novice to pro
by Mark Pilgrim

Published 20 May 2004
Copyright © 2000, 2001, 2002, 2003, 2004 Mark Pilgrim [mailto:mark@diveintopython.org]

This book lives at http://diveintopython.org/. If you're reading it somewhere else, you may not have the
latest version.
Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Documentation License,

Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of thelicenseisincluded in Appendix G, GNU Free Documentation License.

The example programs in this book are free software; you can redistribute and/or modify them under the terms of the Python license
as published by the Python Software Foundation. A copy of the licenseisincluded in Appendix H, Python license.

mailto:mark@diveintopython.org
http://diveintopython.org/

Table of Contents

O 7 o 1= ot R TSP PUPPPTTRN 1
Which Python iSTight fOr YOU?coooueiiii e 1
PYEON ON WINOOWS ...ttt ettt et et n e e eeaas 1
PYENON 0N MBC OS X ...ttt ettt et e e e e 3
PYEhoN 0N MBC OS 9 ...ttt 4
PYython 0N REAHEE LINUXceeetieiiii ettt e et e 5
Python on DeDian GINU/LINUXcceeerniiiiiee ettt e e e eeenenns 6
Python INstallation from SOUICEuuuiiiiii et 7
The INteraCtive SNEIL ..o e 8
SUMIMIBIY ettt et et ettt e e et et e e e et et r et e e e e e r et et e e e e e enaas 9

2. CNAPDLET 2 .ottt enaa s 10
DAY 10 o] o [P TPUPPPTTR PP 10
Declaring FUNCLIONSooiiiiiie ettt et e e b 11

How Python's Datatypes Compare to Other Programming Languagesccoeeeeen. 11
DOoCUMENLING FUNCLIONSeeetiieieii ettt ettt e e e e et eeeae s 12
Everything 1San ODJECEccceiei it 13

The ImPort SEarch Patho oo 13

WHaL'S 8N ODJECE? ...ttt 14
INAENEING COUE ... ettt ettt e ettt e e e et e e eera e eeees 15
TESHNG MOQUIES ...ttt e e e e enaens 16

O 0= (= g TP TPPPPTR 18

INtrodUCING DICHIONAITES ... eeiiiie ettt e et e e e et e e eebe e eees 18
DefinNiNg DICHONAITESiiieiiie ettt e e 18
MOIfYING DICHIONAIEScevvieeeiii ettt et e et e eeera e eees 19
Deleting [tems From DiCHONAMEScoeuueiieiiiie et 20

INEFOTUCING LISES ..ttt ettt et e et e e e enn e e eneas 21
DEFINING LISES . eeitneiiiii ettt et e e 21
Adding EIEMENESTO LiSES ... cieiiieiiiii et 23
SEAMCIING LISES ..ottt 25
Deleting List EIEMENtS ...t 26
USING LISt OPEIBIOIS ..ttt ettt ettt ettt ettt et e et e e e eba s 27

INEFOAUCING TUPIES ...ttt e e eeea s 27

Declaring VariahlESuiii e 29
Referencing VariableS i 30
Assigning Multiple ValUES @ ONCEeiiiiiiieiiiii e 30

FOIMELTING SEFNGS ... eeveie ettt ettt et e et e e et eeeaba s 31

MBPPING LISES vttt ettt ettt e e ettt e ettt e e e et e e e e e e 33

Joining Lists and SPIitting SIHNGSccevvuniiiiiie e 35
Historical Note on String Methodscoouviiiiiiii e 36

SUMIMIBIY ettt ettt et et et e et e e e r et e e et e renn e e e aenas 36

A CRBPLEN 4 ...ttt e 38
DIVING TN ettt 38
Using Optional and Named ATQUIMENTScouuuuiiiiie ettt e e 39
Using type, str, dir, and Other Built-In FUNCHIONSuiiiiiiiiici e 40

THhE tYPE FUNCLION ...ttt e e 40

THE S FUNCHION <.t 41

BUITE-TN FUNCEIONS ...t e e et e e e e e eees 43
Getting Object References With Qeattruuiiiiiiiiei e 44

getattr With MOOUIES ... 45

getattr AS @ DISPAICNEN ... 46
FEITNG LESES ..ottt ettt 47

Dive Into Python

The Peculiar Nature Of and and OFuuiiiiiiiiieei e 49
USING the @n0-0F THICK .ouuiii i e e e e e e et e e eees 50
USINg 1ambda FUNCHIONSiiii e e e e e e e e e e e e e an s 51
Real-World 1ambda FUNCLIONScooviiiiiiii e 51
PULtING TE AT TOGEINET ... e e e e e e e e ees 53
RSl 000 0= Y PP 55
LI O 17 (= g 57
1177 0T 1 1 P 57
Importing Modules Using from modul@ importc.couueiiiiiiiiie e 60
D= T a1 o O =SS P 61
Initializing and CodiNg ClaSseSuuiiiiieiii i e e e e e e 63
KnowingWhentoUsesalf and _ init_ ..o 64
INSEANIALNG ClASSES ... iiiiiiii et e e e e e e e e e e r e et e e et e e et e e aaneeeens 65
Garbage CollECHIONciii e e e 65
Exploring UserDict; A WrapPer ClaSSc.uuiiiuiieiiieiie e e e e e e e e e e 66
Special ClassS MENOASoiiiiii e 69
Getting and SEttiNg HHEMS ..uuiiii e e e 70
Advanced Special Class MEhOOSc.uuiiiiiiii e 72
Introducing Class AtHBULESoiiiic e 74
PrIVA FUNCLIONS .. .iiitieece et e e e e et e e et e e e et e e e e et e e e e aaa s 76
ST 000 0= Y PSPPSR 77
LSO 17 (= G 79
[P2 1010 1T o I et g PN 79
Using Exceptions FOr Other PUMPOSESccuuiiiiicci e e e e 80
WOrking With FIl€@ ODJECESuiiiiiii e e e aanas 82
== o 1 0o T =P 82

(01 o1 T 0T I8 1= 83

[P2 1010 1T oo N 1@ I g o] £ 84
WIHEING 10 FIIES ..o e e e 85
[terating With fOF LOOPS . .uiie i e e e e e e e e e e e ean s 86
USING SYSIMOQUIESuuiiiiieii et e e et e e eanaaeees 89
WOrKing With DITECIOMESu it e e e e e e e e eaaas 92
PULtING TE AT TOGEINET ... e e e e e e e e 97
ST 0000 Y PRSPPI 99
A 1= o = SO 101
01177 0T I 1 o RN 101
Case StUAY: SIrEEt AGAINESSESivii et e e e e e e s e e e e e e et e e e eanees 101
Case Study: ROMaN NUMETAIS .. .c.vuiii et e e e e e e e e e e et eeaneees 103
Checking for THOUSBNGScccuuiiiiiiiii e e e e 104
Checking for HUNAredSc.uuiiiiici e e 105
USING the {N,M} SYNEAX ...ciiiiiii e e e e e e e 107
Checking for TENSand ONESvivuiiiii e e e ea e 109
Verbose REgUIAI EXPrESSIONSuuiiiiiiiie it et e et e et e e e e e e e e et e e et s e et e eat e eetneeeanaees 110
Case study: Parsing Phone NUMDBErSc.uiiiiiii e 111
SUIMIMIBIY ettt ettt e e et e et e e e e et e e 116
S O 7= o] = g T PSSP 118
)11/ 0T N T PN 118
Introducing SOMIITDPY .veeeeee e e 124
Extracting data from HTML dOCUMENEScvvniiiiciie e e e e e 127
Introducing BaSEHTMLPIOCESSOI. Y ...cvvviiiiieiiieeii et e e e e e e e e e e e e e eees 129
[0CAlS AN GIODAISuiiii e e 132
Dictionary-based string fOrmattingcooveiiiiiiii e 136
QUOLING AtFBULE VAIUES ... e e e e e e 138
FaLgoTo (8ol gl o[-\ 1= o o o)V A 139

Dive Into Python

PUtting it all tOGEINEYecee e 142
SUIMIMIBIY ettt e e et e et e et et e e ettt 144
SO 1= o = TP 146
)11/ 0T N T RN 146
PaCKAGES .. it e 154
=TS 10 10 PP 156
LU g o oo (= T PSP 159
SearChing fOr BlEMENSo e 164
Accessing element attribULEScovu i 165
S o 1SR 167
O 0=) = o 0 SO 168
ADSITACHING INPUL SOUMCES ...t ceiieei e e e e et e e e e e e e e e e e e et e et e e et e e et e e eanaeeaneeeen 168
Standard iNPUt, OULPUE, @GN EITOFiviniiii e e e e aanas 173
(0= ol o] aTo [g 00 (= FoTo) qH o 177
Finding direct children of @an0ode...........ooiiuiiiiii i 178
Creating separate handlers by NOAE tYPEv.cvveiiiii e 179
Handling command-line argUmMENESuiiiiiiiiii e e e e 181
PULting it all tOGEINEY . ..eecee e 185
SUIMIMIBIY ettt ettt e e et e et et a et e e ettt 187
T =) = PO 188
01177 0T N T PN 188
How not to fetch data over HTTP ...oooueiiiii e 191
L 1= o) I PSP 191
U SBr - A GBI ettt 191

L o] (= o T PP 192
Last-Modified/If-MOodified-SINCEccoeuiiiiiiiii e 192
ETag/If-NONE-MaC .. .cveii e e eaae s 193

(00 410> T o S 193
Debugging HTTP WED SEIVICES ... v e e 193
SEttiNG the USEr-AGENT ...eiiiiiii e e e e e e e e e e e e e e e 195
Handling Last-Modified and ETagcocoviiiiiiiiii e 196
HaNAIING FEAITECESve i e e et e e e e e e e aanaees 199
Handling ComMpPresSed Aatalc.uuiiiiiiiii e e e e e e e e ees 205
PULting it all tOGEINEY . ..vecee e 207
SUIMIMIBIY ettt e e et e et e e e et e e e e e an 210
2 0=) = o TP 211
01177 0T I 1 o RN 211
Installing the SOAP LIbIrari€Soiiiiiiiiii e e e e e 212
INSEAIING PYXML it et e e et e e e e et e e eeee 213
Tt ez T gTo i o oo = N 213
INSEAING SOA P .ot 214

First SLEPSWIth SOAPuiiei e e 214
Debugging SOAP WED SEIVICES ... cuuuiiii i e e e e e e e aens 215
T aLgoTo 8ot gl VA S I PN 217
Introspecting SOAP Web Services With WSDLco.uoiiiiiiiiiiic e 218
S C (v o T aTo [€70 o | = T 222
Troubleshooting SOAP WED SEIVICESccuuiiii et e e e e 225
SUIMIMIBIY ettt ettt e e et e et et a et e e ettt 230
G 0=) = N TP 231
INtroduction t0 ROMAN NUMEIEISciieiiieiiiis et e e e e e 231
01177 0T N T PN 232
FaLgoTo (§eiTalo [do] 7= 01 (== 1 o Y P 232
TESHING FOF SUCCESSuuiiiiieiii e e e e et e e e e e e e et e e et e e e e e et e e et s e et e e et e eetneeeaneees 236
== (g To R o) =1 238

Dive Into Python

=S (g To R (0= 011 240
I =) (= N PSP 243
TOMAN.PY, SEAOE L oot et 243
TOMAN.PY, SLAE 2 ettt et et e et e e e e 246
FOMAN Y, SO 3 ettt 251
TOMAN.PY, SLAOE 4 ..ottt 255
FOMAN Y, S 5 ettt 259
ST 0=) = TP 263
[F= 1010 1T g N o 10 o PN 263
Handling changing reqUITEMENLSccuuieiiieiii e ee e e e e e e e e e e e e e et e e et e eeanaaees 265
L L= (o 1o 274
0 o 1 P 278
SUIMIMIBIY ettt e e e et e et e e e et e e e et 281
T =) = o PP 283
)11/ 0T N T RN 283
FINdiNG the Pathoo e e 284
Filtering SIS TEVISITEiii e e e e aaas 287
MapPINg SIS FEVISITEAvuiiii e e e e e e 289
Data-CentriC ProgramIMiNGccuu.eeeueeiieeeree et e e et eeataeeateest e et e st esanaeerenaaennaasnnaaes 290
Dynamically importing MOAUIEScciiniiiii e e e e 291
PULting it all tOGEINEY . ..eecee e 293
SUIMIMIBIY ettt ettt e e et e et et a et e e ettt 296
I 0=) PP 297
)11/ 0T N T N 297
O U1 VA = L= 0 N 297
O UL VA o L= N 300
O UL VA o L= N 302
O UL VA o L= N 303
TN VA o T N 306
O UL VA = L= N 307
SUIMIMIBIY ettt e e et e et e e e et e e e e e an 311
S 0=) = PP 313
)11/ 0T N T PN 313
UsiNg the timeEt MOAUIEcooi e e e 316
Optimizing REGUIAI EXPIESSIONSuuiiiiieeii et e e e e e e e e e e e e e e e e et e e e e e ean e eaes 318
Optimizing DICtioNary LOOKUDSuuiiiiiiiiieeie et e e ee e e e e e e e e e st e e et e st e e aaeeeenas 322
OptimiZING LiSt OPErationSuuiiiieiiiieiiee e e e e e e e e e e e e e e e e eaens 325
Optimizing String ManipUlationcouiiiiii e ean s 328
SUIMIMIBIY ettt e e et e et e e e e e et e et 330
Y ¥ 0= g ==] oo 331
2 N 01T g 1U L (= = Y = PP 332
(O T o 1= 1910 I £ o G 333
D. LISt Of BXAMPIES .. i et 334
I (= V7 E= Lo I T (o Y 335
N oo 0 | 1 0= oo S SPSTPP 336
G. GNU Free Documentation LiCENSEuuuiiiiiiiieeeiii e et s et e et e e et e e et e e e aaa e e eenens 337
0. PrEambIe .. 337
1. Applicability and defiNitioNSociuiiiii e 337
Y= 07z 0l eo o)/ oo [ER 338
I @00)Y oo T Jo 07101 1) Y2 338
Y Yoo] o= o] o L3P 339
5. ComMDBINING OCUMENES ...t e e e e e e e e e e et e e e e aaeeeens 340
6. COllECtioNS Of AOCUMENESevvuieiiii et e e et e e e et e e e eaeneeeee 340
7. Aggregation with independent WOrKSc..ooiiiiiii e 340

Vi

Dive Into Python

8. TTANSIAHON ..eeue e 341
1 = 1 0011 = 1o PP 341
10. Future revisSions Of thiS THICENSEuuiiiiiii e 341
11. How to use this License for your dOCUMENESc.uueviiiiiiiieiii e e e 341
L TR Y 00 N 1= 1 P 343
A, HIStOry Of the SOftWAre i e 343
B. Terms and conditions for accessing or otherwise using Pythonc.cccoeeviiieiinennn. 343
B.. PSF [iCENSE AgIrEOMENLiii e e e e e e e aan e 343

B.. BeOpen Python open source license agreement version 1ccocovveviiieineeennnnns 344

B.. CNRI open source GPL-compatible license agreementcccocevveeviiieiineeinnnns 345

B.. CWI permissions statement and diSClaimerooevviieiiiiiiiiiici e 346

Vii

List of Examples

1.1, TWO VErSioNS OF PYTNONiiiiiii e 4
1.2. Installing 0N REAHEE LINUX O .. .oouuiiiiii ettt e 6
1.3. Installing 0N Debian GNU/LINUXcocuuuneiiiiieieiee ettt e et eeeae s 7
1.4, INSAlliNG FrOM SOUICE ...ttt ettt ettt e et eeeeae s 8
1.5. First Stepsin the INteractive ShElloiiii e 9
2.1, OODCNEIPEI Y .ttt 10
2.2. Defining the buildConnectionString FUNCtion's dOC StHNGuveeveviieiiiiiee e 12
2.3. Accessing the buildConnectionString FUNCtion's dOC SEHNGevveviieeiiiiieecii e, 13
2.4.1MPOrt SEArCN Path ... e e 14
2.5. Indenting the buildConnectionString FUNCLIONccuueiiiiiiieeei e 15
2.6 1T SEBLEIMENTS ...ttt ettt ettt ettt ettt et e ettt e een e ennaas 15
3.1 DEfiNING @ DICHONGIY .. .ceeetiieieii ettt ettt e e e e e e e enans 18
3.2. MOIfYiNG @ DICHONGIYuiiiiii ettt ettt et e e et e e e e 19
3.3. Dictionary KeySATe Case-SENSItIVEcciiueieiiii et 19
3.4. Mixing Datatypes in @DICHIONAIYuuiiiiiiieiiii et 20
3.5. Deleting [tems from @DiCHONAIYiiiiiieiiii e 20
3.6, DEINING @ LISE ettt et e et 21
3.7 NEQALVE LISt INAICESeeeie et ettt et e e e enaans 21
3.8 THCING @ LIS ...ttt 22
3.9. SHCING SNOMNAING ...t ettt e e e e s 22
3.10. Adding EIEMENESTO A LISEceuuniiiiiiiee et 23
3.11. The Difference between extend and appendcoouiiiiiiiiniiii e 24
312, SeArChING @ LISE et 25
3.13. Removing Elements from @ LIStuiiiiiiiiiiii e 26
N o I s 0= £ (o] £ TP TO PP UPPPTRR 27
3.15. DEfiNING A TUPIE ..ottt ettt et 28
3.16. TupleS HAVE NO MELNOASuieieii ettt 28
3.17. Defining the myParams Variablecoouuiiiiiiii e 29
3.18. Referencing an Unbound Variableiviiiiiiici e 30
3.19. Assigning MUItIPle VAIUES 8 ONCEiieiiieeieiie et 30
3.20. AsSIgNING CONSECULIVE VBIUEScouuniiiiiiie ettt 31
3.21. Introducing String FOMMBINGccuuuiiiiiiee i 32
3.22. String Formatting VS. CONCALENEAEINGcuvuueeirtieeeiiiie et e ettt e e e 32
3.23. FOrmMatting NUIMDEISceuuieiiiet ettt ettt e et e e e e e e ennans 33
3.24. Introducing List COMPIrENENSIONSuiiiiiiieiiii ettt et e e e 33
3.25. The keys, values, and itemMS FUNCLIONSiiiiiiii e 34
3.26. List Comprehensions in buildConnectionString, Step by Stepveviiiiiiiiiiiice, 34
3.27. OULPUL Of OOBCHEIPEI.DY .t 35
3.28. SPIITLING @ SEMNG ettt ettt ettt ettt e e anas 36
= o 11 1= [o= o o PP PP PUPPPT 38
4.2. Sample Usage Of @DiNEIPEI.DY ... 39
4.3. Advanced Usage Of apiNelPer.pY ...ooeeueiiiie e 39
A4, Valid CallS OF INFO ..uuniiiiii e et 40
N N 1ol (8ol oTe B A o= PP SOPPT TP PPPPPTRPPPIN 41
A.6. INEFOTUCTING ST ...ttt ettt e ettt e et e e et e e e et e e e enna s 41
N A Ty 1 oo (8ol oo o || ST PO PP PUPPPTRRPPPIN 42
4.8. Introducing CallaIeu e 43
4.9. Built-in Attributes @and FUNCLIONSccouutieiiiit et 44
4.10. INErOAUCING GELALLEeeeeee ettt ettt et e e e e et e et e e e e bt e e e 45
4.11. The getattr FUNCiON iN @PiNEIPENDY ...iiieiee e 46
4.12. Creating a Dispatcher With QELaEtriiiiii i 46

viii

Dive Into Python

4.13. getattr DEfAUIt VAIUESe i e e e 47
g 7 g oo (ot o U T T P 48
ST g 0o (8T o I o 49
g G T g 0o (81T o o (S 49
4.17. Introducing the @N0-0r THICKuiiiiiiii i e e e e e 50
4.18. When the and-or TriCK FailSuuiiiiii e e 50
4.19. Using the and-0r TriCK SafElYociuuiiiii i e e e e e 50
4.20. Introducing lambda FUNCLIONSiiiici e e e 51
4.21. SPIit WIth NO ATGUMENES ...eee e et e e e e e e e e e e e e et e e et e e et eeaaneaaanaes 52
4.22. Getting adoc string DYNamiCallyoiiiiiiiii e 53
4.23. Why USE St 0N @ 00C SETING? ...evvieiieei e e e e e e e e e e e e et e e e ean s 54
o g 0o (8 ot o I 0 54
ST = (011 To T 1 1 55
L3N (1= 01 (o X o)V 58
5.2. import module vs. from module IMPOITuiiiiiii e 61
5.3. The SIMPIEst PythON ClasSccuuiiiiiicii e e e e e e e e e 62
5.4. Defining the FIEINfO Classcciuuiiiii e e e e e e e 62
5.5. Initiaizing the FIlEINfO Classiiii e 63
5.6. Coding the FIlEINTO ClaSScvviiiiii i e e e e e eaans 64
5.7. Creating a FilelNfo INSLANCEcvviiiii et e e e e e e aeas 65
5.8. Trying to Implement aMemOory LEAKccvuuiiiiiiiiii e e e e e 66
5.9. DEfiNING the USEIDICE ClaSSuuiiiiiiiiii e et e e e e e e e e e et e e e ean s 67
5.10. UserDict NOrmal MEthOUSuiiiiiiiiiiiii e e e e e e e e e eeanns 68
5.11. Inheriting Directly from Built-In Datatype diCtoovviiiiiiiiiii e 69
5.12. The _getitem_ Special MEthodooiiiiii e 70
5.13. The _setitem Special MEthOdcoouiiiiiii e 70
5.14. Overriding __setitem_ INMP3FIIEINfOcovniii e 71
5.15. Setting an MP3FIEINfO'S NAME ... i e 72
5.16. More Special Methods in USEIDICEiiiiiiiiii e 73
5.17. Introducing Class AtTIDULESu.iiiii e e e e e e e e eaes 75
5.18. Modifying Class AttrULESc.uiii e 76
5.19. Trying to Call aPrivate MEthOdcocuniiiiieie e 77
6.1. Opening aNON-EXISENt FIlEccoviiii e e e s 80
6.2. Supporting Platform-Specific FUNCHIONAIITYcouiiiiiiii e 81
B.3. OPENING A FII .. it e 82
6.4. REAAING A FIIE ... e e 83
B.5. ClOSING A FIlE c.u i 84
6.6. File ObjectsS iN MP3FIIEINTO .. .uu.iiiicii e e e eaa s 85
LAY g To R (o 1= 86
6.8. INtroduCiNg the FOr LOOP ..uuiiiiiiii e e e e e e e e et e e e eaa s 87
6.9, SIMPIE COUNLEYS .. .euuiiiiieei e ee e e e et e e e et e et e e et e et e e e et e e et e e et e eaa e eaneeaen 87
6.10. Iterating Through @ DIiCHONAIYciuuniei e e e e et e e e ean s 88
6.11. for LOOP iN MPSFIEINTOiieicii e e e e e 89
6.12. INtroducing SYSIMOUUIESuuiiiiieii e e e e e e e e e e e et eea e eaas 90
6.13. USING SYSIMOUAUIES ...t e e e e e e e e e e e e et e e et e e e e e et e e et e eannas 91
6.14. The __module ClasSATIDULEccvui i e 91
6.15. SyS.MOAUIES IN FIlBINTFO.PY Lvuieriiii e e e e e e e e eaes 92
6.16. CONSIrUCtiNG PathiNamES e e e e e e e eaa s 93
6.17. SPlItting PathNameScconiiii e e 94
Lo R T I i aTo 1= ox (o) == 95
6.19. Listing Directories in filleinfO.pYuiiiiiiii e 96
6.20. Listing Directorieswith glob ... 97
LS I 1= {1 (= v (o Y PPN 98
7.1. Matching at the End Of @StIINGovvniiiii e e 102

Dive Into Python

7.2. Matching WholEWOIAScouuiiiiici e e e e e e een 103
7.3. Checking fOr TROUSBNGASccvuiiiiiei e e e e e e e e e e e et e eaaeeee 105
7.4. Checking for HUNAIEAScovniii e e e e e e e e eees 107
7.5. The Old Way: Every Character Optionalccouuiiiiiiiiiie e e e e 108
7.6. The NeW Way: FTOM N O M ..o e e e e e e e e e e et e et e e e e eaens 108
A O 1= (1o I (o) S = =P 109
7.8. Validating Roman Numerals wWith {n,m} ..o, 110
7.9. Regular Expressions With INling COmMMENESuiiiiiciiiiciie e e 111
7.10. FINAING NUMDETS ... oot e e e e e e e e e e e et e e aan e eens 112
5 I 1o o 1 T e =0 o o 113
7.12. Handling Different SEParalorsScvuuueiie i eeiii e e e e e e e e e e e e e e e e e et e e e e eeas 113
7.13. Handling Numbers Without SEParatorseeeuniiiiiieiiie e e e e e e 114
7.14. Handling Leading CharaCterScc.uuiiiiiiiiiie e e e e e e e e e e e e et e e e e eens 115
7.15. Phone Number, Wherever | May FINAYEcciiiiii e 115
7.16. Parsing Phone Numbers (Final VErSION)ooiiiiiiiiiii e 116
8.1, BASEHTIM L PIOCESSO .Y +.uvttiititiiit ittt ettt ettt e e e e e e e e e e e e e e eenns 119
ST o ¥ 1= B o 121
LSRG @10 110101 o)l [F=\ L= o o oY P 124
8.4. Sample test Of SOMIIDLPY ..vuiiei e 126
8.5. INtroduCiNg U ..o e e r e e 127
8.6. INtrOdUCING UNTTIStEI. DY +vvueiiie e e e e e e e e e e e e et e e e e e et e e e et e eannaaes 128
A 1= oo U g I TE = g o) 129
8.8. Introducing BaSEHTIMLPIOCESSONcuuiiiiieiii e et e e e e e e e e e e e e et e eeaaaeeaen 131
8.9. BASEHTMLIPIrOCESSOI QULPUL .. vu vttt et e e e e e e e e e e e e e e e e e e e 132
8.10. INtroduCiNg [OCAISuuiii e e e e a e 134
8.11. INtroducing GIODAISiii i 135
8.12. localsisread-only, globalS IS NOLcivuiiiiie e 136
8.13. Introducing dictionary-based string formattingccooeeiiiiiiiin i 137
8.14. Dictionary-based string formatting in BaseHTMLPIroCESSOI.PY ...vvvevvveviieeiiieeeiiieeieeeaieean 137
8.15. More dictionary-based String fOrmMattingooovviiiiiii e 138
8.16. QUOLING ArIDULE VAIUES ... ceei it e e e e e e e e e et e e e eee 139
8.17. Handling SPECITIC tAgSvueiiieiie e e e e e e e e e e aeas 140
B.18. SGIMLIPAISAS ...ttt ettt 141
8.19. Overriding the handle datamethodoooiiiiiiii i, 142
8.20. The trandate fUNCLION, PAt Loiviiiii e e e e et e e e eees 143
8.21. The trandate function, part 2: CUriouser and CUMNOUSEYcoevuuneeiuereieeeieeeiieeaieeeneenens 143
8.22. Thetrandate fUNCLION, PAt 3u i e e e e e e e eaes 144
LS 00 1o o 1 oY/ 147
1S 2200 (00 1 070)1 oY PN 152
9.3. SAMPIE OULPUL OF KOP.PY +rvvneeenieiiiei et e e e e e e e e e e e e e e et e e et e e aaneeeens 153
9.4. SIMpler OULPUL frOM KO Y vveneii et e e e e e e e e e e e e e eaes 154
9.5. Loading an XML document (2 SNEaK PEEK)vuuiviniiiiiieiiii e e e e 154
9.6. Filelayout of @paCkageuuiiiii e 154
9.7. Packages are MOTUIES, 100ciiun i e e e e e et e e eeas 155
9.8. Loading an XML document (for real thiStime)cooevviiiiiiiiiii e, 156
9.9. GEttiNg ChIlA NOUES ... e e e e e aeas 157
9.10. toXml WOrKS 0N @NY NOTEuiiiii e e e e e e e e e e e e eeaens 157
9.11. Child NOTES CAN DETEXE ... ieieiii et et e e e e e e e e eean s 158
9.12. Drilling down all the Way O TEXE ... cvvuiiii e 159
1S 50 C T g 1 oo (8ot oo 0 Tq oo o = 160
9.14. Storing NON-ASCI CharatlerScvve e e e 161
S LT (ol (S (00T o 161
9.16. Effects of setting the default encodingcocvuiiiiiiiiii e, 162
9.17. Specifying encoding in .PY fil€Scouuiiii i 162

Dive Into Python

9.18. ruSSIANSAMPIEXIMI ...uiiit e e 162
9.19. Parsing russianSampPleXiMl ... ioue e 163
1S 20 I o 0= Y3 o P 164
9.21. Introducing getElementSBY TAgNEMEciuuniiiiieii e e e e e e e e e e e e aes 164
9.22. Every element iSSearChableooouiiiii i 165
9.23. Searching IS aCtually FECUISIVEcuui it e e e eaas 165
9.24. Accessing element attribULEScoovniiiii i 166
9.25. Accessing individual aftribULESoeiiiiiiii e 167
10.1. Parsing XML from @fil@cooniiiiii e 168
10.2. Parsing XML fromM @URLcouiiiiiciii e e e e e e e e e e et e eeaneeees 169
10.3. Parsing XML from a string (the easy but inflexible way)cccoccooviiiiiiiiicii 170
10.4. INtroducing SENGIO ...ovuiiii e e e e e e e e e e e e e e e 170
10.5. Parsing XML from a string (the file-like object way)ccccoveiiiiiiiiiii e 171
O ST o= VAN 51771 11 oo P 172
10.7. Using 0penANYthiNg IN KOP.PY «.cvvrnieiiieiii et e e e e e e e e e et e e st e e e e eeaneees 172
10.8. Introducing StAOUL aNd SEAEITvuiiiiiiei e e e e e e ea 173
ORI == o (= w11 0T oL 11011 | 174
10.10. Redirecting error inforMationoeiuuieiie e e e e e e e e e e e et e e eeaaees 175
0 50 O = 0 o R (0T o (= o 175
10.12. ChaiNinNg COMMEANAScvuuiiieeii e e e e et e e e e et e e e et e e et e e et e e et eean e eat e eeaneaeennns 176
10.13. Reading from standard iNput iN KGP.Y «....eveeneieiieiiiieeee e e e e e 177
L0 o= € = o PP 178
10.15. Using the ref element CaChieciiniiii e 178
10.16. Finding direct Child €lemeNtSc.oiiii i 179
10.17. Class names of parsed XML ObDJECESuiiiiiiiii e e e 180
10.18. parse, ageneric XML node diSpatCherocvvniiiiiiciie e 180
10.19. Functions called by the parse diSpatCherccocoviiiii i 181
10.20. INtrOAUCING SYS.BIGV vvunerrnerttettteeeteeett e e st e st eeeteestaestn e sanesataestnaeetaertnaeranneeennns 182
10.21. The CONLENES OF SYS.@IGV «.vuiiiiiii et ee e e e e et e e e e e e e e et e e et e e et e e e st e aannaees 182
0 270 g (0o 8 w1 0o o[(o] o NP 183
10.23. Handling command-line argumentS in KOP.PY «.ccvueireieiiiieeiiie e ee e e e et eeane e 185
I o o= 0=V 1 1T o 1 o)V 189
11.2. Downloading afeed the quick-and-dirty Waycooovuiieiiiiiiiii e 191
RS R D T= oW oo 1 0T Il = I 1 I PP 194
12.4. Introducing UrIID2iie e e 195
11.5. Adding headers With the REQUESLcoiiniiiii e 196
11.6. Testing Last-MOTIfiedoveeeiieiei e e e et eeaaens 197
11.7. DEfiNiNG URL handIerscouniiiiciie e e e e e 198
11.8. Using custom URL handIersoiiiiieiiicc e e e e e e e e 198
11.9. Supporting ETag/If-NONE-MaLChuiiiiiiii e 199
11.10. Accessing web services without aredirect handlerooooiiiiiiiiii e 200
11.11. Defining the redirect handlercc.eiiiiiii e e 201
11.12. Using the redirect handler to detect permanent redireCtS..........ccooevvieviiiiiiiicii e, 202
11.13. Using the redirect handler to detect temporary redirectSccoovevviieiiiiiiii i, 204
11.14. Telling the server you would like compressed data..........cc.ovevviiiiiiiieiiiiccie e, 205
11.15. DeCOMPresSiNg the Aalalcvvuiii e e e e et e e e e aeas 206
11.16. Decompressing the data directly from the SErVercoiiiiiiiiiii e 207
11.17. The openanything FUNCLIONoiuiii e e e e eeas 208
11.18. The FELCh FUNCLION e e e e et e eeeaa e eaens 209
11.19. USING OPENANYLNING.PY .vuuiirieiitieeii e et e et e e e r e e e e e s e e st e e et e e et e e et e e et e eeaneeeeas 210
I = oo T o) PN 211
12.2. Sample USage OF SEAICNPY ..vveiiiiiie e e e e e e e e e e 212
12.3. Verifying PyXML INStallationcouuiiiiiiiiii e e e e e 213
12.4. Verifying fpconst INStall@tionccouuiiiiiiiiii e e 214

Xi

Dive Into Python

12.5. Verifying SOAPPY INStallationoeiuniiiiiii e e e e 214
12.6. Getting the Current TEMPEIBIUIEu.iii e e e e e e e e e e e e e e e e eaaeeees 215
12.7. Debugging SOAP WED SEIVICESuuiiiiiiii e et e e e e e e e e e aan s 216
12.8. Discovering The Available MEthOOSoiiiiiiiii e 219
12.9. Discovering A MethOd'S ATGUMENESovuueiiiiei e e e e e e e e e e e e e et e e e e aens 219
12.10. Discovering A Method'sS REEUTN ValUESccouviiiiiiii e 220
12.11. Calling A Web Service Through A WSDL ProXyccceueeiiiiiiiiieiiieeeiiieeie e eei e e een 221
12.12. Introspecting GOOgIE WED SEIVICESccvuiiiiiiee e e e e aens 223
12.13. SEarChiNG GOOGIE .. .uuiiii e e e e e e e e e e e e e e e e e aes 224
12.14. Accessing Secondary Information From GOOQIEcccuueviiiiiiiiicii e, 225
12.15. Cadlling a Method With an Incorrectly Configured ProXycooeeviieeiiiieiiin e, 226
12.16. Calling a Method With the Wrong Argumentsc.coueeiiiiiiiii e e 227
12.17. Calling a Method and Expecting the Wrong Number of ReturnValues..............c.cccovevenneeeen. 227
12.18. Calling a Method With An Application-SpecifiC Errorcccoeeviiviiiiiiiiiecii e 229
G T I (0012 10 1= o PP PPPPP 233
13.2. teStTOROMENKNOWNVAIUESceiiiiieeeiiiis et e e e et e e e et e e e e e e e aan e 237
13.3. Testing bad iNPut t0 TOROMANuiii e e e e e e e e eees 239
13.4. Testing bad input t0 froMROMEANciiiiiiii e 240
13.5. Testing toRoman against froMROMENcouuiiiiiiiiiii e e 241
SR == (] o I o) g o= P 242
T 01T 1 1 o PP 243
14.2. Output of romantestl.py against FOMANL.PYuueevrniieinieiieeeiiieertaeeeeeeete e et estreeraeeaneens 244
e R (01T 1 V2N o VPP 247
14.4. HOW tOROMAN WOIKS ...eeitiiee ittt e et e et s e e e et e e e e et s e e e eeta e e e eetnnaeeenes 248
14.5. Output of romantest2.py agaiNst FOMANZ2.PYuueeeruereinieereeeieerrtaeeaeeesteeeteertreraaaranaees 249
G (0012 10X o PP 252
14.7. Watching toRoman handle bad inpULooiiiiiii e, 253
14.8. Output of romantest3.py againNst FOMAN3.PYuuevrrneieinieeieeeiieeerieeaeeeeteeereertrerraeeaneans 254
e (01T 1 743 o TP 256
14.10. HOW frOMROMEN WOTKSieiiiiiee e e et e e et e e e e e e e e et 257
14.11. Output of romantest4.py agaiNst FOMBNA.PYccuueeunieiieeeieeeiee e e e e e e e e et eaneaaens 258
B (00T 15 o PPN 260
14.13. Output of romantest5.py agaiNst FOMEBN5.PYcevueiinieiieeeieeraieeeie e e e e e e e ereeeanaeeens 261
S35 O I T o 11 o PP 263
15.2. Testing for the bug (FOMantESEBL.PY)cvvuneeiiieii i e e e e e e e e e e e e e e e aens 263
15.3. Output of romantest61.py agaiNst FOMANGL.PY ...ceuuevernieiineeeiierie e e e e e e e s e e e eaneeaes 264
15.4. Fixing the bug (FOMANB2.Y)verueiiiieiiii et et e et e e e e e e e e e e et e e et e e e e eaaeeeen 264
15.5. Output of romantest62.py agaiNSt FOMENG2.PYuuevvrnerrneeeiierrieeraeeerieerteesireeaaeeaaeeees 265
15.6. Modifying test cases for new requirements (romantest7L.py) .. .ccvuveerneeeiieeiineeiiieeeiieeeieeenn 266
15.7. Output of romantest71.py agaiNst FOMANTL.PY ...ceuuevernieiieeeiii e e e e e e e e e eeen 270
15.8. Coding the new requirements (FOMAaNT2.Y) ...u.eeuueeernieeieeeeeeeeiieeeie e s e e e e e eetaeeanaaees 272
15.9. Output of romantest72.py agaiNSt FOMBNT2.PY ...ceuuerernieiieeeiiee e e eae e e e e ee e st e e eeaneeees 273
15.10. Compiling regular EXPIrESSIONScvuueiitieiiieeeteeeet e e e e e st r e e e e et e e st e e et e e st eeaneeanaeeen 274
15.11. Compiled regular eXpressions in rOMENSL.PY «....u.evveerrueeriiereieeereesire e eeaeeeaneeeneaeens 275
15.12. Output of romantest81.py agaiNst FOMaNBL.PYueverneirneeiiieriieeeeeeeieeeie e et eeaaeeaneens 276
TN G T o 007=01C Y2 o PPN 276
15.14. Output of romantest82.py agaiNSt FOMENB2.PY «....ueverueirieeeiiieeiiieeaeeeeieeeie e et e eaaeeaneens 277
T T ol a0T=101C I o PPN 278
15.16. Output of romantest83.py agaiNst FOMaNB3.PYuueverneiriieeiiieriiieeeieeeeieeee e et eeaaeeaaeens 278
T I (00T 1S o PRSPPI 280
15.18. Output of romantest9.py againNst FOMEN.PYc.uuvrrnieiiiieeiieeiee e e e e e e e e e e eeens 281
T =0 | == o] oY 283
16.2. SAMPIe OULPUL OF FEOIESSION.PY ..vvvueeeineeiieeeiie et e e e e e e e e e e e e et e e et e e et e e st e e et e eanaeeees 284
T {011 o 1 1 PP 285

Xii

Dive Into Python

16.4. Further explanation of os.path.abspathccoiiiiiiiii i 285
16.5. Sample output from fUllPANPY ...covneiiie e 286
16.6. Running scriptsin the current dir€CtOrycccouuieiiiiiiiii e e e 287
A 1 1 oo (8o oo 1 = 288
R (1) (= Tl (=0 (== To a1 o)V AP 288
16.9. Filtering using list cOmMprehensioNS iNStEAAccvviiiiiiieiii e e 289
0 O T g (oo LW Tor N q o 1= IS 289
16.11. map with lists of MIXed Aty PESu.vvvniiiii e e ee 290
= O R a T =0 (===] oY AP 290
16.13. Importing MUItiple MOAUIES 8 ONCEu.iiie e e e e ae 291
16.14. Importing modules dyNamiCallyeeiiiiiiiiii e 292
16.15. Importing alist of modules dynamicCallycooviiiiiiiiiiii e 292
16.16. The regresSioNTESt fUNCLIONiiiiiii e e e e e e e e e e e eens 293
16.17. Step 1: Get all the filES .uuunii i e e 293
16.18. Step 2: Filter to find thefilesyou care aboutcooeeiiiiiiii e, 294
16.19. Step 3: Map filenamesto MOdUIE NAMEScovviiiii e 294
16.20. Step 4: Mapping module NameSto MOAUIEScvvniiiii e 295
16.21. Step 5: Loading the modules into atest SUITEcevviiiiiieiii e 295
16.22. Step 6: Telling unittest t0 USE YOUr tESE SUITE ... cvvuiiii e 296
50 T o W = O o 298
A i oo (U oo [(== o I 298
T = T o (o I o 1= o 299
17.4. More on Negation regular EXPrESSIONSiiiuueiii i eiiie e e e e e e e et e et e e et e e et e eernaeranaaeas 299
17,5, MOIE ON TE.SUD ...ttt et e e ettt e e e et r e e e e et r e e e e st neeeeatn e e eeestnaaeaees 300
S o W = 2 oY 301
17.7. Unrolling the plural TUNCLIONiiii e 302
T o W= X o) 303
e I o W = 7 oY 304
17.10. plurald.py CONLINUEcouniiiii i e e e e e et e e et e e e e aaaa s 304
17.11. Unrolling the ruleS definitionooiuiiiii e e 305
17.12. plura4.py, fINISNING UD «.vuceiee e e e e e e e e e e e eees 305
17.13. Another look at buildMatchANdAPPlYFUNCLIONScovviiiii e, 305
17.14. Expanding tuples when calling fTUNCLIONSccoviiiiii e 306
A T =S = o PP 306
A LT o LU o o PR 307
A A o 11 X o PP 308
17.18. INtrOAUCING GENEIALOTS .. .evtueiitieeiieeei et e et e e et e e e e e et e e e et e e e e e et e e et e et e eateeennaeeenss 309
17.19. Using generators instead Of FECUISIONc.uuciiiieiiiieeii e e e e e e e e e e e e e e e eees 310
17.20. GENEratorS iN fOF IOOPSu.iii et e e e e e et e e e eaen 310
17.21. Generators that generate dynamiC fUNCLIONSoiiiiiiiiiii e, 311
18.1. SouNdex/Stagel/SOUNAEXLAPY ...cvvuneirteeiiieetii e e e e e e e e et e et e e st e e et e e et e st eeateesaneaeens 315
18.2. INtrodUCING tIMEIT ...t e e e e e e et e et e e e e e eanaas 317
18.3. Best Result So Far: soundex/stagel/SOUNAEXLE.PY ...cvvnreirnerinieiieeeieeeee e e e e e e eae 321
18.4. Best Result So Far: soundex/stage2/SOUNAEX2C.PY «..vvvureirneeiiieiiieeeiieeeeeee e e e e e e eaen 325
18.5. Best Result So Far: soundex/stage2/SOUNAEX2C.PY «..vvvueirneiiiieiiieeeiie e e ee e e e e e e eaen 328

Xiii

Chapter 1. Installing Python

Welcome to Python. Let's dive in. In this chapter, you'll install the version of Python that's right for you.

Which Python is right for you?

Thefirst thing you need to do with Python isinstall it. Or do you?

If you're using an account on a hosted server, your | SP may have already installed Python. Most popular
Linux distributions come with Python in the default installation. Mac OS X 10.2 and later includes a
command-line version of Python, although you'll probably want to install a version that includes a more
Mac-like graphical interface.

Windows does not come with any version of Python, but don't despair! There are several ways to point-
and-click your way to Python on Windows.

As you can see already, Python runs on a great many operating systems. The full list includes Windows,
Mac OS, Mac OS X, and all varieties of free UNIX-compatible systemslike Linux. There are also versions
that run on Sun Solaris, AS/400, Amiga, 0S/2, BeOS, and a plethora of other platforms you've probably
never even heard of.

What's more, Python programswritten on one platform can, with alittle care, run on any supported platform.
For instance, | regularly develop Python programs on Windows and later deploy them on Linux.

So back to the question that started this section, “Which Python isright for you?” The answer iswhichever
one runs on the computer you already have.

Python on Windows

On Windows, you have a couple choices for installing Python.

ActiveState makes aWindowsinstaller for Python called ActivePython, which includes acomplete version
of Python, an IDE with a Python-aware code editor, plus some Windows extensions for Python that allow
complete access to Windows-specific services, APIs, and the Windows Registry.

ActivePython is freely downloadable, although it is not open source. It isthe IDE | used to learn Python,
and | recommend you try it unless you have a specific reason not to. One such reason might be that Act-
iveState is generally several months behind in updating their ActivePython installer when new version of
Python are released. If you absolutely need the latest version of Python and ActivePython is still aversion
behind as you read this, you'll want to use the second option for installing Python on Windows.

The second option is the “official” Python installer, distributed by the people who develop Python itself.
It isfreely downloadable and open source, and it is always current with the latest version of Python.

Procedure 1.1. Option 1: Installing ActivePython
Here is the procedure for installing ActivePython:

1. Download ActivePython from http://www.activestate.com/Products/ActivePython/.

http://www.activestate.com/Products/ActivePython/

Chapter 1

If you are using Windows 95, Windows 98, or Windows ME, you will also need to download and
install Windows Installer 2.0 [http://downl oad.microsoft.com/downl oad/Windowsl nstaller/Instal l/2.0/-
WOIXMe/EN-USInstMsiA.exe] before installing ActivePython.

Double-click theinstaller, ActivePython-2.2.2-224-win32-ix86.msi.
Step through the installer program.

If spaceistight, you can do acustom installation and desel ect the documentation, but | don't recommend
this unless you absolutely can't spare the 14MB.

After the installation is complete, close the installer and choose Start->Programs->ActiveState Act-
ivePython 2.2->PythonWin IDE. You'll see something like the following:

PythonWin 2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)] on win32.
Portions Copyright 1994-2001 Mark Hammond (mhammond@skippinet.com.au) -

see
>>>

'Help/About PythonWin' for further copyright information.

Procedure 1.2. Option 2: I nstalling Python from Python.or g [http://mwww.python.or g/

]

1

Download the latest Python Windows installer by going to http://www.python.org/ftp/python/ and
selecting the highest version number listed, then downloading the . exe installer.

Double-click theinstaller, Python-2.xxx.yyy.exe. The name will depend on the version of Python
available when you read this.

Step through the installer program.

If disk spaceistight, you can deselect the HTMLHelp file, the utility scripts (Tools/), and/or the test
suite (Lib/test/).

If you do not have administrative rights on your machine, you can select Advanced Options, then
choose Non-Admin Install. Thisjust affectswhere Registry entriesand Start menu shortcuts are created.

After theingstallation is complete, close the installer and select Start->Programs->Python 2.3->IDLE
(Python GUI). You'll see something like the following:

Python 2.3.2 (#49, Oct 2 2003, 20:02:00) [MSC v.1200 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.

R e e e e S o e e U A S Rkt o o o

Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.

IDIE 1.0

>>>

http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe
http://www.python.org/
http://www.python.org/ftp/python/

Chapter 1

Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don't install it. You probably want
toinstal it.

Mac OS X 10.2 and later comeswith acommand-line version of Python preinstalled. If you are comfortable
with the command line, you can use this version for the first third of the book. However, the preinstalled
version does not come with an XML parser, so when you get to the XML chapter, you'll need to install
the full version.

Rather than using the preinstalled version, you'll probably want to install the latest version, which also
comes with agraphical interactive shell.

Procedure 1.3. Running the Preinstalled Version of Python on Mac OS X
To use the preinstalled version of Python, follow these steps:

1. Openthe /Applications folder.

2. OpentheUtilities folder.

3. Double-click Terminal to open aterminal window and get to acommand line.

4. Typepython at the command prompt.

Try it out:

Welcome to Darwin!

[localhost:~] you% python

Python 2.2 (#1, 07/14/02, 23:25:09)

[GCC Apple cpp-precomp 6.14] on darwin

Type "help", "copyright", "credits", or "license" for more information.

>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Procedure 1.4. Installing the Latest Version of Python on Mac OS X
Follow these steps to download and install the latest version of Python:

1. Download the MacPython-0SX disk image from http://homepages.cwi.nl/~jack/macpython/down-
load.html.

2. If your browser has not already done so, double-click MacPython-0SX-2.3-1.dmg to mount the disk
image on your desktop.

3. Double-click the installer, MacPython-0SX. pkg.

4. Theinstaller will prompt you for your administrative username and password.

5. Step through the installer program.

6. Afterinstallation is complete, close theinstaller and open the /Applications folder.

7. OpentheMacPython-2.3 folder

http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html

Chapter 1

8. Double-click PythonIDE to launch Python.

The MacPython I DE should display a splash screen, then take you to the interactive shell. If theinteractive
shell does not appear, select Window->Python Interactive (Cmd-0). The opening window will look
something like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)]

Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1

>>>

Note that once you install the latest version, the pre-installed version is till present. If you are running
scripts from the command line, you need to be aware which version of Python you are using.

Example 1.1. Two versions of Python

[localhost:~] you% python

Python 2.2 (#1, 07/14/02, 23:25:09)

[GCC Apple cpp-precomp 6.14] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]

[localhost:~] you% /usr/local/bin/python

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]

[localhost:~] you%

Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and thereis only one
choice.

Follow these steps to install Python on Mac OS 9:

1. Download the MacPython23full.bin file from http://homepages.cwi.nl/~jack/macpython/down-
load.html.

2. If your browser does not decompress the file automatically, double-click MacPython23full.bin to
decompress the file with Stuffit Expander.

3. Double-click theinstaller, MacPython23full.

4. Step through the installer program.

5. AFter installation is complete, close the installer and open the /Applications folder.
6. Open theMacPython-0S9 2.3 folder.

7. Double-click Python IDE to launch Python.

http://homepages.cwi.nl/~jack/macpython/download.html
http://homepages.cwi.nl/~jack/macpython/download.html

Chapter 1

The MacPython IDE should display a splash screen, and then take you to the interactive shell. If the inter-
active shell does not appear, select Window->Python Interactive (Cmd-0). You'll see a screen like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)]

Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1

>>>

Python on RedHat Linux

Installing under UNIX-compatible operating systems such as Linux is easy if you're willing to install a
binary package. Pre-built binary packages are available for most popular Linux distributions. Or you can
always compile from source.

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and selecting the highest
version number listed, then selecting the rpms/ directory within that. Then download the RPM with the
highest version number. You can install it with the rpm command, as shown here:

http://www.python.org/ftp/python/

Chapter 1

Example 1.2. Installing on RedHat Linux 9

localhost:~$ su -

Password: [enter your root password]

[root@localhost root]# wget
http://python.org/ftp/python/2.3/rpms/redhat-9/python2.3-2.3-5pydotorg.i386.rpm

Resolving python.org... done.
Connecting to python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 7,495,111 [application/octet-stream]

[root@localhost root]# rpm -Uvh python2.3-2.3-5pydotorg.i386.rpm

Preparing... HUH#HHBHHHRHH AR HRRHH AR [100%]
1:python2.3 HUH#HHBHHHRHH AR HRRHH AR HRH [100%]
[root@localhost root]# python []

Python 2.2.2 (#1, Feb 24 2003, 19:13:11)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]

[root@localhost root]# python2.3 []

Python 2.3 (#1, Sep 12 2003, 10:53:56)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-5)] on linux2

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]

[root@localhost root]# which python2.3 U

/usr/bin/python2.3

[] Whoops! Just typing python gives you the older version of Python -- the one that was installed by
default. That's not the one you want.

[] Atthetime of thiswriting, the newest version is called python2. 3. You'll probably want to change
the path on the first line of the sample scriptsto point to the newer version.

[] Thisisthe complete path of the newer version of Python that you just installed. Use this on the #!
line (thefirst line of each script) to ensure that scripts are running under the latest version of Python,
and be sure to type python2. 3 to get into the interactive shell.

Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt command.

Chapter 1

Example 1.3. Installing on Debian GNU/Linux

localhost:~$ su -
Password: [enter your root password]
localhost:~# apt-get install python
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
python2.3
Suggested packages:
python-tk python2.3-doc
The following NEW packages will be installed:
python python2.3
0 upgraded, 2 newly installed, O to remove and 3 not upgraded.
Need to get 0B/2880kB of archives.
After unpacking 9351kB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Selecting previously deselected package python2.3.
(Reading database ... 22848 files and directories currently installed.)
Unpacking python2.3 (from .../python2.3_2.3.1-1_i386.deb)
Selecting previously deselected package python.
Unpacking python (from .../python_2.3.1-1_all.deb)
Setting up python (2.3.1-1)
Setting up python2.3 (2.3.1-1)
Compiling python modules in /usr/lib/python2.3 ...
Compiling optimized python modules in /usr/lib/python2.3 ...
localhost:~# exit
logout
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to exit]

Python Installation from Source

If you prefer to build from source, you can download the Python source code from http://www.python.org/-
ftp/python/. Select the highest version number listed, download the .tgz file), and then do the usual
configure, make, make install dance.

http://www.python.org/ftp/python/
http://www.python.org/ftp/python/

Chapter 1

Example 1.4. Installing from source

localhost:~$ su -
Password: [enter your root password]
localhost:~# wget http://www.python.org/ftp/python/2.3/Python-2.3.tgz

Resolving www.python.org... done.
Connecting to www.python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 8,436,880 [application/x-tar]

localhost:~# tar xfz Python-2.3.tgz
localhost:~# cd Python-2.3
localhost:~/Python-2.3# ./configure
checking MACHDEP... linux2

checking EXTRAPLATDIR...

checking for --without-gcc... no

localhost:~/Python-2.3# make

gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -03 -Wall -Wstrict-prototypes
-I. -I./Include -DPy_BUILD_CORE -o Modules/python.o Modules/python.c

gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -03 -Wall -Wstrict-prototypes
-I. -I./Include -DPy_BUILD_CORE -o Parser/acceler.o Parser/acceler.c

gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -03 -Wall -Wstrict-prototypes
-I. -I./Include -DPy_BUILD_CORE -o Parser/grammarl.o Parser/grammarl.c

localhost:~/Python-2.3# make install
/usr/bin/install -c python /usr/local/bin/python2.3

localhost:~/Python-2.3# exit

logout

localhost:~$ which python

/usr/local/bin/python

localhost:~$ python

Python 2.3.1 (#2, Sep 24 2003, 11:39:14)

[GCC 3.3.2 20030908 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]

localhost:~$

The Interactive Shell

Now that you have Python installed, what's this interactive shell thing you're running?

It's like this: Python leads a double life. It's an interpreter for scripts that you can run from the command
line or runlike applications, by double-clicking the scripts. But it'salso an interactive shell that can eval uate
arbitrary statements and expressions. Thisis extremely useful for debugging, quick hacking, and testing.
| even know some people who use the Python interactive shell in lieu of acalculator!

Launch the Python interactive shell in whatever way works on your platform, and let's dive in with the
steps shown here:

Chapter 1

Example 1.5. First Stepsin the I nteractive Shell

>>> 1 + 1 0
2

>>> print 'hello world' [J
hello world

>>> x = 1 L]
>>>y = 2

>>> X + Y

3

[] ThePythoninteractive shell can evaluate arbitrary Python expressions, including any basic arithmetic
expression.

[1 Theinteractive shell can execute arbitrary Python statements, including the print statement.

H

You can also assign values to variables, and the values will be remembered as long as the shell is
open (but not any longer than that).

Summary

You should now have aversion of Python installed that works for you.

Depending on your platform, you may have more than one version of Python intsalled. If so, you need to
be aware of your paths. If simply typing python on the command line doesn't run the version of Python
that you want to use, you may need to enter the full pathname of your preferred version.

Congratulations, and welcome to Python.

Chapter 2. Your First Python Program

You know how other books go on and on about programming fundamental s and finally work up to building
acomplete, working program? Let's skip al that.

Diving In
Here is a complete, working Python program.

It probably makes absolutely no sense to you. Don't worry about that, because you're going to dissect it
line by line. But read through it first and see what, if anything, you can make of it.

Example 2.1. odbchelper . py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

def buildConnectionString(params):
"""Build a connection string from a dictionary of parameters.

Returns string."""
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if __name__ == "__main__":
myParams = {"server":"mpilgrim", \
"database":"master", \
"uid":"sa", \
"pwd" :"secret" \
}

print buildConnectionString(myParams)

Now run this program and see what happens.

Running Programs on Windows

IntheActivePython IDE on Windows, you can run the Python program you're editing by choosing
File->Run... (Ctrl-R). Output is displayed in the interactive window.

Running Programson Mac OS

In the Python IDE on Mac OS, you can run a Python program with Python->Run window...
(Cmd-R), but there is an important option you must set first. Open the .py file in the IDE, pop
up the options menu by clicking the black triangle in the upper-right corner of the window, and
make surethe Runas___main__ option is checked. Thisis a per-file setting, but you'll only need
to do it once per file.

Running Programsin UNI X

On UNIX-compatible systems (including Mac OS X), you can run a Python program from the
command line: python odbchelper.py

10

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 2

The output of odbchelper.py will look like this:

server=mpilgrim;uid=sa;database=master;pwd=secret

Declaring Functions

Python has functions like most other languages, but it does not have separate header files like C++ or
interface/implementation sections like Pascal. When you need afunction, just declare it, like this:

def buildConnectionString(params):

Note that the keyword def starts the function declaration, followed by the function name, followed by the
arguments in parentheses. Multiple arguments (not shown here) are separated with commas.

Also note that the function doesn't define a return datatype. Python functions do not specify the datatype
of their return value; they don't even specify whether or not they return a value. In fact, every Python
function returnsavalue; if the function ever executesareturn statement, it will return that value, otherwise
it will return None, the Python null value.

Python vs. Visual Basic: Return Values

InVisual Basic, functions (that return avalue) start with function, and subroutines (that do not
return a value) start with sub. There are no subroutines in Python. Everything is a function, all
functionsreturn avalue (even if it'sNone), and al functions start with def.

The argument, params, doesn't specify adatatype. In Python, variables are never explicitly typed. Python
figures out what type avariable is and keepstrack of it internally.

Python vs. Java: Return Values

In Java, C++, and other statically-typed languages, you must specify the datatype of the function
return value and each function argument. In Python, you never explicitly specify the datatype of
anything. Based on what value you assign, Python keeps track of the datatype internally.

How Python's Datatypes Compare to Other Programming
Languages

An erudite reader sent me this explanation of how Python compares to other programming languages:

statically typed language A languageinwhich typesarefixed at compiletime. Most statically
typed languages enforce this by requiring you to declare all variables
with their datatypes before using them. Java and C are statically
typed languages.

dynamically typed language A language in which types are discovered at execution time; the
opposite of statically typed. VBScript and Python are dynamically
typed, because they figure out what type avariableiswhen you first
assign it avalue.

strongly typed language A language in which types are always enforced. Java and Python
are strongly typed. If you have an integer, you can't treat it like a
string without explicitly converting it.

11

Chapter 2

weakly typed language A language in which types may be ignored; the opposite of strongly
typed. VBScript isweakly typed. InVBScript, you can concatenate
the string '12"' and the integer 3 to get the string '123"', then treat
that asthe integer 123, all without any explicit conversion.

So Python is both dynamically typed (because it doesn't use explicit datatype declarations) and strongly
typed (because once a variable has a datatype, it actually matters).

Documenting Functions

You can document a Python function by giving it adoc string.

Example 2.2. Defining the buildConnectionString Function'sdoc string

def buildConnectionString(params):
"""Build a connection string from a dictionary of parameters.

Returns string."""

Triple quotes signify a multi-line string. Everything between the start and end quotes is part of a single
string, including carriage returns and other quote characters. You can use them anywhere, but you'll see
them most often used when defining adoc string.

Python vs. Perl: Quoting

Triple quotes are also an easy way to define a string with both single and double quotes, like
qq/. ../ inPerl.

Everything between the triple quotes is the function's doc string, which documents what the function
does. A doc string, if it exists, must be the first thing defined in a function (that is, the first thing after
the colon). You don't technically need to give your function adoc string, but you always should. | know
you've heard thisin every programming class you've ever taken, but Python gives you an added incentive:
the doc string isavailable at runtime as an attribute of the function.

Why doc strings are a Good Thing

Many Python IDEsusethedoc string to provide context-sensitive documentation, so that when
you type a function name, its doc string appears as a tooltip. This can be incredibly helpful,
but it's only as good asthe doc stringsyou write.

Further Reading on Documenting Functions
o PEP 257 [http://www.python.org/peps/pep-0257.html] defines doc string conventions.

* Python Style Guide [http://www.python.org/doc/essays/styleguide.html] discusses how to write agood
doc string.

» Python Tutorial [http://www.python.org/doc/current/tut/tut.html] discusses conventions for spacing in
doc strings[http://www.python.org/doc/current/tut/node6. tmI#SECTION006750000000000000000].

12

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000

Chapter 2

Everything Is an Object

In caseyoumissedit, | just said that Python functions have attributes, and that those attributes are available
at runtime.

A function, like everything else in Python, is an object.

Open your favorite Python IDE and follow along:

Example 2.3. Accessing the buildConnectionString Function'sdoc string

>>> import odbchelper O

>>> params = {"server":"mpilgrim", "database":'"master", "uid":"sa", "pwd":'secret"}
>>> print odbchelper.buildConnectionString(params) O
server=mpilgrim;uid=sa;database=master;pwd=secret

>>> print odbchelper.buildConnectionString.__doc__ O

Build a connection string from a dictionary

Returns string.

[] Thefirstlineimportsthe odbchelper program asamodule -- achunk of codethat you can useinter-
actively, or from alarger Python program. (You'll see examples of multi-module Python programs
in Chapter 4.) Once you import a module, you can reference any of its public functions, classes, or
attributes. Modules can do this to access functionality in other modules, and you can do it inthe IDE
too. Thisis an important concept, and you'll talk more about it later.

[1 Whenyouwant to use functions defined inimported modules, you need to include the module name.
So you can't just say buildConnectionString; it must be odbchelper.buildConnectionString.
If you've used classes in Java, this should feel vaguely familiar.

[] Instead of calling the function as you would expect to, you asked for one of the function's attributes,
__doc__.

Python vs. Perl: import

import in Python is like require in Perl. Once you import a Python module, you access its
functionswith module. function; onceyou require aPerl module, you accessitsfunctionswith
module: : function.

The Import Search Path

Before you go any further, | want to briefly mention the library search path. Python looksin several places
when you try to import a module. Specificaly, it looksin al the directories defined in sys.path. Thisis
just alist, and you can easily view it or modify it with standard list methods. (You'll learn more about lists
later in this chapter.)

13

Chapter 2

Example 2.4. Import Search Path

>>> import sys [l
>>> sys.path O
['", "/usr/local/lib/python2.2', '/usr/local/lib/python2.2/plat-linux2',

'/usr/local/lib/python2.2/1ib-dynload', '/usr/local/lib/python2.2/site-packages’,
'/usr/local/lib/python2.2/site-packages/PIL",
'/usr/local/lib/python2.2/site-packages/piddle’]

>>> sys

<module 'sys' (built-in)>

>>> sys.path.append('/my/new/path’') [

[] Importing the sys module makes all of its functions and attributes available.

[] sys.pathisalistof directory namesthat constitute the current search path. (Yourswill look different,
depending on your operating system, what version of Python you're running, and whereit was origin-
aly installed.) Python will ook through these directories (in this order) for a . py file matching the
module name you're trying to import.

[1 Actualy, | lied; the truth is more complicated than that, because not al modules are stored as . py
files. Some, like the sys module, are "built-in modules'; they are actually baked right into Python
itself. Built-in modules behave just like regular modul es, but their Python source codeisnot available,
because they are not written in Python! (The sys module iswrittenin C.)

[] Youcan add anew directory to Python's search path at runtime by appending the directory name to
sys.path, and then Python will look in that directory aswell, whenever you try to import amodule.
The effect lasts as long as Python is running. (You'll talk more about append and other list methods
in Chapter 3.)

What's an Object?

Everything in Python is an object, and almost everything has attributes and methods. All functions have a
built-in attribute __doc__, which returns the doc string defined in the function's source code. The sys
module is an object which has (among other things) an attribute called path. And so forth.

Still, this begsthe question. What isan object? Different programming languages define“ object” in different
ways. In some, it meansthat all objects must have attributes and methods; in others, it meansthat all objects
are subclassable. In Python, the definition islooser; some objects have neither attributes nor methods (more
on thisin Chapter 3), and not all objects are subclassable (more on thisin Chapter 5). But everythingisan
object in the sense that it can be assigned to a variable or passed as an argument to afunction (morein this
in Chapter 4).

Thisisso important that I'm going to repest it in case you missed it thefirst few times: everything in Python
is an object. Strings are objects. Lists are objects. Functions are objects. Even modules are objects.

Further Reading on Objects

» Python Reference Manual [http://www.python.org/doc/current/ref/] explains exactly what it meansto
say that everythingin Python isan object [http://www.python.org/doc/current/ref/objects.html], because
some people are pedantic and like to discuss this sort of thing at great length.

» eff-bot [http://www.effbot.org/guides/] summarizes Python objects [http://www.effbot.org/guides/-
python-objects.htm].

14

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm

Chapter 2

Indenting Code

Python functions have no explicit begin or end, and no curly bracesto mark where the function code starts
and stops. The only delimiter isa colon (:) and the indentation of the code itself.

Example 2.5. Indenting the buildConnectionString Function

def buildConnectionString(params):
"""Build a connection string from a dictionary of parameters.

nnn

Returns string.

return ";".join(["%s=%s" % (k, v) for k, v in params.items()])
Code blocks are defined by their indentation. By "code block™, | mean functions, if statements, for loops,
while loops, and so forth. Indenting starts a block and unindenting ends it. There are no explicit braces,
brackets, or keywords. This means that whitespace is significant, and must be consistent. In this example,
the function code (including the doc string) isindented four spaces. It doesn't need to be four spaces, it
just needsto be consistent. Thefirst line that is not indented is outside the function.

Example 2.6, “if Statements’ shows an example of code indentation with if statements.

Example 2.6. if Statements

def fib(n): U
print 'n =', n []
if n > 1: O
return n * fib(n - 1)
else: O
print 'end of the line'
return 1

[] Thisisafunction named fib that takes one argument, n. All the code within the function is indented.

[] Printingtothescreenisvery easy in Python, just useprint. print statements can take any datatype,
including strings, integers, and other native types like dictionaries and lists that you'll learn about in
the next chapter. You can even mix and match to print several things on one line by using acomma-
separated list of values. Each value is printed on the same line, separated by spaces (the commas
don't print). So when fib is called with 5, thiswill print "n=5".

[] if statements are atype of code block. If the if expression evaluates to true, the indented block is
executed, otherwiseit fallsto the else block.

[] Of courseif and else blocks can contain multiple lines, as long as they are al indented the same
amount. This else block has two lines of code in it. There is no other special syntax for multi-line
code blocks. Just indent and get on with your life.

After someinitial protests and several snide analogies to Fortran, you will make peace with this and start
seeing its benefits. One major benefit isthat all Python programslook similar, sinceindentation isalanguage
requirement and not a matter of style. This makes it easier to read and understand other people's Python
code.

15

Chapter 2

Python vs. Java: Separ ating Statements

Python uses carriage returns to separate statements and a colon and indentation to separate code
blocks. C++ and Java use semicolons to separate statements and curly braces to separate code
blocks.

Further Reading on Code I ndentation

* Python Reference Manual [http://www.python.org/doc/current/ref/] discusses cross-platform indentation
issues and shows various indentation errors [http://www.python.org/doc/current/ref/indentation.html].

e Python Syle Guide [http://www.python.org/doc/essays/styleguide.html] discusses good indentation
style.

Testing Modules

Python modules are objects and have several useful attributes. You can use thisto easily test your modules
as you write them. Here's an example that usesthe if __name__ trick.

if __name__ == "__main__":

Some quick observations before you get to the good stuff. First, parentheses are not required around the
if expression. Second, the if statement ends with a colon, and is followed by indented code.

Python vs. C: Comparison and Assignment

Like C, Python uses == for comparison and = for assignment. Unlike C, Python does not support
in-line assignment, so there's no chance of accidentally assigning the value you thought you were
comparing.

Sowhy isthisparticular if statement atrick? Modules are objects, and all modules have abuilt-in attribute
_ name__. A module's __name__ depends on how you're using the module. If you import the module,
then __name__ is the modul€'s filename, without a directory path or file extension. But you can also run
the module directly as a standalone program, in which case __name__ will be a specia default value,
__main__.

>>> import odbchelper
>>> odbchelper.__name__
'odbchelper’

Knowing this, you can design atest suite for your module within the module itself by putting it in thisif
statement. When you run the module directly, __name__is__main__, so thetest suite executes. When you
import the module, __name___ is something else, so thetest suiteisignored. Thismakesit easier to develop
and debug new modules before integrating them into alarger program.

If _name__on Mac OS

On MacPython, thereisan additional stepto maketheif _ name__ trick work. Pop up the module's
options menu by clicking the black triangle in the upper-right corner of the window, and make
sure Run as__main__is checked.

16

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html

Chapter 2

Further Reading on Importing Modules

» Python Reference Manual [http://www.python.org/doc/current/ref/] discusses the low-level details of
importing modules [http://www.python.org/doc/current/ref/import.html].

17

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html

Chapter 3. Native Datatypes

You'll get back to your first Python program in just aminute. But first, ashort digression isin order, because
you need to know about dictionaries, tuples, and lists (oh my!). If you're a Perl hacker, you can probably
skim the bits about dictionaries and lists, but you should still pay attention to tuples.

Introducing Dictionaries

One of Python's built-in datatypes is the dictionary, which defines one-to-one relationships between keys
and values.

Python vs. Perl: Dictionaries
A dictionary in Pythonislike ahash in Perl. In Perl, variables that store hashes always start with

a% character. In Python, variables can be named anything, and Python keeps track of the datatype
internally.

Python vs. Java: Dictionaries

A dictionary in Python is like an instance of the Hashtable classin Java.

Python vs. Visual Basic: Dictionaries

A dictionary in Python islike an instance of the Scripting.Dictionary object inVisual Basic.

Defining Dictionaries

Example 3.1. Defining a Dictionary

>>> d = {"server":"mpilgrim", "database":"master"} O
>>> d

{'server': 'mpilgrim', 'database': 'master'}

>>> d["server"] O
'mpilgrim’

>>> d["database"] O
'master’

>>> d["mpilgrim"] O

Traceback (innermost last):

File "<interactive input>", line 1, in ?

KeyError: mpilgrim

O

OooOod

First, you create a new dictionary with two elements and assign it to the variable d. Each element is
akey-value pair, and the whole set of elementsis enclosed in curly braces.
'server' isakey, and its associated value, referenced by d["server"], iS 'mpilgrim’.

'database' isakey, and its associated value, referenced by d["database"], iS 'master’.

You can get values by key, but you can't get keys by value. So d["server"] is 'mpilgrim', but
d["mpilgrim"] raises an exception, because 'mpilgrim’ isnot akey.

18

Chapter 3

Modifying Dictionaries

Example 3.2. Modifying a Dictionary

>>> d

{'server': 'mpilgrim', 'database': 'master'}

>>> d["database"] = "pubs” []

>>> d

{'server': 'mpilgrim', 'database': 'pubs'}

>>> d["uid"] = "sa" O

>>> d

{'server': 'mpilgrim', 'uid': 'sa', 'database': 'pubs'}

[] You can not have duplicate keys in a dictionary. Assigning a value to an existing key will wipe out

O

the old value.

You can add new key-value pairs at any time. This syntax is identical to modifying existing values.
(Yes, this will annoy you someday when you think you are adding new values but are actually just
modifying the same value over and over because your key isn't changing the way you think it is.)

Note that the new element (key 'uid', value 'sa') appearsto bein the middle. In fact, it wasjust a coin-
cidence that the elements appeared to be in order in the first example; it isjust as much a coincidence that
they appear to be out of order now.

Dictionaries are unordered

Dictionaries have no concept of order among elements. It isincorrect to say that the elements are
“out of order”; they are simply unordered. This is an important distinction that will annoy you
when you want to access the elements of a dictionary in a specific, repeatable order (like alpha
betical order by key). There are ways of doing this, but they're not built into the dictionary.

When working with dictionaries, you need to be aware that dictionary keys are case-sensitive.

Example 3.3. Dictionary Keys Are Case-Sensitive

>>d = {}

>>> d["key"] = "value"

>>> d["key"] = "other value" O
>>> d

{'key': 'other value'}

>>> d["Key"] = "third value" O

>>> d

{'Key': 'third value', 'key': 'other value'}

U
U

Assigning avalue to an existing dictionary key simply replaces the old value with a new one.
Thisisnot assigning avalueto an existing dictionary key, because stringsin Python are case-sensitive,
S0 'key' isnot the same as 'Key'. This creates a new key/value pair in the dictionary; it may look
similar to you, but as far as Python is concerned, it's completely different.

19

Chapter 3

Example 3.4. Mixing Datatypesin a Dictionary

>>> d

{'server': 'mpilgrim', 'uid': 'sa', 'database': 'pubs'}

>>> d["retrycount"] = 3 O

>>> d

{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master', 'retrycount': 3}
>>> d[42] = "douglas" [l

>>> d

{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master’',

42: 'douglas', 'retrycount': 3}

[] Dictionariesaren'just for strings. Dictionary values can be any datatype, including strings, integers,
objects, or even other dictionaries. And within a single dictionary, the values don't all need to be the
same type; you can mix and match as needed.

[] Dictionary keys are more restricted, but they can be strings, integers, and afew other types. You can
also mix and match key datatypes within a dictionary.

Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary

>>> d

{'server': 'mpilgrim', 'uid':
42: 'douglas', 'retrycount': 3}
>>> del d[42] [J

sa', 'database': 'master',

>>> d

{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master', 'retrycount': 3}
>>> d.clear() [

>>> d

{}

[] delletsyou deleteindividual itemsfrom adictionary by key.

[] cleardeletesall itemsfrom adictionary. Note that the set of empty curly braces signifiesadictionary
without any items.

Further Reading on Dictionaries

* How to Think Like a Computer Scientist [http://www.ibiblio.org/obp/thinkCSpy/] teaches about dic-
tionaries and shows how to use dictionaries to model sparse matrices [http://www.ibiblio.org/obp/-
thinkCSpy/chap10.htm].

e Python Knowledge Base [http://www.fagts.com/knowledge-base/index.phtml/fid/199/] has a lot of
exampl e code using dictionaries [http://www.fagts.com/knowl edge-base/index.phtml/fid/541].

» Python Cookbook [http://www.activestate.com/A SPN/Python/Cookbook/] discusses how to sort the
values of adictionary by key [http://www.activestate.com/A SPN/Python/Cookbook/Reci pe/52306].

* Python Library Reference [http://www.python.org/doc/current/lib/] summarizes all the dictionary
methods [http://www.python.org/doc/current/lib/typesmapping.htmi].

20

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html
http://www.python.org/doc/current/lib/typesmapping.html

Chapter 3

Introducing Lists

Lists are Python's workhorse datatype. If your only experience with listsisarraysin Visual Basic or (God
forbid) the datastore in Powerbuilder, brace yourself for Python lists.

Python vs. Perl: lists

A listin Python islike an array in Perl. In Perl, variables that store arrays always start with the @
character; in Python, variables can be named anything, and Python keeps track of the datatype
internally.

Python vs. Java: lists

A list in Python is much more than an array in Java (although it can be used asoneif that's really
al youwant out of life). A better analogy would beto the ArrayList class, which can hold arbitrary
objects and can expand dynamically as new items are added.

Defining Lists

Example 3.6. Defining a List

>>> 1i = ["a", "b", "mpilgrim", "z", "example"]]
>>> 1i

['a', 'b', 'mpilgrim', 'z', 'example']

>>> 1i[0] O
g

>>> 1i[4] O
'example’

[] First, youdefinealist of five elements. Note that they retaintheir original order. Thisis not an accident.
A listisan ordered set of elements enclosed in square brackets.
[] A list can beused like azero-based array. The first element of any non-empty listisalways1i[0].

[] Thelast element of thisfive-element listis1i[4], because lists are always zero-based.

Example 3.7. Negative List Indices

>>> 1i

['a', 'b', 'mpilgrim', 'z', 'example']
>>> 1i[-1] [

'example’

>>> 1i[-3] [

'mpilgrim’

[] A negativeindex accesses elements from the end of thelist counting backwards. The last element of
any non-empty listisaways1i[-1].

[] [f the negative index is confusing to you, think of it thisway: 1i[-n] == 1i[len(1i) - n].Soin
thislist, 1i[-3] == 1i[5 - 3] == 1i[2].

21

Chapter 3

Example 3.8. Slicinga List

>>>

['a’

>>>

1i
, 'b'", 'mpilgrim', 'z', 'example']

1if1:31 U

['b', 'mpilgrim']

>>>

lif1:-11 U

['b', 'mpilgrim', 'z']

>>>

['a’

O

O

1if0:3]1 O
, 'b', 'mpilgrim']

You can get a subset of alist, called a“dice’, by specifying two indices. The return value is a new
list containing all the elements of the list, in order, starting with the first slice index (in this case
1i[17), up to but not including the second sliceindex (in thiscase 1i[31).

Slicing works if one or both of the slice indices is negative. If it helps, you can think of it this way:
reading the list from left to right, the first slice index specifies the first element you want, and the
second dliceindex specifiesthefirst element you don't want. Thereturn valueis everything in between.
Lists are zero-based, so 1i[0:3] returns the first three elements of the list, starting at 1i[0], up to
but not including 1i[3].

Example 3.9. Slicing Shorthand

>>>

[lal

>>>

[lal

>>>

['z",

>>>

[lal

U
U

1i
, 'b', 'mpilgrim', 'z', 'example']
1i[:31 U
, 'b', 'mpilgrim']
1i[3:1 U O
'example']
1[:1 [
, 'b', 'mpilgrim', 'z', 'example']

If the left diceindex is 0, you can leave it out, and O isimplied. So 1i[:3] isthesameas1i[0:3]
from Example 3.8, “Slicing a List".

Similarly, if theright slice index isthe length of thelist, you can leave it out. S0 1i[3:] isthe same
as1i[3:5], because thislist has five elements.

Note the symmetry here. In this five-element list, 1i[:3] returns the first 3 elements, and 1i[3:]
returnsthe last two elements. In fact, 1i[:n] will alwaysreturn thefirst n elements, and 1i[n:] will
return the rest, regardless of the length of the list.

If both dice indices are left out, all elements of the list are included. But thisis not the same as the
original 1i list; it is anew list that happens to have al the same elements. 1i[:] is shorthand for
making a complete copy of alist.

22

Chapter 3

Adding Elements to Lists

Example 3.10. Adding Elementsto a List

>>> 1i

['a', 'b', "'mpilgrim', 'z', 'example']

>>> 1i.append('"'new") []

>>> 1i

['a', 'b', 'mpilgrim', 'z', 'example', 'new']

>>> li.insert(2, "new")

>>> 1i

['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new']
>>> li.extend(["two", "elements"]) []

>>> 1i

['a', 'b', 'new', 'mpilgrim', 'z', 'example',

U
U

new', 'two', 'elements']

append adds a single element to the end of thelist.

insert inserts a single element into a list. The numeric argument is the index of the first element
that gets bumped out of position. Note that list elements do not need to be unique; there are now two
separate elements with thevalue 'new', 1i[2] and 1i[6].

extend concatenateslists. Note that you do not call extend with multiple arguments; you call it with
one argument, alist. In this case, that list has two elements.

23

Chapter 3

Example 3.11. The Difference between extend and append

>>1i =["'a", 'b', 'c']

>>> li.extend(['d', 'e', '£'1) [
>>> 1i

['a', 'b"', 'c', 'd', 'e', "f']
>>> len(li) 0
6

>>> 1i[-1]

e

>>1i =["'a", 'b', 'c']

>>> li.append(['d', 'e', 'f']) O
>>> 1i

['a', 'b", 'c¢', ['d"', 'e', "f']]
>>> len(li) 0
4

>>> 1i[-1]

['d", 'e', 'f']

[] Lists have two methods, extend and append, that look like they do the same thing, but are in fact
completely different. extend takes a single argument, which is always a list, and adds each of the
elements of that list to the original list.

[] Hereyou started with alist of three elements (*a’', 'b', and 'c'), and you extended the list with a
list of another three elements ('d', 'e', and 'f'), so you how have alist of six elements.

[] Ontheother hand, append takes one argument, which can be any datatype, and simply addsit to the
end of thelist. Here, you're calling the append method with asingle argument, which isalist of three
elements.

[] Now the original list, which started as a list of three elements, contains four elements. Why four?
Because the last element that you just appended isitself a list. Lists can contain any type of data, in-
cluding other lists. That may be what you want, or maybe not. Don't use append if you mean extend.

24

Chapter 3

Searching Lists

Example 3.12. Searching a List

>>> 1i

['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']
>>> 1i.index("example")]

5

>>> 1i.index("new") U

2

>>> 1i.index("c") U

Traceback (innermost last):

File "<interactive input>", line 1, in ?

ValueError: list.index(x): x not in list

>>> "c" in 1i U

False

[] index findsthefirst occurrence of avaluein the list and returns the index.

[] index findsthe first occurrence of avalueinthelist. Inthis case, 'new' occurstwiceinthelist, in
1i[2] and 1i[6], but index will return only the first index, 2.

[] If thevalueisnot found in the list, Python raises an exception. This is notably different from most
languages, which will return some invalid index. While this may seem annoying, it is a good thing,
because it means your program will crash at the source of the problem, rather than later on when you
try to use the invalid index.

[1 Totest whether avalueisin thelist, use in, which returns True if the value is found or False if it

isnot.

What'sTruein Python?

Before version 2.2.1, Python had no separate boolean datatype. To compensate for this, Python
accepted almost anything in a boolean context (like an if statement), according to the following
rules:

» o0isfdse al other numbers are true.

* Anempty string ("") isfalse, al other strings are true.

Anempty list ([]) isfalse; adl other listsare true.
* Anempty tuple (()) isfalse; all other tuples are true.
* Anempty dictionary ({}) isfase; al other dictionaries are true.

These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean,
which has avalue of True or False. Note the capitalization; these values, like everything elsein
Python, are case-sensitive.

25

Chapter 3

Deleting List Elements

Example 3.13. Removing Elementsfrom a List

>>> 1i

['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']
>>> li.remove("z") H

>>> 1i

['a', 'b', 'new', 'mpilgrim', 'example', 'new', 'two', 'elements']

>>> 1i.remove('new") [

>>> 1i

['a', 'b', 'mpilgrim', 'example', 'new', 'two', 'elements']

>>> li.remove('c") [l
Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: list.remove(x): x not in list

>>> 1i.pop() O

'elements’

>>> 1i

['a', 'b', 'mpilgrim', 'example', 'new', 'two']

[] remove removes thefirst occurrence of avalue from alist.

[] remove removes only the first occurrence of avalue. In this case, 'new' appeared twice in the list,
but 1i.remove("new") removed only thefirst occurrence.

[] Ifthevalueisnot foundinthelist, Python raisesan exception. Thismirrorsthe behavior of the index
method.

[] pop isan interesting beast. It does two things: it removes the last element of the list, and it returns

the value that it removed. Note that thisis different from 1i[-11, which returns a value but does not
change thelist, and different from 1i.remove (value), which changes the list but does not return a
value.

26

Chapter 3

Using L

ist Operators

Example 3.14. List Operators

>>>
>>>
>>>

['all

>>>
>>>

['all

>>>
>>>
[1’

O

O

O

li = ['a', 'b', "'mpilgrim']
1li = 1i + ['example', 'new'] O
1i
'b', 'mpilgrim', 'example', 'new']
1i += ['two']
1i
'b', 'mpilgrim', 'example', 'new', 'two']
1li = [1, 2] * 3
1i

2,1, 2, 1, 2]

Lists can aso be concatenated with the + operator. 1ist = list + otherlist hasthe sameresult
as list.extend(otherlist). But the + operator returns a new (concatenated) list as a value,
whereas extend only alters an existing list. This means that extend is faster, especialy for large
lists.

Python supports the += operator. 1i += ['two'] is equivalent to 1i.extend(['two']). The +=
operator worksfor lists, strings, and integers, and it can be overloaded to work for user-defined classes
aswell. (More on classes in Chapter 5.)

The * operator workson listsasarepeater. 1i = [1, 2] * 3isequivaenttoli = [1, 2] + [1,
2] + [1, 2], which concatenates the three listsinto one.

Further Reading on Lists

How to Think Like a Computer cientist [http://www.ibiblio.org/obp/thinkCSpy/] teaches about lists
and makes an important point about passing lists as function arguments [http://www.ibiblio.org/obp/-
thinkCSpy/chap08.htm].

Python Tutorial [http://www.python.org/doc/current/tut/tut.ntml] shows how to use lists as stacks and
queues [http://www.python.org/doc/current/tut/node7.html#SECTI ON007110000000000000000] .

Python K nowledge Base [http://www.fagts.com/knowl edge-base/index.phtml/fid/199/] answers common
questions about lists [http://www.fagts.com/knowl edge-base/index.phtml/fid/534] and has alot of ex-
ample code using lists [http://www.fagts.com/knowl edge-base/index.phtml /fid/540].

Python Library Reference [http://www.python.org/doc/current/lib/] summarizes al the list methods
[http:/iwww.python.org/doc/current/lib/typesseg-mutable.html].

Introducing Tuples

A tupleisan immutablelist. A tuple can not be changed in any way onceit is created.

27

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html

Chapter 3

Example 3.15. Defining atuple

>>> t = ("a", "b", "mpilgrim", "z", "example") O
>>> t

('a', 'b', 'mpilgrim', 'z', 'example')

>>> t[0] O
3

>>> t[-1] O
'example'

>>> t[1:3] [l

('b', 'mpilgrim')

[] A tupleisdefinedinthe same way as alist, except that the whole set of elementsis enclosed in par-
entheses instead of square brackets.

The elements of atuple have a defined order, just like alist. Tuplesindices are zero-based, just like
alist, so thefirst element of a non-empty tupleisawayst[0].

Negative indices count from the end of the tuple, just aswith alist.

Slicing works too, just like alist. Note that when you dlice alist, you get a new list; when you slice
atuple, you get a new tuple.

[I R |

Example 3.16. Tuples Have No M ethods

>>> t

('a', 'b', 'mpilgrim', 'z', 'example')
>>> t.append(''new") O

Traceback (innermost last):

File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'append'
>>> t.remove("z") O
Traceback (innermost last):

File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'remove'
>>> t.index("example") [l
Traceback (innermost last):

File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'index'
>>> "z" in t
True

[] Youcan't add elementsto atuple. Tuples have no append or extend method.

[] Youcan't remove elements from atuple. Tuples have no remove or pop method.
[] Youcan'tfind elementsin atuple. Tuples have no index method.

[] Youcan, however, usein to seeif an element existsin the tuple.

So what are tuples good for?

e Tuples are faster than lists. If you're defining a constant set of values and all you're ever going to do
with it isiterate through it, use atuple instead of alist.

» It makes your code safer if you “write-protect” data that does not need to be changed. Using atuple
instead of alist islike having an implied assert statement that shows this data is constant, and that
special thought (and a specific function) is required to override that.

28

Chapter 3

e Remember that | said that dictionary keys can beintegers, strings, and “afew other types’? Tuples are
one of those types. Tuples can be used as keysin a dictionary, but lists can't be used this way.

Actually, it's more complicated than that. Dictionary keys must be immutable. Tuples themselves are
immutable, but if you have atuple of lists, that counts as mutable and isn't safe to use as a dictionary
key. Only tuples of strings, numbers, or other dictionary-safe tuples can be used as dictionary keys.

» Tuplesareused in string formatting, as you'll see shortly.

Tuplesinto listsinto tuples

Tuples can be converted into lists, and vice-versa. The built-in tuple function takes a list and
returns a tuple with the same elements, and the 1ist function takes atuple and returns alist. In
effect, tuple freezesalist, and 1ist thaws atuple.

Further Reading on Tuples

» Howto Think Like a Computer Scientist [http://www.ibiblio.org/obp/thinkCSpy/] teaches about tuples
and shows how to concatenate tuples [http://www.ibiblio.org/obp/think CSpy/chap10.htm].

» Python Knowledge Base [http://www.fagts.com/knowledge-base/index.phtml/fid/199/] shows how to
sort a tuple [http://www.fagts.com/knowledge-base/view.phtml/ai d/4553/fid/587].

e Python Tutorial [http://www.python.org/doc/current/tut/tut.html] shows how to define atuple with one
element [http://www.python.org/doc/current/tut/node7.html#SECTI ON007300000000000000000] .

Declaring variables

Now that you know something about dictionaries, tuples, and lists (oh my!), let's get back to the sample
program from Chapter 2, odbchelper.py.

Python haslocal and global variableslike most other languages, but it has no explicit variable declarations.
Variables spring into existence by being assigned a value, and they are automatically destroyed when they
go out of scope.

Example 3.17. Defining the myParams Variable

if __name__ == "_main__":

myParams = {"server":"mpilgrim", \
"database":"master", \
Iluidll:llsa"’ \
"pwd":"secret" \

}

Notice the indentation. An if statement is a code block and needs to be indented just like a function.

Also notice that the variable assignment is one command split over severa lines, with a backslash (“\”)
serving as a line-continuation marker.

29

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000

Chapter 3

Writing Multiline Commands

When acommand is split among severa lineswith theline-continuation marker (“\”), the continued
lines can be indented in any manner; Python's normally stringent indentation rules do not apply.
If your Python | DE auto-indents the continued line, you should probably accept its default unless
you have a burning reason not to.

Strictly speaking, expressionsin parentheses, straight brackets, or curly braces (like defining a dictionary)
can be split into multiple lines with or without the line continuation character (“\”). | like to include the
backslash even when it's not required because | think it makes the code easier to read, but that's a matter
of style.

Third, you never declared the variable myParams, you just assigned a value to it. Thisis like VBScript
without the option explicit option. Luckily, unlike VBScript, Python will not allow you to reference
avariable that has never been assigned a value; trying to do so will raise an exception.

Referencing Variables

Example 3.18. Referencing an Unbound Variable

>>> X
Traceback (innermost last):

File "<interactive input>", line 1, in ?
NameError: There is no variable named 'x'
>>x =1
>>> X
1

You will thank Python for this one day.

Assigning Multiple Values at Once

One of the cooler programming shortcuts in Python is using sequences to assign multiple values at once.

Example 3.19. Assigning multiple values at once

>>> v =(a', 'b, 'e)
>>> (X, ¥, 2) =V O
>>> X

‘g

>>> y

b

>>> 2

e

[] visatupleof threeelements, and (x, v, z) isatupleof three variables. Assigning oneto the other
assigns each of the values of v to each of the variables, in order.

Thishas all sorts of uses. | often want to assign namesto arange of values. In C, you would use enum and
manually list each constant and its associated value, which seems especially tedious when the values are
consecutive. In Python, you can use the built-in range function with multi-variable assignment to quickly
assign consecutive values.

30

Chapter 3

Example 3.20. Assigning Consecutive Values

>>> range(7) [l
[o, 1, 2, 3, 4, 5, 6]

>>> (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7) [l
>>> MONDAY

0

>>> TUESDAY

1

>>> SUNDAY

6

[1 Thebuilt-in range function returns alist of integers. In its simplest form, it takes an upper limit and
returns a zero-based list counting up to but not including the upper limit. (If you like, you can pass
other parametersto specify abase other than 0 and astep other than 1. You canprint range.__doc__
for details.)

0 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are the variables you're
defining. (This example came from the calendar module, afun little module that prints calendars,
like the UNIX program cal. The calendar module defines integer constants for days of the week.)

[] Now each variable hasits value: MONDAY is 0, TUESDAY is 1, and so forth.

You can al so use multi-variable assignment to build functionsthat return multiple values, simply by returning
atupleof all thevalues. Thecaller cantreat it asatuple, or assign the valuesto individual variables. Many
standard Python libraries do this, including the os module, which you'll discussin Chapter 6.

Further Reading on Variables

» Python Reference Manual [http://www.python.org/doc/current/ref/] shows examples of when you can
skip the line continuation character [http://www.python.org/doc/current/ref/implicit-joining.html] and
when you need to use it [http://www.python.org/doc/current/ref/explicit-joining.htmi].

e How to Think Like a Computer Scientist [http://www.ibiblio.org/obp/thinkCSpy/] shows how to use
multi-variabl e assignment to swap the val ues of two variables[http://www.ibiblio.org/obp/think CSpy/-
chap09.htm].

Formatting Strings

Python supports formatting values into strings. Although this can include very complicated expressions,
the most basic usage isto insert values into a string with the %s placehol der.

Python vs. C: String Formatting

String formatting in Python uses the same syntax as the sprintf functionin C.

31

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm

Chapter 3

Example 3.21. Introducing String Formatting

>>> k = "uid"
>>> v = "sa"
>>> "%s=%s" % (k, v) [

'uid=sa’

[] Thewhole expression evaluates to astring. The first %s is replaced by the value of k; the second %s
is replaced by the value of v. All other characters in the string (in this case, the equal sign) stay as
they are.

Notethat (k, v) isatuple. | told you they were good for something.

You might be thinking that thisis alot of work just to do simple string concatentation, and you would be
right, except that string formatting isn't just concatenation. It's not even just formatting. It'sal so type coercion.

Example 3.22. String Formatting vs. Concatenating

>>> uid = "sa

>>> pwd = "secret"

>>> print pwd + " is not a good password for

secret is not a good password for sa

>>> print "%s is not a good password for %s" % (pwd, uid) H

secret is not a good password for sa

>>> userCount = 6

>>> print "Users connected: %d" % (userCount,) 0 O

Users connected: 6

>>> print "Users connected:

Traceback (innermost last):
File "<interactive input>", line 1, in ?

TypeError: cannot concatenate 'str' and 'int' objects

" + uid O

+ userCount O

[] +isthestring concatenation operator.
[1 Inthistrivial case, string formatting accomplishes the same result as concatentation.

[] (userCount,) isatuple with one element. Yes, the syntax is a little strange, but there's a good
reason for it: it'sunambiguously atuple. Infact, you can alwaysinclude acommaafter the last el ement
when defining alist, tuple, or dictionary, but the commais required when defining a tuple with one
element. If the comma weren't required, Python wouldn't know whether (userCount) was atuple
with one element or just the value of userCount.

[] String formatting works with integers by specifying %d instead of %s.

[] Trying to concatenate a string with a non-string raises an exception. Unlike string formatting, string
concatenation works only when everything is already a string.

Aswithprintf in C, string formatting in Pythonislike a SwissArmy knife. There are options galore, and
modifier strings to specially format many different types of values.

32

Chapter 3

Example 3.23. Formatting Numbers

>>>
50.
>>>
50.
>>>
+1.

OooOod

Fu

print "Today's stock price: %f" % 50.4625 [l

462500
print "Today's stock price: %.2f" % 50.4625 []

46
print "Change since yesterday: %+.2f" % 1.5 [l

50
The %£ string formatting option treats the value as adecimal, and prints it to six decimal places.
The".2" modifier of the %f option truncates the value to two decimal places.
You can even combine modifiers. Adding the + modifier displays a plus or minus sign before the
value. Note that the ".2" modifier is still in place, and is padding the value to exactly two decimal
places.

rther Reading on String Formatting

Python Library Reference [http://www.python.org/doc/current/lib/] summarizesall the string formatting
format characters [http://www.python.org/doc/current/lib/ty pesseg-strings.html].

Effective AWK Programming [http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk) Top] discusses
al the format characters [http://www-gnats.gnu.org: 8080/ cgi-bi n/info2www?(gawk) Control +L etters]
and advanced string formatting techniques like specifying width, precision, and zero-padding [http://-
www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk) Format+M odifiers].

Mapping Lists

One of the most powerful features of Python isthe list comprehension, which provides a compact way of
mapping alist into another list by applying a function to each of the elements of the list.

Example 3.24. Introducing List Comprehensions

>>>
>>>
[2,
>>>
(1,
>>>
>>>
[2,

O

Her
2

1li = [1, 9, 8, 4]

[elem*2 for elem in 1i]]

18, 16, 8]

1i 0

9, 8, 4]

1li = [elem*2 for elem in 1i] [

1i

18, 16, 8]

To make sense of this, look at it from right to left. 11 isthelist you're mapping. Python loopsthrough

11 oneelement at atime, temporarily assigning the value of each element to the variable elem. Python
then applies the function elem*2 and appends that result to the returned list.
Note that list comprehensions do not change the original list.

It is safe to assign the result of a list comprehension to the variable that you're mapping. Python
constructs the new list in memory, and when the list comprehension is complete, it assigns the result
to the variable.

e are the list comprehensions in the buildConnectionString function that you declared in Chapter

33

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers

Chapter 3

["%s=%s" % (k, v) for k, v in params.items()]

First, notice that you're calling the i tems function of the params dictionary. This function returns alist of
tuples of all the datain the dictionary.

Example 3.25. The keys, values, and items Functions

>>> params = {"server":"mpilgrim", "database":'"master", "uid":"sa", "pwd":'"secret"}
>>> params.keys() O
['server', 'uid', 'database', 'pwd']

>>> params.values() O

['mpilgrim', 'sa', 'master', 'secret']

>>> params.items() O

[('server', 'mpilgrim'), ('uid', 'sa'), ('database', 'master'), ('pwd', 'secret')]

[] Thekeys method of adictionary returnsalist of al the keys. Thelist is not in the order in which the
dictionary was defined (remember that elementsin a dictionary are unordered), but it isalist.

[] Thevalues method returns alist of all the values. The list isin the same order as the list returned
by keys, so params.values() [n] == params[params.keys()[n]] for all values of n.

[] Theitems method returns alist of tuples of the form (key, value). Thelist contains all the data
in the dictionary.

Now let's see what buildConnectionString does. It takesalist, params.items(), and mapsit to anew
list by applying string formatting to each element. The new list will have the same number of elements as
params.items(), but each elementinthe new list will be astring that contains both akey and its associated
value from the params dictionary.

Example 3.26. List Comprehensionsin buildConnectionString, Step by Step

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.items()

[('server', 'mpilgrim'), ('uid', 'sa'), ('database', 'master'), ('pwd', 'secret')]
>>> [k for k, v in params.items()] O

['server', 'uid', 'database', 'pwd']

>>> [v for k, v in params.items()] O

['mpilgrim', 'sa', 'master', 'secret']

>>> ["%s=%s" % (k, v) for k, v in params.items()] O

['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']

[] Notethat you're using two variablesto iterate through the params . items () list. Thisis another use
of multi-variable assignment. The first element of params.items() is ('server', 'mpilgrim'),
so in thefirst iteration of the list comprehension, k will get 'server' and v will get 'mpilgrim'. In
this case, you're ignoring the value of v and only including the value of k in the returned list, so this
list comprehension ends up being equivalent to params . keys ().

[] Hereyou're doing the same thing, but ignoring the value of k, so this list comprehension ends up
being equivalent to params .values().

[] Combining the previous two examples with some simple string formatting, you get alist of strings
that include both the key and value of each element of the dictionary. This looks suspiciously like
the output of the program. All that remainsisto join the elementsin thislist into asingle string.

Chapter 3

Further Reading on List Comprehensions

e Python Tutorial [http://www.python.org/doc/current/tut/tut.html] discusses another way to map lists
using the built-in map function [http://www.python.org/doc/current/tut/-
node7.html#SECTION007130000000000000000].

» Python Tutorial [http://www.python.org/doc/current/tut/tut.html] shows how to do nested list compre-
hensions [http://www.python.org/doc/current/tut/node?7.html#SECT1ON007140000000000000000].

Joining Lists and Splitting Strings

You have alist of key-value pairsin the form key=value, and you want to join them into a single string.
Tojoin any list of strings into asingle string, use the join method of a string object.

Here isan example of joining alist from the buildConnectionString function:

return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

Oneinteresting note before you continue. | keep repeating that functions are objects, strings are objects...
everything is an object. You might have thought | meant that string variables are objects. But no, look
closely at this example and you'll see that the string ;" itself is an object, and you are calling its join
method.

The join method joins the elements of thelist into a single string, with each element separated by a semi-
colon. The delimiter doesn't need to be a semi-colon; it doesn't even need to be a single character. It can
be any string.

You Can't join Non-Strings

join works only on lists of strings; it does not do any type coercion. Joining a list that has one
or more non-string elements will raise an exception.

Example 3.27. Output of odbchelper.py

>>> params = {"server":"mpilgrim", "database":'"master", "uid":"sa", "pwd":'secret"}
>>> ["%s=%s" % (k, v) for k, v in params.items()]
['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']

>>> "3, join(["%s=%s" % (k, v) for k, v in params.items()])
'server=mpilgrim;uid=sa;database=master;pwd=secret’

This string is then returned from the odbchelper function and printed by the calling block, which gives
you the output that you marveled at when you started reading this chapter.

You're probably wondering if there's an analogous method to split astring into alist. And of course there
is, andit'scalled split.

35

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000

Chapter 3

Example 3.28. Splitting a String

>>> 1i = ['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']
>>> s = ";".join(1i)
>>> s

'server=mpilgrim;uid=sa;database=master;pwd=secret’
>>> s.split(";") O

['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']
>>> s.split(";", 1) O
['server=mpilgrim', 'uid=sa;database=master;pwd=secret’]

[] split reverses join by splitting a string into a multi-element list. Note that the delimiter (*;”) is
stripped out completely; it does not appear in any of the elements of the returned list.

[] splittakesanoptional second argument, whichisthe number of timesto split. (“*Oooooh, optional
arguments...” You'll learn how to do thisin your own functions in the next chapter.)

Sear ching with split

anystring.split(delimiter, 1) isauseful technique when you want to search astring for a
substring and then work with everything before the substring (which ends up in the first element
of the returned list) and everything after it (which ends up in the second element).

Further Reading on String M ethods

* Python Knowledge Base [http://www.fagts.com/knowl edge-base/index.phtml /fid/199/] answerscommon
questions about strings [http://www.fagts.com/knowledge-base/index.phtml/fid/480] and has a lot of
exampl e code using strings [http://www.fagts.com/knowledge-base/index.phtml/fid/539].

» Python Library Reference [http://www.python.org/doc/current/lib/] summarizes all the string methods
[http:/iwww.python.org/doc/current/lib/string-methods.html].

e Python Library Reference [http://www.python.org/doc/current/lib/] documents the string module
[http:/iwww.python.org/doc/current/lib/modul e-string.html].

* TheWhole Python FAQ [http://www.python.org/doc/FAQ.html] explainswhy join isastring method
[http://www.python.org/cgi-bin/fagw.py ?query=4.96& querytype=simple& casefol d=yes& req=search]
instead of alist method.

Historical Note on String Methods

When | first learned Python, | expected join to be a method of alist, which would take the delimiter as
an argument. Many people feel the same way, and there's a story behind the join method. Prior to Python
1.6, strings didn't have all these useful methods. There was a separate string module that contained all
the string functions; each function took astring asitsfirst argument. The functions were deemed important
enough to put onto the strings themselves, which made sense for functions like lower, upper, and split.
But many hard-core Python programmers objected to the new join method, arguing that it should be a
method of the list instead, or that it shouldn't move at al but smply stay a part of the old string module
(which dtill has alot of useful stuff in it). | use the new join method exclusively, but you will see code
written either way, and if it really bothers you, you can use the old string. join function instead.

Summary

The odbchelper.py program and its output should now make perfect sense.

36

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

Chapter 3

def buildConnectionString(params):

"""Build a connection string from a dictionary of parameters.

Returns string.

n.n

return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if __name__ == "_main__":

myParams = {"server":"mpilgrim", \
"database'":"master", \
Huidll:llsall’ \
"pwd":"secret" \

}

print buildConnectionString(myParams)

Here isthe output of odbchelper.py:

server=mpilgrim;uid=sa;database=master ;pwd=secret

Before diving into the next chapter, make sure you're comfortable doing al of these things:

Using the Python IDE to test expressionsinteractively

Writing Python programs and running them from within your IDE, or from the command line
Importing modules and calling their functions

Declaring functions and using doc strings, local variables, and proper indentation

Defining dictionaries, tuples, and lists

Accessing attributes and methods of any object, including strings, lists, dictionaries, functions, and
modules

Concatenating values through string formatting
Mapping listsinto other lists using list comprehensions

Splitting strings into lists and joining lists into strings

37

Chapter 4. The Power Of Introspection

This chapter covers one of Python's strengths: introspection. Asyou know, everything in Pythonis an object,
and introspection is code looking at other modul es and functionsin memory as objects, getting information
about them, and manipulating them. Along the way, you'll define functions with no name, call functions
with arguments out of order, and reference functions whose names you don't even know ahead of time.

Diving In

Here is a complete, working Python program. You should understand a good deal about it just by looking
at it. The numbered linesillustrate concepts covered in Chapter 2, Your First Python Program. Don't worry
if the rest of the code looks intimidating; you'll learn all about it throughout this chapter.

Example 4.1. apihelper.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

def info(object, spacing=10, collapse=1): 00O O
"""Print methods and doc strings.
Takes module, class, list, dictionary, or string."""

methodList = [method for method in dir(object) if callable(getattr(object, method))]

processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
print "\n".join(["%s %s" %
(method.1ljust(spacing),
processFunc(str(getattr(object, method).__doc_)))
for method in methodList])

if __name__ == "_main__": OO
print info.__doc__

This module has one function, info. According to its function declaration, it takes three parameters:
object, spacing, and collapse. Thelast two are actually optional parameters, asyou'll see shortly.
The info function hasamulti-linedoc string that succinctly describesthe function's purpose. Note
that no return value is mentioned; thisfunction will be used solely for its effects, rather than its value.
Code within the function is indented.

Theif __name__trick allowsthisprogram do something useful when run by itself, without interfering
with its use as a module for other programs. In this case, the program simply prints out the doc
string of the info function.

[] if statements use == for comparison, and parentheses are not required.

OO o O

The info function is designed to be used by you, the programmer, while working in the Python IDE. It
takes any object that has functions or methods (like a module, which has functions, or alist, which has
methods) and prints out the functions and their doc strings.

38

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 4

Example 4.2. Sample Usage of apihelper.py

>>> from apihelper import info
>>> 1i = []
>>> info(1li)

append L.append(object) -- append object to end

count L.count(value) -> integer -- return number of occurrences of value

extend L.extend(list) -- extend list by appending list elements

index L.index(value) -> integer -- return index of first occurrence of value
insert L.insert(index, object) -- insert object before index

pop L.pop([index]) -> item —-- remove and return item at index (default last)
remove L.remove(value) -- remove first occurrence of value

reverse L.reverse() -- reverse *IN PLACE*

sort L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1

By default the output is formatted to be easy to read. Multi-line doc strings are collapsed into asingle
long line, but this option can be changed by specifying 0 for the collapse argument. If the function names
are longer than 10 characters, you can specify alarger value for the spacing argument to make the output
easier to read.

Example 4.3. Advanced Usage of apihelper.py

>>> import odbchelper

>>> info(odbchelper)

buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30)

buildConnectionString Build a connection string from a dictionary Returns
string.

>>> info(odbchelper, 30, 0)

buildConnectionString Build a connection string from a dictionary

Returns string.

Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without the argument,
the argument gets its default value. Futhermore, arguments can be specified in any order by using named
arguments. Stored proceduresin SQL Server Transact/SQL can dothis, soif you'rea SQL Server scripting
guru, you can skim this part.

Hereis an example of info, a function with two optiona arguments:

def info(object, spacing=10, collapse=1):

spacing and collapse areoptional, becausethey have default values defined. object isrequired, because
it has no default value. If info is called with only one argument, spacing defaults to 10 and collapse
defaultsto 1. If info is called with two arguments, collapse still defaultsto 1.

Say you want to specify a value for collapse but want to accept the default value for spacing. In most
languages, you would be out of luck, because you would need to call the function with three arguments.
But in Python, arguments can be specified by name, in any order.

39

Chapter 4

Example 4.4. Valid Calls of info

info(odbchelper) O
info(odbchelper, 12)]
info(odbchelper, collapse=0) O

info(spacing=15, object=odbchelper) 0

O

U
U
U

With only one argument, spacing getsits default value of 10 and collapse getsits default value of
1.

With two arguments, collapse getsits default value of 1.

Here you are naming the collapse argument explicitly and specifying its value. spacing still gets
its default value of 10.

Even required arguments (like object, which has no default value) can be named, and named argu-
ments can appear in any order.

Thislooks totally whacked until you realize that arguments are simply adictionary. The “normal” method
of calling functions without argument names is actually just a shorthand where Python matches up the
values with the argument names in the order they're specified in the function declaration. And most of the
time, you'll call functions the “normal” way, but you always have the additional flexibility if you need it.

Calling Functionsis Flexible

The only thing you need to do to call afunction is specify a value (somehow) for each required
argument; the manner and order in which you do that is up to you.

Further Reading on Optional Arguments

Python Tutorial [http://Amww.python.org/doc/current/tut/tut.html] discusses exactly when and how default
arguments are evaluated [http://www.python.org/doc/current/tut/-
node6. html#SECTION006710000000000000000], which matters when the default valueisalist or an
expression with side effects.

Using type, str, dir, and Other Built-In Functions

Python has a small set of extremely useful built-in functions. All other functions are partitioned off into
modules. This was actually a conscious design decision, to keep the core language from getting bloated
like other scripting languages (cough cough, Visua Basic).

The type Function

The type function returns the datatype of any arbitrary object. The possible types are listed in the types
module. Thisis useful for helper functions that can handle several types of data.

40

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000

Chapter 4

Example 4.5. Introducing type

>>> type(1) O
<type 'int'>

>>> 1i = []

>>> type(li) W
<type 'list'>

>>> import odbchelper
>>> type(odbchelper) O
<type 'module'>

>>> import types (]
>>> type(odbchelper) == types.ModuleType
True

[] tvpetakesanything-- and | mean anything -- and returnsits datatype. Integers, strings, lists, diction-
aries, tuples, functions, classes, modules, even types are acceptable.
type can take avariable and return its datatype.

type also works on modules.

OooOod

You can use the constants in the types module to compare types of objects. Thisis what the info
function does, as you'll see shortly.

The str Function
The str coerces datainto a string. Every datatype can be coerced into a string.

Example 4.6. Introducing str

>>> str(l) O

lll

>>> horsemen = ['war', 'pestilence', 'famine']
>>> horsemen

['war', 'pestilence', 'famine']

>>> horsemen.append(' Powerbuilder"')

>>> str(horsemen) O

"['war', 'pestilence', 'famine', 'Powerbuilder']"

>>> str(odbchelper) []

"<module 'odbchelper' from 'c:\\docbook\\dip\\py\\odbchelper.py'>"
>>> str(None) []

'None'

[] For simple datatypes like integers, you would expect str to work, because almost every language
has a function to convert an integer to a string.

[] However, str workson any object of any type. Here it works on alist which you've constructed in
bits and pieces.

[] stralsoworksonmodules. Note that the string representation of the module includes the pathname
of the module on disk, so yourswill be different.

[] A subtlebutimportant behavior of str isthat it works on None, the Python null value. It returns the
string "None'. You'll use thisto your advantage in the info function, as you'll see shortly.

At the heart of the info function is the powerful dir function. dir returns a list of the attributes and
methods of any object: modules, functions, strings, lists, dictionaries... pretty much anything.

41

Chapter 4

Example 4.7. Introducing dir

>>> 1i = []

>>> dir(li) W

['append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

>>d = {}

>>> dir(d) W

['clear', 'copy', 'get', 'has_key', 'items', 'keys', 'setdefault', 'update', 'values']
>>> import odbchelper

>>> dir(odbchelper) [

['_builtins__', '__doc__', '__file_ ', '__name__', 'buildConnectionString']

[] liisalist, sodir(1i) returnsalist of al the methods of alist. Note that the returned list contains
the names of the methods as strings, not the methods themsel ves.

[] disadictionary, sodir(d) returnsalist of the names of dictionary methods. At |east one of these,
keys, should look familiar.

[1 Thisiswhereitrealy getsinteresting. odbchelper isamodule, so dir(odbchelper) returns alist
of all kinds of stuff defined in the module, including built-in attributes, like __name__, __doc__, and
whatever other attributes and methods you define. Inthiscase, odbchelper hasonly one user-defined
method, the buildConnectionString function described in Chapter 2.

Finally, the callable function takes any object and returns True if the object can be called, or False
otherwise. Callable objects include functions, class methods, even classes themselves. (More on classes
in the next chapter.)

42

Chapter 4

Example 4.8. Introducing callable

>>> import string

>>> string.punctuation [
TITESREN O F 4, -/ <=>2@ [\\]A{]
>>> string.join (]
<function join at 00C55A7C>

>>> callable(string.punctuation) O

False

>>> callable(string.join) [
True

>>> print string.join.__doc__ [

join(list [,sep]) -> string
Return a string composed of the words in list, with
intervening occurrences of sep. The default separator is a

single space.

(joinfields and join are synonymous)

[] Thefunctionsinthestring module aredeprecated (although many peoplestill usethe join function),
but the module contains alot of useful constants like this string . punctuation, which contains al
the standard punctuation characters.

[] string.joinisafunctionthatjoinsalist of strings.

[] string.punctuation isnot callable; it is astring. (A string does have callable methods, but the
string itself is not callable.)

[] string.joiniscallable; it'safunction that takes two arguments.

[] Any callableobject may have adoc string. By using the callable function on each of an object's

attributes, you can determine which attributes you care about (methods, functions, classes) and which
you want to ignore (constants and so on) without knowing anything about the object ahead of time.

Built-In Functions

type, str, dir, and all the rest of Python's built-in functions are grouped into a special module called
__builtin__. (That'stwo underscores before and after.) If it helps, you can think of Python automatically
executing from __builtin__ import * on startup, which imports al the “built-in” functions into the
namespace so you can use them directly.

The advantage of thinking likethisisthat you can access all the built-in functions and attributes as a group
by getting information about the __builtin__ module. And guess what, Python has a function called
info. Try it yourself and skim through the list now. WE'I dive into some of the more important functions
later. (Some of the built-in error classes, like AttributeError, should already look familiar.)

43

Chapter 4

Example 4.9. Built-in Attributes and Functions

>>> from apihelper import info
>>> import __builtin__
>>> info(__builtin__, 20)

ArithmeticError Base class for arithmetic errors.
AssertionError Assertion failed.

AttributeError Attribute not found.

EOFError Read beyond end of file.
EnvironmentError Base class for I/0 related errors.
Exception Common base class for all exceptions.
FloatingPointError Floating point operation failed.
IOError I/0 operation failed.

[...snip...]

Python is self-documenting

Python comes with excellent reference manual's, which you should peruse thoroughly to learn all
the modules Python hasto offer. But unlike most languages, where you would find yourself refer-
ring back to the manuals or man pages to remind yourself how to use these modules, Python is
largely self-documenting.

Further Reading on Built-In Functions
» Python Library Reference [http://www.python.org/doc/current/lib/] documentsall the built-in functions

[http:/Aww.python.org/doc/current/lib/built-in-funcs.html] and al the built-in exceptions [http://-
www.python.org/doc/current/lib/modul e-exceptions.html].

Getting Object References With getattr

You aready know that Python functions are objects. What you don't know is that you can get a reference
to a function without knowing its name until run-time, by using the getattr function.

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html

Chapter 4

Example 4.10. Introducing getattr

>>> 1i = ["Larry", "Curly"]

>>> 1i.pop (]
<built-in method pop of list object at 010DF884>
>>> getattr(li, "pop™) O

<built-in method pop of list object at 010DF884>
>>> getattr(li, "append")(''Moe™) O

>>> 1i
["Larry", "Curly", "Moe"]
>>> getattr({}, "clear™) O

<built-in method clear of dictionary object at 00F113D4>
>>> getattr((), "pop™)
Traceback (innermost last):

File "<interactive input>", line 1, in ?

AttributeError: 'tuple' object has no attribute 'pop'’

U
U

This gets a reference to the pop method of the list. Note that thisis not calling the pop method; that
would be 1i.pop (). Thisis the method itself.

Thisa so returnsareferenceto the pop method, but thistime, the method nameis specified asastring
argument to the getattr function. getattr isan incredibly useful built-in function that returns any
attribute of any object. In this case, the object isalist, and the attribute is the pop method.

In case it hasn't sunk in just how incredibly useful thisis, try this: the return value of getattr isthe
method, which you can then call just asif you had said 11 . append("Moe") directly. But you didn't
call the function directly; you specified the function name as a string instead.

getattr also works on dictionaries.

In theory, getattr would work on tuples, except that tuples have no methods, so getattr will raise
an exception no matter what attribute name you give.

getattr with Modules

getattr isn't just for built-in datatypes. It also works on modules.

45

Chapter 4

Example 4.11. The getattr Function in apihelper.py

>>> import odbchelper

>>> odbchelper.buildConnectionString [
<function buildConnectionString at 00D18DD4>

>>> getattr(odbchelper, "buildConnectionString") O
<function buildConnectionString at 00D18DD4>

>>> object = odbchelper

>>> method = "buildConnectionString"

>>> getattr(object, method) O
<function buildConnectionString at 00D18DD4>

>>> type(getattr(object, method)) O

<type 'function'>

>>> import types

>>> type(getattr(object, method)) == types.FunctionType
True

>>> callable(getattr(object, method)) O
True

[] Thisreturnsareferenceto thebuildConnectionString functioninthe odbchelper module, which
you studied in Chapter 2, Your First Python Program. (The hex address you see is specific to my
machine; your output will be different.)

[] Usinggetattr, you can get the same reference to the same function. In general, getattr(object,
"attribute") isequivalent to object.attribute. If object isamodule, then attribute can be
anything defined in the module: afunction, class, or global variable.

[1 Andthisiswhat you actually useinthe info function. object is passed into the function as an argu-
ment; method is a string which is the name of a method or function.

[] Inthiscase method isthe name of afunction, which you can prove by getting its type.

[] Sincemethod isafunction, itiscallable.

getattr As a Dispatcher

A common usage pattern of getattr is as a dispatcher. For example, if you had a program that could
output datain a variety of different formats, you could define separate functions for each output format
and use a single dispatch function to call the right one.

For example, let'simagine a program that prints site statisticsin HTML, XML, and plain text formats. The
choice of output format could be specified on the command line, or stored in a configuration file. A
statsout module defines three functions, output_html, output_xml, and output_text. Then the main
program defines a single output function, like this:

Example 4.12. Creating a Dispatcher with getattr

import statsout

def output(data, format="text"): []
output_function = getattr(statsout, "output_%s" % format)]
return output_function(data) []

[1 The output function takes one required argument, data, and one optional argument, format. If
format isnot specified, it defaultsto text, and you will end up calling the plain text output function.

46

Chapter 4

[] You concatenate the format argument with "output_" to produce a function name, and then go get
that function fromthe statsout module. Thisallowsyou to easily extend the program later to support
other output formats, without changing this dispatch function. Just add another functionto statsout
named, for instance, output_pdf, and pass "pdf" asthe format into the output function.

[] Now you can simply cal the output function in the same way as any other function. The
output_function variable is areference to the appropriate function from the statsout module.

Did you see the bug in the previous example? This is a very loose coupling of strings and functions, and
thereis no error checking. What happens if the user passes in a format that doesn't have a corresponding
function definedin statsout?Well, getattr will return None, which will be assigned to output_function
instead of avalid function, and the next line that attempts to call that function will crash and raise an ex-
ception. That's bad.

Luckily, getattr takes an optional third argument, a default value.

Example 4.13. getattr Default Values

import statsout

def output(data, format="text"):
output_function = getattr(statsout, "output_%s" % format, statsout.output_text)
return output_function(data) [

[] Thisfunction call is guaranteed to work, because you added athird argument to the call to getattr.
Thethird argument isadefault value that isreturned if the attribute or method specified by the second
argument wasn't found.

As you can see, getattr is quite powerful. It is the heart of introspection, and you'll see even more
powerful examples of it in later chapters.

Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, vialist comprehensions
(the section called “Mapping Lists’). This can be combined with afiltering mechanism, where some elements
in the list are mapped while others are skipped entirely.

Hereisthelist filtering syntax:

[mapping-expression for element in source-list if filter-expression]

Thisis an extension of the list comprehensions that you know and love. The first two thirds are the same;
the last part, starting with the if, is the filter expression. A filter expression can be any expression that
evaluatestrue or false (which in Python can be a most anything). Any element for which thefilter expression
evaluatestrue will beincludedin the mapping. All other elementsareignored, so they are never put through
the mapping expression and are not included in the output list.

47

Chapter 4

Example 4.14. Introducing List Filtering

S>> 1i = [a", "mpi].grim", "fOO", "b", "C", "b", "d", ndn]

>>> [elem for elem in 1i if len(elem) > 1] [l
['mpilgrim', 'foo'l]

>>> [elem for elem in 1i if elem != "b"] [l
['a', 'mpilgrim', 'foo', 'c', 'd', 'd']

>>> [elem for elem in 1i if 1i.count(elem) == 1] [J
['a', 'mpilgrim', 'foo', 'c'l]

[1 Themapping expression hereis simple (it just returns the value of each element), so concentrate on
thefilter expression. AsPython loopsthrough thelist, it runs each e ement through thefilter expression.
If the filter expression is true, the element is mapped and the result of the mapping expressionisin-
cluded in the returned list. Here, you are filtering out all the one-character strings, so you're left with
alist of all the longer strings.

[] Here, you arefiltering out a specific value, b. Note that this filters all occurrences of b, since each
time it comes up, the filter expression will be false.

[] count isalist method that returns the number of times avalue occursin alist. You might think that
this filter would eliminate duplicates from a list, returning a list containing only one copy of each
value in the original list. But it doesn't, because values that appear twice in the origina list (in this
case, b and d) are excluded completely. There are ways of eliminating duplicates from alist, but fil-
tering is not the solution.

Let's get back to thisline from apihelper.py:

methodList = [method for method in dir(object) if callable(getattr(object, method))]

Thislooks complicated, and it iscomplicated, but the basic structure isthe same. Thewholefilter expression
returns a list, which is assigned to the methodList variable. The first half of the expression is the list
mapping part. The mapping expression isan identity expression, which it returnsthe val ue of each element.
dir(object) returnsalist of object's attributes and methods -- that's the list you're mapping. So the only
new part isthe filter expression after the i f.

The filter expression looks scary, but it's not. You already know about callable, getattr, and in. As
you saw in the previous section, the expression getattr(object, method) returns afunction object if
object isamodule and method is the name of afunction in that module.

So thisexpression takes an object (named object). Thenit getsalist of the names of the object's attributes,
methods, functions, and a few other things. Then it filters that list to weed out al the stuff that you don't
care about. You do the weeding out by taking the name of each attribute/method/function and getting a
referenceto thereal thing, viathe getattr function. Then you check to seeif that object is callable, which
will be any methods and functions, both built-in (like the pop method of alist) and user-defined (like the
buildConnectionString function of the odbchelper modul€). You don't care about other attributes, like
the _name__ attribute that's built in to every module.

Further Reading on Filtering Lists

* Python Tutorial [http://www.python.org/doc/current/tut/tut.ntml] discusses another way to filter lists
using the built-in filter function [http://www.python.org/doc/current/tut/-
node7.html#SECTION007130000000000000000] .

48

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000

Chapter 4

The Peculiar Nature of and and or

In Python, and and or perform boolean logic as you would expect, but they do not return boolean values;
instead, they return one of the actual values they are comparing.

Example 4.15. Introducing and

>>> 'a' and 'b' O
'b'
>>> '' and 'b’ O

>>> 'a' and 'b' and 'c' U

C

[] Whenusing and, values are evaluated in a boolean context from left to right. 0, ' ', [1, (), {}, and
None are false in a boolean context; everything elseis true. Well, amost everything. By default, in-
stances of classes are true in a boolean context, but you can define special methods in your class to
make an instance evaluate to false. You'll learn all about classes and special methods in Chapter 5.
If al values are true in a boolean context, and returnsthe last value. In this case, and evaluates 'a’,
whichistrue, then 'b', whichistrue, and returns 'b'.

[] Ifanyvalueisfalsein aboolean context, and returnsthefirst false value. In thiscase, ' ' isthefirst

false vaue.
[] Allvaluesaretrue, so and returnsthe last value, 'c'.

Example 4.16. Introducing or

>>> 'a' or 'b' O
‘g
>>> '" or 'b' O
b
>>> ''" or [] or {} O
{3}

>>> def sidefx():

print "in sidefx()"
- return 1
>>> 'a' or sidefx() O

Q

When using or, values are eval uated in a boolean context from left to right, just like and. If any value
istrue, or returnsthat value immediately. Inthiscase, 'a"' isthefirst true value.
or evaluates ' ', whichisfase, then 'b', which istrue, and returns 'b".

If all valuesarefalse, or returnsthelast value. or evaluates ' ', which isfalse, then [], whichisfalse,
then {3, whichisfalse, and returns {3.

Notethat or evaluates values only until it finds onethat istruein aboolean context, and then it ignores
therest. Thisdistinction isimportant if some values can have side effects. Here, the function sidefx
isnever called, because or evaluates 'a', which istrue, and returns 'a' immediately.

O oo o

If you're a C hacker, you are certainly familiar with the bool ? a : b expression, which evaluatesto a
if bool istrue, and b otherwise. Because of the way and and or work in Python, you can accomplish the
same thing.

49

Chapter 4

Using the and-or Trick

Example 4.17. Introducing the and-or Trick

>>> a = "first"
>>> b = "second"
>>> 1 and a or b [J
'first'

>>> 0 and a or b [J
'second’

[] Thissyntax looks similar to the bool ? a : b expressionin C. The entire expression is evaluated
from left to right, so the and is evaluated first. 1 and 'first' evalutesto 'first’, then 'first'
or 'second' evalutesto 'first'.

[] O and 'first' evalutestoFalse, andthen0 or 'second' evaluatesto 'second'.

However, since this Python expression is simply boolean logic, and not aspecial construct of the language,
there is one extremely important difference between this and-or trick in Python and the bool ? a : b
syntax in C. If the value of a isfalse, the expression will not work as you would expect it to. (Can you tell
| was bitten by this? More than once?)

Example 4.18. When the and-or Trick Fails

>>> a =

>>> b = "second"

>>> 1 and a or b O
'second’

[] Sincea isanempty string, which Python considersfalsein aboolean context, 1 and '' evalutesto
'',andthen '’ or 'second' evalutesto 'second'. Oops! That's not what you wanted.

The and-or trick, bool and a or b, will not work like the C expression bool ? a : bwhenaisfase
in a boolean context.

Thereal trick behind the and-or trick, then, isto make sure that the value of a is never false. One common
way of doing thisisto turn a into [a] and b into [b], then taking the first element of the returned ligt,
which will be either a or b.

Example 4.19. Using the and-or Trick Safely

>>> a =
>>> b = "second"
>>> (1 and [a] or [b])[0] [

[] Since[a] isanon-empty list, it isnever false. Evenif aisO or ' ' or some other false value, the list
[a] istrue because it has one element.

By now, this trick may seem like more trouble than it's worth. You could, after al, accomplish the same
thing with an i f statement, so why go through all thisfuss?Well, in many cases, you are choosing between
two constant values, so you can use the simpler syntax and not worry, because you know that the a value
will always be true. And even if you need to use the more complicated safe form, there are good reasons

50

Chapter 4

to do so. For example, there are some cases in Python where if statements are not allowed, such asin
lambda functions.

Further Reading on the and-or Trick

» Python Cookbook [http://www.activestate.com/A SPN/Python/Cookbook/] discusses aternatives to
the and-or trick [http://www.activestate.com/A SPN/Python/Cookbook/Reci pe/52310].

Using lambda Functions

Python supports an interesting syntax that lets you define one-line mini-functions on the fly. Borrowed
from Lisp, these so-called 1ambda functions can be used anywhere a function is required.

Example 4.20. I ntroducing 1lambda Functions

>>> def f(x):
return x%2

>>> £(3)
>>> g = lambda x: x*2 [J
>>> g(3)

>>> (lambda x: x*2)(3) [

[] Thisisalambda function that accomplishes the same thing as the normal function aboveit. Note the
abbreviated syntax here: there are no parentheses around the argument list, and the return keyword
ismissing (it isimplied, since the entire function can only be one expression). Also, the function has
no name, but it can be called through the variable it is assigned to.

[] You can use alambda function without even assigning it to a variable. This may not be the most
useful thing in the world, but it just goesto show that alambdais just an in-line function.

To generalize, a lambda function is afunction that takes any number of arguments (including optional ar-
guments) and returns the value of a single expression. lambda functions can not contain commands, and
they can not contain more than one expression. Don't try to squeeze too much into a 1lambda function; if
you need something more complex, define a normal function instead and make it as long as you want.

lambda is Optional

lambda functions are a matter of style. Using them is never required; anywhere you could use
them, you could define a separate normal function and usethat instead. | usethem in placeswhere
| want to encapsul ate specific, non-reusable code without littering my codewith alot of little one-
line functions.

Real-World lambda Functions

Here are the 1ambda functionsin apihelper.py:

processFunc = collapse and (lambda s: .join(s.split())) or (lambda s: s)

51

http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310

Chapter 4

Noticethat this usesthe ssimpleform of the and-or trick, which isokay, because alambda function isaways
truein aboolean context. (That doesn't mean that alambda function can't return afalse value. The function
is always true; its return value could be anything.)

Also notice that you're using the split function with no arguments. You've already seen it used with one
or two arguments, but without any arguments it splits on whitespace.

Example 4.21. split With No Arguments

>>> s = "this is\na\ttest" [J
>>> print s

this is

a test

>>> print s.split() O
["this', 'is', 'a', 'test']

>>> print " ".join(s.split()) 0

'this is a test'

[] Thisisamultilinestring, defined by escape charactersinstead of triple quotes. \n isacarriage return,
and \t isatab character.

[] split without any arguments splits on whitespace. So three spaces, a carriage return, and a tab
character are al the same.

[] Youcannormalize whitespace by splitting astring with split and then rgjoining it with join, using
asingle space as adelimiter. Thisiswhat the info function doesto collapse multi-line doc strings
into asingleline.

So what is the info function actually doing with these 1ambda functions, splits, and and-or tricks?

processFunc = collapse and (lambda s: .join(s.split())) or (lambda s: s)
processFunc is how afunction, but which function it is depends on the value of the collapse variable.
If collapse istrue, processFunc(string) will collapse whitespace; otherwise, processFunc (string)
will return its argument unchanged.

To do thisin aless robust language, like Visual Basic, you would probably create a function that took a
string and a collapse argument and used an if statement to decide whether to collapse the whitespace or
not, then returned the appropriate value. This would be inefficient, because the function would need to
handle every possible case. Every timeyou caled it, it would need to decide whether to collapse whitespace
before it could give you what you wanted. In Python, you can take that decision logic out of the function
and define a lambda function that is custom-tailored to give you exactly (and only) what you want. This
ismore efficient, more elegant, and less prone to those nasty oh-1-thought-those-arguments-were-reversed
kinds of errors.

Further Reading on lambda Functions

» Python Knowledge Base [http://www.fagts.com/knowledge-base/index.phtml /fid/199/] discussesusing
lambda to call functionsindirectly [http://www.fagts.com/knowledge-base/view.phtml/aid/6081/fid/241].

e Python Tutorial [http://www.python.org/doc/current/tut/tut.ntml] shows how to access outside variables
from inside a lambda function [http://www.python.org/doc/current/tut/-
node6. html#SECTION006740000000000000000]. (PEP 227 [http://python.sourceforge.net/peps/-
pep-0227.html] explains how this will change in future versions of Python.)

52

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html

Chapter 4

e TheWhole Python FAQ [http://www.python.org/doc/FAQ.html] has examples of obfuscated one-liners
using lambda [http://www.python.org/cgi-bin/-
faqw.py?query=4.15& querytype=simple& casefol d=yes& reg=search].

Putting It All Together

Thelast line of code, the only one you haven't deconstructed yet, is the one that does all the work. But by
now the work is easy, because everything you need is already set up just the way you need it. All the
dominoes arein place; it's time to knock them down.

Thisisthe meat of apihelper.py:
print "\n".join(["%s %s" %
(method.1ljust(spacing),

processFunc(str(getattr(object, method).__doc_)))
for method in methodList])

Note that thisis one command, split over multiple lines, but it doesn't use the line continuation character
(\). Remember when | said that some expressions can be split into multiplelines without using a backslash?
A list comprehension is one of those expressions, since the entire expression is contained in square
brackets.

Now, let's take it from the end and work backwards. The

for method in methodList

shows that this is a list comprehension. As you know, methodList is alist of al the methods you care
about in object. So you're looping through that list with method.

Example 4.22. Getting adoc string Dynamically

>>> import odbchelper

>>> object = odbchelper 0
>>> method = 'buildConnectionString' 0
>>> getattr(object, method) 0

<function buildConnectionString at 010D6D74>
>>> print getattr(object, method).__doc__ []
Build a connection string from a dictionary of parameters.

Returns string.

In the info function, object isthe object you're getting help on, passed in as an argument.
Asyou're looping through methodList, method is the name of the current method.

Using the getattr function, you're getting areference to the method function in the object module.
Now, printing the actual doc string of the method is easy.

I R

The next piece of the puzzle is the use of str around the doc string. Asyou may recall, str isabuilt-
in function that coerces data into a string. But adoc string is aways a string, so why bother with the
str function? The answer isthat not every function hasadoc string, andif it doesn't, its__doc__ attribute
iSNone.

53

http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search

Chapter 4

Example 4.23. Why Use str on adoc string?

>>> >>> def foo(): print 2
>>> >>> foo()

2

>>> >>> foo.__doc__ [
>>> foo.__doc__ == None [
True

>>> str(foo.__doc__) O
'None'

[] Youcaneaslydefineafunctionthat hasnodoc string, soits__doc__ attributeisNone. Confusingly,
if you evaluate the __doc__ attribute directly, the Python IDE prints nothing at all, which makes
sense if you think about it, but is still unhelpful.

[] You can verify that the value of the __doc__ attribute is actually None by comparing it directly.

[] Thestr function takes the null value and returns a string representation of it, 'None"'.

Python vs. SQL: null value comparisons

In SQL, you must use IS NULL instead of = NULL to compare a null value. In Python, you can
use either == None or is None, but is None isfaster.

Now that you are guaranteed to have a string, you can pass the string to processFunc, which you have
already defined as a function that either does or doesn't collapse whitespace. Now you see why it was im-
portant to use str to convert aNone value into a string representation. processFunc is assuming a string
argument and calling its split method, which would crash if you passed it None because None doesn't
have asplit method.

Stepping back even further, you see that you're using string formatting again to concatenate the return
value of processFunc with the return value of method's 1just method. Thisis a new string method that
you haven't seen before.

Example 4.24. Introducing 1just

>>> s = 'buildConnectionString'
>>> s.1just(30) [J
'buildConnectionString

>>> s.1just(20) [J
'buildConnectionString'

[] 1just padsthe string with spaces to the given length. This is what the info function uses to make
two columns of output and line up all thedoc stringsin the second column.

[] If the given length is smaller than the length of the string, 1just will simply return the string un-
changed. It never truncates the string.

You're almost finished. Given the padded method name from the 1 just method and the (possibly collapsed)
doc string from the call to processFunc, you concatenate the two and get a single string. Since you're
mapping methodList, you end up with alist of strings. Using the join method of the string "\n", you
join thislist into a single string, with each element of the list on a separate line, and print the result.

Chapter 4

Example 4.25. Printinga List

>>> 1i = ['a', 'b", 'c']
>>> print "\n".join(1i) U
a
b
C

[] Thisisalsoauseful debugging trick when you're working with lists. And in Python, you're always
working with lists.

That's the last piece of the puzzle. You should now understand this code.

print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc_)))
for method in methodList])

Summary

The apihelper. py program and its output should now make perfect sense.

def info(object, spacing=10, collapse=1):
"""Print methods and doc strings.
Takes module, class, list, dictionary, or string."""
methodList = [method for method in dir(object) if callable(getattr(object, method))]

processFunc = collapse and (lambda s: .join(s.split())) or (lambda s: s)
print "\n".join(["%s %s" %

(method.ljust(spacing),

processFunc(str(getattr(object, method).__doc_)))

for method in methodList])

if __name__ == "_main__":
print info.__doc

Here isthe output of apihelper.py:

>>> from apihelper import info
>>> 1i = []
>>> info(1li)

append L.append(object) -- append object to end

count L.count(value) -> integer -- return number of occurrences of value

extend L.extend(list) -- extend list by appending list elements

index L.index(value) -> integer -- return index of first occurrence of value
insert L.insert(index, object) -- insert object before index

pop L.pop([index]) -> item —- remove and return item at index (default last)
remove L.remove(value) -- remove first occurrence of value

reverse L.reverse() -- reverse *IN PLACE*

sort L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, v) -> -1, 0, 1

55

Chapter 4

Before diving into the next chapter, make sure you're comfortable doing all of these things:
» Defining and calling functions with optional and named arguments

» Using str to coerce any arbitrary value into a string representation

» Using getattr to get references to functions and other attributes dynamically

» Extending the list comprehension syntax to do list filtering

» Recognizing the and-or trick and using it safely

» Defining 1ambda functions

» Assigning functionsto variables and calling the function by referencing the variable. | can't emphasize
this enough, because this mode of thought is vital to advancing your understanding of Python. You'll
see more complex applications of this concept throughout this book.

56

Chapter 5. Objects and
Object-Orientation

This chapter, and pretty much every chapter after this, deals with object-oriented Python programming.
Diving In

Here is a complete, working Python program. Read the doc strings of the module, the classes, and the
functionsto get an overview of what this program does and how it works. As usual, don't worry about the
stuff you don't understand; that's what the rest of the chapter isfor.

57

Chapter 5

Example5.1. fileinfo.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

"""Framework for getting filetype-specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key-value pairs for each piece of metadata.

import fileinfo

info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")

print "\\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):

Framework can be extended by adding classes for particular file types, e.g.
HTMLFileInfo, MPGFileInfo, DOCFileInfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.

import os

import sys

from UserDict import UserDict

def stripnulls(data):
"strip whitespace and nulls"
return data.replace("\00", "").strip()
class FileInfo(UserDict):
"store file metadata"
def __init__(self, filename=None):
UserDict.__init__(self)
self["name"] = filename

class MP3FileInfo(FileInfo):
"store ID3v1l.0 MP3 tags"

tagDataMap = {"title" : (3, 33, stripnulls),
"artist" : (33, 63, stripnulls),
"album" : (63, 093, stripnulls),
"year" : (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

def __parse(self, filename):
"parse ID3v1.0 tags from MP3 file"
self.clear()
try:
fsock = open(filename, "rb", 0)
try:
fsock.seek(-128, 2)
tagdata = fsock.read(128)
finally:

58

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 5

fsock.close()
if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items():
self[tag] = parseFunc(tagdata[start:end])
except IOError:
pass

def __setitem__(self, key, item):
if key == "name" and item:
self.__parse(item)
FileInfo.__setitem__(self, key, item)

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
filelist = [os.path.normcase(f)
for f in os.listdir(directory)]
filelist = [os.path.join(directory, f)
for f in fileList
if os.path.splitext(f)[1] in fileExtList]
def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
"get file info class from filename extension"
subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
return hasattr(module, subclass) and getattr(module, subclass) or FileInfo
return [getFileInfoClass(f)(f) for f in filelist]

if __name__ == "__main__":
for info in listDirectory("/music/_singles/", [".mp3"]): O
print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
print

[] Thisprogram's output depends on the files on your hard drive. To get meaningful output, you'll need
to change the directory path to point to a directory of MP3 files on your own machine.

Thisisthe output | got on my machine. Your output will be different, unless, by some startling coincidence,
you share my exact taste in music.

album=

artist=Ghost in the Machine

title=A Time Long Forgotten (Concept

genre=31
name=/music/_singles/a_time_long_forgotten_con.mp3
year=1999

comment=http://mp3.com/ghostmachine

album=Rave Mix

artist=***DJ MARY-JANE***
title=HELLRAISER****Trance from Hell
genre=31
name=/music/_singles/hellraiser.mp3
year=2000
comment=http://mp3.com/DIMARYJANE

album=Rave Mix
artist=***DJ MARY-JANE***

59

Chapter 5

title=KATRO****THE BEST GOA
genre=31
name=/music/_singles/kairo.mp3
year=2000
comment=http://mp3.com/DIMARYJANE

album=Journeys

artist=Masters of Balance

title=Long Way Home

genre=31
name=/music/_singles/long_way_homel.mp3
year=2000
comment=http://mp3.com/MastersofBalan

album=

artist=The Cynic Project
title=Sidewinder

genre=18
name=/music/_singles/sidewinder.mp3
year=2000
comment=http://mp3.com/cynicproject

album=Digitosis@128k

artist=VXpanded

title=Spinning

genre=255
name=/music/_singles/spinning.mp3
year=2000
comment=http://mp3.com/artists/95/vxp

Importing Modules Using from module import

Python has two ways of importing modules. Both are useful, and you should know when to use each. One
way, import module, you've already seen in the section called “ Everything Is an Object”. The other way
accomplishes the same thing, but it has subtle and important differences.

Hereisthebasic from module import Syntax:

from UserDict import UserDict

Thisis similar to the import module syntax that you know and love, but with an important difference;
the attributes and methods of the imported module types are imported directly into the local nhamespace,
so they are available directly, without qualification by module name. You can import individual items or
use from module import * toimport everything.

Python vs. Perl: from moduleimport

from module import *inPythonislikeuse modulein Perl; import modulein Pythonislike
require modulein Perl.

60

Chapter 5

Python vs. Java: from moduleimport

from module import *inPythonislikeimport module.* in Java, import module in Python
islike import module in Java.

Example 5.2. import module vs. from module import

>>> import types

>>> types.FunctionType [l
<type 'function'>
>>> FunctionType [l

Traceback (innermost last):

File "<interactive input>", line 1, in ?

NameError: There is no variable named 'FunctionType'
>>> from types import FunctionType []

>>> FunctionType [l

<type 'function'>

O

U
U

O

The types module contains no methods; it just has attributes for each Python object type. Note that
the attribute, FunctionType, must be qualified by the module name, types.

FunctionType by itself hasnot been defined in this namespace; it existsonly inthe context of types.
This syntax imports the attribute FunctionType from the types module directly into the local

namespace.
Now FunctionType can be accessed directly, without referenceto types.

When should you use from module import?

If you will be accessing attributes and methods often and don't want to type the module name over and
over, use from module import

If you want to selectively import some attributes and methods but not others, use from module import.

If the module contains attributes or functions with the same name as ones in your module, you must
use import module to avoid name conflicts.

Other than that, it's just amatter of style, and you will see Python code written both ways.

Use from module import * sparingly, becauseit makesit difficult to determine where a partic-
ular function or attribute came from, and that makes debugging and refactoring more difficult.

Further Reading on M odule Importing Techniques

eff-bot [http://www.effbot.org/guides/] has moreto say on import module vs. from module import
[http:/iwww.effbot.org/gui des/import-confusion.htm].

Python Tutorial [http://mww.python.org/doc/current/tut/tut.html] discusses advanced import techniques,
including from module import [http://www.python.org/doc/current/tut/-
node8.html#SECTION008410000000000000000].

Defining Classes

Python isfully object-oriented: you can define your own classes, inherit from your own or built-in classes,
and instantiate the classes you've defined.

61

http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000

Chapter 5

Defining aclassin Python issimple. Aswith functions, there is no separate interface definition. Just define
the class and start coding. A Python class starts with the reserved word class, followed by the class name.
Technically, that's all that's required, since a class doesn't need to inherit from any other class.

Example 5.3. The Simplest Python Class

class Loaf: [J

pass 00O

The name of this classis Loaf, and it doesn't inherit from any other class. Class names are usualy
capitalized, EachWordLikeThis, but thisis only a convention, not a requirement.

This class doesn't define any methods or attributes, but syntactically, there needs to be something in
the definition, so you use pass. ThisisaPython reserved word that just means “ move aong, nothing
to see here”. It's a statement that does nothing, and it's a good placehol der when you're stubbing out
functions or classes.

You praobably guessed this, but everything in aclassisindented, just like the code within afunction,
if statement, for loop, and so forth. The first thing not indented is not in the class.

Python vs. Java: pass

The pass statement in Python is like an empty set of braces ({3) in Javaor C.

Of course, redistically, most classes will be inherited from other classes, and they will define their own
class methods and attributes. But as you've just seen, there is nothing that a class absolutely must have,
other than aname. In particular, C++ programmers may find it odd that Python classes don't have explicit
constructors and destructors. Python classes do have something similar to a constructor: the __init__
method.

Example 5.4. Defining the FileInfo Class

from UserDict import UserDict

class FileInfo(UserDict): [

O

In Python, the ancestor of a classis simply listed in parentheses immediately after the class name.
SotheFileInfo classisinherited from the UserDict class (which wasimported from the UserDict
module). UserDict isaclassthat actslike adictionary, allowing you to essentially subclass the dic-
tionary datatype and add your own behavior. (There are similar classes UserList and UserString
which alow you to subclass lists and strings.) There is a bit of black magic behind this, which you
will demystify later in this chapter when you explore the UserDict classin more depth.

Python vs. Java: Ancestors

In Python, the ancestor of aclassissimply listed in parenthesesimmediately after the class name.
Thereis no specia keyword like extends in Java.

Python supports multiple inheritance. In the parentheses following the class name, you can list as many
ancestor classes asyou like, separated by commas.

62

Chapter 5

Initializing and Coding Classes

This example shows the initialization of the FileInfo classusing the __init__ method.

Example5.5. Initializing the FileInfo Class

class FileInfo(UserDict):
"store file metadata" O
def __init_ (self, filename=None): [J [0 [

[] Classescan (and should) have doc stringstoo, just like modules and functions.

[] —init__iscalled immediately after an instance of the class is created. It would be tempting but
incorrect to call thisthe constructor of the class. It's tempting, because it looks like a constructor (by
convention, __init__ isthe first method defined for the class), acts like one (it's the first piece of
code executed in a newly created instance of the class), and even sounds like one (“init” certainly
suggests a constructor-ish nature). Incorrect, because the object has already been constructed by the
time__init__iscalled, and you already have avalid reference to the new instance of the class. But
__init__istheclosest thing you're going to get to aconstructor in Python, and it fills much the same

role.

[] Thefirst argument of every class method, including __init__, is always a reference to the current
instance of the class. By convention, this argument is always named self. Inthe _init__ method,
self referstothe newly created object; in other class methods, it refersto the instance whose method
was called. Although you need to specify self explicitly when defining the method, you do not

specify it when calling the method; Python will add it for you automatically.

[] —init__ methods can take any number of arguments, and just like functions, the arguments can be
defined with default values, making them optional to the caller. In this case, filename has a default

value of None, which is the Python null value.

Python vs. Java: self

By convention, thefirst argument of any Python class method (the referenceto the current instance)
is caled self. This argument fills the role of the reserved word this in C++ or Java, but self
is not a reserved word in Python, merely a naming convention. Nonetheless, please don't call it

anything but self; thisisavery strong convention.

63

Chapter 5

Example 5.6. Coding the FileInfo Class

class FileInfo(UserDict):

U
U

"store file metadata"
def __init__ (self, filename=None):

UserDict.__init__(self) O
self["name"] = filename]
O

Some pseudo-object-oriented languages like Powerbuil der have aconcept of “extending” constructors
and other events, where the ancestor's method is called automatically before the descendant’s method
is executed. Python does not do this; you must always explicitly call the appropriate method in the
ancestor class.

| told you that this class acts like a dictionary, and here is the first sign of it. You're assigning the ar-
gument filename asthe value of this object's name key.

Note that the __init__ method never returns avalue.

Knowing When to Use self and __init__

When defining your class methods, you must explicitly list self as the first argument for each method,
including_init__. Whenyou call amethod of an ancestor classfrom within your class, you must include
the self argument. But when you call your class method from outside, you do not specify anything for
the self argument; you skip it entirely, and Python automatically adds the instance reference for you. |
am aware that thisis confusing at first; it's not really inconsistent, but it may appear inconsistent because
it relies on adistinction (between bound and unbound methods) that you don't know about yet.

Whew. | realize that's alot to absorb, but you'll get the hang of it. All Python classes work the same way,
S0 once you learn one, you've learned them all. If you forget everything else, remember this one thing,
because | promiseit will trip you up:

__init__ Methods

__init__ methods are optional, but when you define one, you must remember to explicitly call
the ancestor's __init__ method (if it defines one). Thisis more generally true: whenever a des-
cendant wants to extend the behavior of the ancestor, the descendant method must explicitly call
the ancestor method at the proper time, with the proper arguments.

Further Reading on Python Classes

Learning to Program [http://www.freenetpages.co.uk/hp/alan.gauld/] has a gentler introduction to
classes [http://www.freenetpages.co.uk/hp/alan.gaul d/tutclass.htm].

How to Think Like a Computer cientist [http://www.ibiblio.org/obp/thinkCSpy/] shows how to use
classesto model compound datatypes [http://www.ibiblio.org/obp/think CSpy/chap12.htm].

Python Tutorial [http://www.python.org/doc/current/tut/tut.html] has an in-depth look at classes,
namespaces, and inheritance [http://www.python.org/doc/current/tut/nodell1.html].

Python K nowledge Base [http://www.fagts.com/knowl edge-base/index.phtmi/fid/199/] answers common
questions about classes [http://www.fagts.com/knowl edge-base/index.phtml/fid/242].

http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242
http://www.faqts.com/knowledge-base/index.phtml/fid/242

Chapter 5

Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class as if it were
afunction, passing the arguments that the __init__ method defines. The return value will be the newly
created object.

Example5.7. Creating a FileInfo I nstance

>>> import fileinfo

>>> f = fileinfo.FileInfo("/music/_singles/kairo.mp3") O
>>> f.__class__

<class fileinfo.FileInfo at 010EC204>

>>> £.__doc__ O
'store file metadata’'

>>> f l
{'name': '/music/_singles/kairo.mp3'}

[] Youare creating an instance of the FileInfo class (defined in the fileinfo module) and assigning
the newly created instance to the variable f. You are passing one parameter,
/music/_singles/kairo.mp3, whichwill endup asthe filename argumentinFileInfo's__init__
method.

[] Every classinstance has a built-in attribute, __class__, which is the object's class. (Note that the
representation of thisincludesthe physical address of theinstance on my machine; your representation
will be different.) Java programmers may be familiar with the Class class, which contains methods
like getName and getSuperclass to get metadata information about an object. In Python, this kind
of metadata is available directly on the object itself through attributes like __class__, __name__,
and __bases__.

[] Youcanaccesstheinstance'sdoc string just aswithafunction or amodule. All instances of aclass
sharethe same doc string.

[] Remember whenthe __init__ method assigned its filename argument to self["name"]? Well,
here's the result. The arguments you pass when you create the class instance get sent right along to
the__init__ method (along with the object reference, self, which Python adds for free).

Python vs. Java: Instantiating Classes

In Python, simply call aclassasif it were a function to create a new instance of the class. There
isno explicit new operator like C++ or Java.

Garbage Collection

If creating new instances is easy, destroying them is even easier. In general, there is no need to explicitly
free instances, because they are freed automatically when the variables assigned to them go out of scope.
Memory leaks are rare in Python.

65

Chapter 5

Example5.8. Trying to Implement a Memory L eak

>>> def leakmem():
f = fileinfo.FileInfo('/music/_singles/kairo.mp3') UJ

>>> for i in range(100):
leakmem() UJ

[] Everytimethe leakmem function is called, you are creating an instance of FileInfo and assigning
it to the variable £, which isalocal variable within the function. Then the function ends without ever
freeing £, so you would expect a memory leak, but you would be wrong. When the function ends,
the local variable £ goes out of scope. At this point, there are no longer any references to the newly
created instance of FileInfo (Sinceyou never assigned it to anything other than £), so Python destroys
the instance for us.

[] No matter how many times you call the 1leakmem function, it will never leak memory, because every
time, Python will destroy the newly created FileInfo class before returning from 1eakmem.

Thetechnical term for thisform of garbage collectionis*“reference counting”. Python keepsalist of refer-
encesto every instance created. In the above exampl e, therewas only onereferenceto the FileInfo instance:
the local variable £. When the function ends, the variable £ goes out of scope, so the reference count drops
to 0, and Python destroys the instance automatically.

In previous versions of Python, there were situations where reference counting failed, and Python couldn't
clean up after you. If you created two instances that referenced each other (for instance, a doubly-linked
list, where each node has a pointer to the previous and next node in the list), neither instance would ever
be destroyed automatically because Python (correctly) believed that there is always a reference to each
instance. Python 2.0 has an additional form of garbage collection called “ mark-and-sweep” which is smart
enough to notice this virtual gridlock and clean up circular references correctly.

Asaformer philosophy major, it disturbs meto think that things disappear when no oneislooking at them,
but that's exactly what happens in Python. In general, you can simply forget about memory management
and let Python clean up after you.

Further Reading on Garbage Collection

» Python Library Reference [http://www.python.org/doc/current/lib/] summarizes built-in attributes like
__class__ [http://www.python.org/doc/current/lib/specialattrs.html].

» Python Library Reference [http://www.python.org/doc/current/lib/] documents the gc module [http://-
www.python.org/doc/current/lib/module-gc.html], which gives you low-level control over Python's
garbage collection.

Exploring UserDict: A Wrapper Class

As you've seen, FileInfo is a class that acts like a dictionary. To explore this further, let's look at the
UserDict class in the UserDict module, which is the ancestor of the FileInfo class. Thisis nothing
special; the classiswritten in Python and stored in a . py file, just like any other Python code. In particular,
it's stored in the 1ib directory in your Python installation.

In the ActivePython IDE on Windows, you can quickly open any module in your library path by
selecting File->Locate... (Ctrl-L).

66

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html

Chapter 5

Example 5.9. Defining the UserDict Class

class UserDict:

def __init_ (self, dict=None):
self.data = {}
if dict is not None: self.update(dict) [[

OoOod

Note that UserDict is abase class, not inherited from any other class.

Thisisthe__init__ method that you overrode in the FileInfo class. Note that the argument list in
this ancestor class is different than the descendant. That's okay; each subclass can have its own set
of arguments, aslong asit calls the ancestor with the correct arguments. Here the ancestor class has
away to define initial values (by passing a dictionary in the dict argument) which the FileInfo
does not use.

Python supports data attributes (called “instance variables’ in Java and Powerbuilder, and “ member
variables’ in C++). Data attributes are pieces of data held by a specific instance of aclass. In this
case, each instance of UserDict will have adata attribute data. To reference this attribute from code
outside the class, you qualify it with the instance name, instance.data, in the same way that you
qualify afunction with its module name. To reference a data attribute from within the class, you use
self as the qualifier. By convention, all data attributes are initialized to reasonable values in the
__init__ method. However, this is not required, since data attributes, like local variables, spring
into existence when they arefirst assigned avalue.

The update method is adictionary duplicator: it copies all the keys and values from one dictionary
to another. This does not clear the target dictionary first; if the target dictionary already has some
keys, the ones from the source dictionary will be overwritten, but otherswill be left untouched. Think
of update as amerge function, not a copy function.

Thisisasyntax you may not have seen before (I haven't used it in the examplesin this book). It's an
if statement, but instead of having an indented block starting on the next line, there is just asingle
statement on the same line, after the colon. Thisis perfectly legal syntax, which isjust a shortcut you
can use when you have only one statement in ablock. (It's like specifying a single statement without
bracesin C++.) You can use this syntax, or you can have indented code on subsequent lines, but you
can't do both for the same block.

Python vs. Java: Function Overloading

Java and Powerbuilder support function overloading by argument lit, i.e. one class can have
multiple methods with the same name but a different number of arguments, or arguments of dif-
ferent types. Other languages (most notably PL/SQL) even support function overloading by argu-
ment name; i.e. one class can have multiple methods with the same name and the same number
of arguments of the same type but different argument names. Python supports neither of these; it
has no form of function overloading whatsoever. Methods are defined solely by their name, and
there can be only one method per classwith agiven name. Soif adescendant classhasan__init__
method, it always overridesthe ancestor __init__ method, even if the descendant definesit with
adifferent argument list. And the same rule applies to any other method.

Guido, the original author of Python, explains method overriding thisway: "Derived classes may
override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in
the same base class, may in fact end up calling a method of a derived class that overridesit. (For

67

Chapter 5

C++ programmers:. al methods in Python are effectively virtual.)" If that doesn't make sense to
you (it confuses the hell out of me), feel freeto ignoreit. | just thought I'd passiit along.

Always assign an initial value to all of an instance's data attributes in the __init__ method. It
will saveyou hours of debugging later, tracking down AttributeError exceptionsbecauseyou're
referencing uninitialized (and therefore non-existent) attributes.

Example 5.10. UserDict Normal Methods

def clear(self): self.data.clear()
def copy(self):

if self.__class__ is UserDict:

return UserDict(self.data)

import copy

return copy.copy(self)
def keys(self): return self.data.keys()
def items(self): return self.data.items()
def values(self): return self.data.values()

0 R N R B O

[] clear isanormal class method; it is publicly available to be called by anyone at any time. Notice
that clear, like al class methods, has self asitsfirst argument. (Remember that you don't include
self whenyou call the method; it's something that Python addsfor you.) Also note the basic technique
of this wrapper class. store areal dictionary (data) as a data attribute, define al the methods that a
real dictionary has, and have each class method redirect to the corresponding method on the red
dictionary. (In case you'd forgotten, adictionary's clear method deletesall of its keysand their asso-
ciated values.)

[] Thecopy methodof ared dictionary returnsanew dictionary that is an exact duplicate of the original
(all the same key-value pairs). But UserDict can't smply redirect to self.data. copy, because that
method returns areal dictionary, and what you want isto return a new instance that is the same class
asself.

[] Youusethe__class__attributeto seeif self isaUserDict; if so, you're golden, because you know
how to copy a UserDict: just create a new UserDict and give it the real dictionary that you've
squirreled away in self.data. Then you immediately return the new UserDict you don't even get
to the import copy on the next line.

[] If self.__class__ isnot UserDict, then self must be some subclass of UserDict (like maybe
FileInfo), in which case life gets trickier. UserDict doesn't know how to make an exact copy of
one of its descendants; there could, for instance, be other data attributes defined in the subclass, so
you would need to iterate through them and make sure to copy all of them. Luckily, Python comes
with a module to do exactly this, and it's called copy. | won't go into the details here (though it's a
wicked cool module, if you're ever inclined to dive into it on your own). Suffice it to say that copy
can copy arbitrary Python objects, and that's how you're using it here.

[1 Therestof themethodsare straightforward, redirecting the callsto the built-in methodson self. data.

Historical Note

In versions of Python prior to 2.2, you could not directly subclass built-in datatypes like strings,
lists, and dictionaries. To compensate for this, Python comes with wrapper classes that mimic the
behavior of these built-in datatypes: UserString, UserList, and UserDict. Using acombination
of normal and special methods, the UserDict class does an excellent imitation of a dictionary.
In Python 2.2 and later, you can inherit classes directly from built-in datatypes like dict. An ex-
ample of thisis given in the examples that come with this book, in fileinfo_fromdict.py.

68

Chapter 5

In Python, you can inherit directly from the dict built-in datatype, as shown in this example. There are
three differences here compared to the UserDict version.

Example5.11. Inheriting Directly from Built-In Datatype dict

class FileInfo(dict):]
"store file metadata"
def __init_ (self, filename=None): []
self["name"] = filename

[] Thefirst difference is that you don't need to import the UserDict module, since dict is a built-in
datatype and is aways available. The second isthat you are inheriting from dict directly, instead of
from UserDict.UserDict.

[] Thethirddifferenceis subtle but important. Because of theway UserDict worksinternally, it requires
youto manually cal its__init__ method to properly initializeitsinternal datastructures. dict does
not work like this; it is not awrapper, and it requires no explicit initialization.

Further Reading on UserDict

e Python Library Reference [http://www.python.org/doc/current/lib/] documents the UserDict module
[http:/iwww.python.org/doc/current/lib/module-UserDict.html] and the copy module [http://-
www.python.org/doc/current/lib/modul e-copy.html].

Special Class Methods

In addition to normal class methods, there are a number of special methods that Python classes can define.
Instead of being called directly by your code (like normal methods), special methods are called for you by
Python in particular circumstances or when specific syntax is used.

As you saw in the previous section, norma methods go a long way towards wrapping a dictionary in a
class. But normal methods a one are not enough, because there are alot of things you can do with diction-
aries besides call methods on them. For starters, you can get and set items with a syntax that doesn't include
explicitly invoking methods. Thisiswhere special class methods comein: they provide away to map non-
method-calling syntax into method calls.

69

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html

Chapter 5

Getting and Setting Items

Example5.12. The _getitem__ Special M ethod

def __getitem__(self, key): return self.datalkey]

>>> f = fileinfo.FileInfo("/music/_singles/kairo.mp3")
>>> f

{'name':"'/music/_singles/kairo.mp3"'}

>>> f.__ getitem__("name") U
'/music/_singles/kairo.mp3'

>>> f["name"] U
'/music/_singles/kairo.mp3'

[] The__getitem__ special method looks simple enough. Like the normal methods clear, keys, and
values, it just redirects to the dictionary to return its value. But how does it get called? Well, you
cancal __getitem__ directly, but in practice you wouldn't actually do that; I'm just doing it here to
show you how it works. Theright way to use __getitem__ isto get Python to call it for you.

[] Thislooksjust likethe syntax you would useto get adictionary value, and in fact it returns the value
you would expect. But here'sthe missing link: under the covers, Python has converted this syntax to
the method call £.__getitem__("name"). That'swhy __getitem__ isaspecia class method; not
only can you call it yourself, you can get Python to call it for you by using the right syntax.

Of course, Python hasa__setitem__ special method to go along with __getitem__, asshown inthe next
example.

Example 5.13. The _setitem__ Special Method

def __setitem__(self, key, item): self.datal[key] = item

>> f
{'name':"'/music/_singles/kairo.mp3"'}
>>> f.__setitem__("genre", 31) [l

>>> f

{'name"':"'/music/_singles/kairo.mp3', 'genre':31}
>>> f["genre"] = 32

>> f

{'name':"'/music/_singles/kairo.mp3', 'genre':32}

[] Likethe _getitem__ method, __setitem__ simply redirects to the real dictionary self.data to
do its work. And like __getitem__, you wouldn't ordinarily call it directly like this; Python calls
__setitem__ for you when you use the right syntax.

[] Thislookslike regular dictionary syntax, except of course that f isredly aclass that's trying very
hard to masguerade as a dictionary, and __setitem__ is an essentia part of that masquerade. This
line of code actually callsf.__setitem__("genre", 32) under the covers.

__setitem__ isaspecia class method because it gets called for you, but it's still a class method. Just as
easily asthe __setitem__ method was defined in UserDict, you can redefine it in the descendant class
to override the ancestor method. This allows you to define classes that act like dictionaries in some ways
but define their own behavior above and beyond the built-in dictionary.

70

Chapter 5

This concept is the basis of the entire framework you're studying in this chapter. Each file type can have
a handler class that knows how to get metadata from a particular type of file. Once some attributes (like
thefile'sname and location) are known, the handler class knows how to derive other attributes automatically.
Thisis done by overriding the __setitem__ method, checking for particular keys, and adding additional
processing when they are found.

For example, MP3FileInfo isadescendant of FileInfo. When an MP3FileInfo's name is Set, it doesn't
just set the name key (like the ancestor FileInfo does); it aso looks in the file itself for MP3 tags and
populates awhole set of keys. The next example shows how this works.

Example5.14. Overriding __setitem__ in MP3FileInfo

def __setitem__(self, key, item): O
if key == "name" and item: O
self.__parse(item) O

FileInfo.__setitem__(self, key, item) O

[] Noticethat this__setitem__ method is defined exactly the same way as the ancestor method. This
is important, since Python will be calling the method for you, and it expects it to be defined with a
certain number of arguments. (Technically speaking, the names of the arguments don't matter; only
the number of argumentsisimportant.)

[] Heré'sthecrux of theentireMP3FileInfo class: if you're assigning avalueto the name key, you want
to do something extra.

[] Theextraprocessing you do for namesis encapsulated in the __parse method. Thisis another class
method defined inMP3FileInfo, and whenyou call it, you qualify it with self. Just calling __parse
would look for a normal function defined outside the class, which is not what you want. Calling
self.__parse will look for a class method defined within the class. This isn't anything new; you
reference data attributes the same way.

[] After doing thisextraprocessing, you want to call the ancestor method. Remember that thisis never
done for you in Python; you must do it manually. Note that you're calling the immediate ancestor,
FilelInfo, even though it doesn't have a __setitem__ method. That's okay, because Python will
walk up the ancestor tree until it finds a class with the method you're calling, so thisline of code will
eventually find and call the __setitem__ defined in UserDict.

When accessing data attributes within a class, you need to qualify the attribute name:
self.attribute. When calling other methods within a class, you need to qualify the method
name: self.method.

71

Chapter 5

Example 5.15. Setting an MP3FileInfo'S name

>>> import fileinfo

>>> mp3file = fileinfo.MP3FileInfo() O
>>> mp3file

{"'name"' :None}

>>> mp3file["name"] = "/music/_singles/kairo.mp3" O
>>> mp3file
{'album': 'Rave Mix', 'artist': '***DJ MARY-JANE***' 'genre': 31,

'title': 'KAIRO****THE BEST GOA', 'name': '/music/_singles/kairo.mp3',

'yvear': '2000', 'comment': 'http://mp3.com/DIJMARYJANE'}

>>> mp3file["name"] = "/music/_singles/sidewinder.mp3" O

>>> mp3file

{'album': '', 'artist': 'The Cynic Project', 'genre': 18, 'title': 'Sidewinder',
'name': '/music/_singles/sidewinder.mp3', 'year': '2000',

'comment': 'http://mp3.com/cynicproject'}

[] First, you create an instance of MP3FileInfo, without passing it afilename. (You can get away with
this because the filename argument of the __init__ method is optional.) Since MP3FileInfo has
no __init__ method of its own, Python walks up the ancestor tree and finds the __init__ method
of FileInfo. This_init__ method manually calsthe __init__ method of UserDict and then
setsthename key to filename, which isNone, sSinceyou didn't passafilename. Thus, mp3file initially
looks like a dictionary with one key, name, whose value is None.

[] Now the real fun begins. Setting the name key of mp3file triggers the __setitem__ method on
MP3FileInfo (not UserDict), which notices that you're setting the name key with areal value and
callsself.__parse. Although you haven't traced through the __parse method yet, you can see from
the output that it sets several other keys: album, artist, genre, title, year, and comment.

[] Modifying the name key will go through the same process again: Python calls__setitem__, which
callsself.__parse, which setsall the other keys.

Advanced Special Class Methods

Python has more special methodsthanjust __getitem__and __setitem__. Some of them let you emulate
functionality that you may not even know about.

This example shows some of the other special methods in UserDict.

72

Chapter 5

Example 5.16. M ore Special Methods in UserDict

def __repr__(self): return repr(self.data) O
def __cmp__(self, dict): O
if isinstance(dict, UserDict):
return cmp(self.data, dict.data)
else:
return cmp(self.data, dict)
def __len__(self): return len(self.data) 0
def __delitem__(self, key): del self.data[key] O

[] —repr__isaspecial method that is called when you call repr(instance). The repr functionisa
built-in function that returns a string representation of an object. It works on any object, not just class
instances. You're already intimately familiar with repr and you don't even know it. In the interactive
window, when you typejust avariable name and pressthe ENTER key, Python uses repr to display
the variable's value. Go create a dictionary d with some data and then print repr(d) to see for
yourself.

[] —cmp__iscalled when you compare class instances. In general, you can compare any two Python
objects, not just class instances, by using ==. There are rules that define when built-in datatypes are
considered equal; for instance, dictionaries are equal when they have all the same keys and values,
and strings are equal when they are the same length and contain the same sequence of characters. For
classinstances, you can definethe_cmp__ method and code the comparison logic yourself, and then
you can use == to compare instances of your class and Python will call your __cmp__ special method
for you.

[] —len__iscalledwhenyoucall len(instance). The len functionisabuilt-infunction that returns
the length of an object. It works on any object that could reasonably be thought of as having alength.
The len of astring isits number of characters; the 1en of adictionary isits number of keys; the 1en
of alist or tupleisits number of elements. For class instances, definethe __len__ method and code
the length calculation yourself, and then call len(instance) and Python will call your __len__
special method for you.

[] —delitem__iscaledwhenyoucall del instance[key], whichyou may remember asthe way to
delete individual items from a dictionary. When you use del on a class instance, Python calls the
__delitem__ specia method for you.

Python vs. Java equality and identity

In Java, you determine whether two string variables reference the same physical memory location
by using str1 == str2. Thisis called object identity, and it is written in Python as strl is
str2. To compare string values in Java, you would use strl.equals(str2); in Python, you
would use strl == str2. Java programmers who have been taught to believe that the world is
a better place because == in Java compares by identity instead of by value may have a difficult
time adjusting to Python's lack of such “gotchas’.

At this point, you may be thinking, “All thiswork just to do something in aclassthat | can do with abuilt-
in datatype.” And it's true that life would be easier (and the entire UserDict class would be unnecessary)
if you could inherit from built-in datatypeslike adictionary. But even if you could, special methods would
still be useful, because they can be used in any class, not just wrapper classes like UserDict.

Special methods mean that any class can store key/value pairs like a dictionary, just by defining the
__setitem__ method. Any class can act like a sequence, just by defining the __getitem__ method. Any

73

Chapter 5

class that defines the __cmp__ method can be compared with ==. And if your class represents something
that has alength, don't define aGetLength method; definethe __len__ method and use 1len(instance).

While other object-oriented languages only let you define the physical model of an object (“this
object has a GetLength method”), Python's special class methods like __len__ alow you to
define the logical model of an object (“this object has alength”).

Python has a lot of other special methods. There's awhole set of them that let classes act like numbers,
allowing you to add, subtract, and do other arithmetic operations on classinstances. (The canonical example
of thisis a class that represents complex numbers, numbers with both real and imaginary components.)
The __call__ method lets a class act like a function, allowing you to call a class instance directly. And
there are other special methods that allow classes to have read-only and write-only data attributes; you'll
talk more about those in later chapters.

Further Reading on Special Class M ethods

e Python Reference Manual [http://www.python.org/doc/current/ref/] documents al the special class
methods [http://www.python.org/doc/current/ref/specialnames.html].

Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific instance of aclass. Python
also supports class attributes, which are variables owned by the classitself.

74

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/ref/specialnames.html

Chapter 5

Example5.17. Introducing Class Attributes

class MP3FileInfo(FileInfo):
"store ID3v1.0 MP3 tags"

tagDataMap = {"title" : (3, 33, stripnulls),
"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" : (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

>>> import fileinfo

>>> fileinfo.MP3FileInfo O

<class fileinfo.MP3FileInfo at 01257FDC>

>>> fileinfo.MP3FileInfo.tagDataMap []

{'title': (3, 33, <function stripnulls at 0260C8D4>),
'genre': (127, 128, <built-in function ord>),

'artist': (33, 63, <function stripnulls at 0260C8D4>),
'yvear': (93, 97, <function stripnulls at 0260C8D4>),
'comment': (97, 126, <function stripnulls at 0260C8D4>),
'album': (63, 93, <function stripnulls at 0260C8D4>)}
>>> m = fileinfo.MP3FileInfo() O

>>> m.tagDataMap

{'title': (3, 33, <function stripnulls at 0260C8D4>),
'genre': (127, 128, <built-in function ord>),

'artist': (33, 63, <function stripnulls at 0260C8D4>),
'yvear': (93, 97, <function stripnulls at 0260C8D4>),
'comment': (97, 126, <function stripnulls at 0260C8D4>),
'album': (63, 93, <function stripnulls at 0260C8D4>)}

[] MP3FileInfo isthe classitself, not any particular instance of the class.

[] ‘tagDataMap isaclass attribute: literally, an attribute of the class. It is available before creating any
instances of the class.

[] Classattributes are available both through direct reference to the class and through any instance of
the class.

Python vs. Java attribute definitions

In Java, both static variables (called class attributes in Python) and instance variables (called data
attributes in Python) are defined immediately after the class definition (one with the static
keyword, one without). In Python, only class attributes can be defined here; data attributes are
defined inthe _init__ method.

Class attributes can be used as class-level constants (which is how you use them in MP3FileInfo), but
they are not really constants. You can also change them.

There are no constants in Python. Everything can be changed if you try hard enough. This fits
with one of the core principles of Python: bad behavior should be discouraged but not banned. If
you really want to change the value of None, you can do it, but don't come running to me when
your codeisimpossible to debug.

75

Chapter 5

Example 5.18. M odifying Class Attributes

>>> class counter:
count = 0 O
def __init__(self):
self.__class__.count += 1 []

>>> counter
<class main__.counter at O010EAECC>

>>> counter.count D

0

>>> ¢ = counter()

>>> c.count I:l

1

>>> counter.count

1

>>> d = counter() (]

>>> d.count

2

>>> c.count

2

>>> counter.count

2

[] count isaclass attribute of the counter class.

[] —class__isabuilt-inattribute of every classinstance (of every class). It is areference to the class
that self isan instance of (in this case, the counter class).

[] Because count isaclass attribute, it is available through direct reference to the class, before you
have created any instances of the class.

[] Creating an instance of the class calls the __init__ method, which increments the class attribute
count by 1. This affects the class itself, not just the newly created instance.

[] Creatingasecondinstancewill increment the class attribute count again. Notice how the class attribute

is shared by the class and all instances of the class.

Private Functions

Like most languages, Python has the concept of private elements:
» Private functions, which can't be called from outside their module
» Private class methods, which can't be called from outside their class

» Private attributes, which can't be accessed from outside their class.

Unlikein most languages, whether a Python function, method, or attributeis private or public is determined
entirely by its name.

If the name of aPython function, class method, or attribute startswith (but doesn't end with) two underscores,
it's private; everything else is public. Python has no concept of protected class methods (accessible only
in their own class and descendant classes). Class methods are either private (accessible only in their own
class) or public (accessible from anywhere).

76

Chapter 5

In MP3FileInfo, there are two methods. __parse and __setitem__. As you have already discussed,
__setitem__isaspecia method; normally, you would call it indirectly by using the dictionary syntax on
aclassinstance, but it is public, and you could call it directly (even from outside the fileinfo module)
if you had areally good reason. However, __parse isprivate, becauseit hastwo underscores at the beginning
of itsname.

Method Naming Conventions

In Python, all special methods (like __setitem__) and built-in attributes (like __doc__) follow
a standard naming convention: they both start with and end with two underscores. Don't name
your own methods and attributes this way, because it will only confuse you (and others) later.

Example5.19. Trying to Call a Private Method

>>> import fileinfo
>>> m = fileinfo.MP3FileInfo()
>>> m.__parse("/music/_singles/kairo.mp3") O
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: 'MP3FileInfo' instance has no attribute

__parse'

[] If youtry to call aprivate method, Python will raise a slightly misleading exception, saying that the
method does not exist. Of course it does exist, but it's private, so it's not accessible outside the class.

Strictly speaking, private methods are accessible outside their class, just not easily accessible. Nothing
in Python is truly private; internally, the names of private methods and attributes are mangled and
unmangled on the fly to make them seem inaccessible by their given names. You can access the
__parse method of theMP3FileInfo class by the name _MP3FileInfo__parse. Acknowledge that
this is interesting, but promise to never, ever do it in real code. Private methods are private for a
reason, but like many other things in Python, their privateness is ultimately a matter of convention,
not force.

Further Reading on Private Functions

* PythonTutorial [http://mww.python.org/doc/current/tut/tut.html] discussestheinner workings of private
variables[http://www.python.org/doc/current/tut/nodel1.html#SECTION0011600000000000000000] .

Summary

That's it for the hard-core object trickery. You'll see a real-world application of special class methods in
Chapter 12, which uses getattr to create a proxy to a remote web service.

The next chapter will continue using this code sample to explore other Python concepts, such as exceptions,
file objects, and for loops.

Before diving into the next chapter, make sure you're comfortable doing al of these things:

* Importing modules using either import module or from module import

» Defining and instantiating classes

» Defining _init__ methods and other special class methods, and understanding when they are called

e Subclassing UserDict to define classes that act like dictionaries

77

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000

Chapter 5

» Defining data attributes and class attributes, and understanding the differences between them

» Defining private attributes and methods

78

Chapter 6. Exceptions and File Handling

In this chapter, you will diveinto exceptions, file objects, for loops, and the os and sys modules. If you've
used exceptionsin another programming language, you can skim thefirst section to get a sense of Python's
syntax. Be sure to tune in again for file handling.

Handling Exceptions

Like many other programming languages, Python has exception handling via try. . . except blocks.

Python vs. Java exception handling

Python uses try. . . except to handle exceptions and raise to generate them. Java and C++ use
try. . .catch to handle exceptions, and throw to generate them.

Exceptions are everywhere in Python. Virtually every module in the standard Python library uses them,
and Python itself will raise them in alot of different circumstances. You've already seen them repeatedly
throughout this book.

» Accessing anon-existent dictionary key will raise a KeyError exception.
» Searching alist for a non-existent value will raise aValueError exception.
» Cadlling a non-existent method will raise an AttributeError exception.

* Referencing a non-existent variable will raise a NameError exception.

* Mixing datatypes without coercion will raise a TypeError exception.

In each of these cases, you were simply playing around in the Python IDE: an error occurred, the exception
was printed (depending on your IDE, perhaps in an intentionally jarring shade of red), and that was that.
This is called an unhandled exception. When the exception was raised, there was no code to explicitly
notice it and deal with it, so it bubbled its way back to the default behavior built in to Python, whichisto
spit out some debugging information and give up. Inthe IDE, that's no big deal, but if that happened while
your actual Python program was running, the entire program would come to a screeching halt.

An exception doesn't need result in a complete program crash, though. Exceptions, when raised, can be
handled. Sometimes an exception is really because you have abug in your code (like accessing avariable
that doesn't exist), but many times, an exception is something you can anticipate. If you're opening afile,
it might not exist. If you're connecting to a database, it might be unavailable, or you might not have the
correct security credentials to access it. If you know a line of code may raise an exception, you should
handle the exception using a try. . .except block.

79

Chapter 6

Example 6.1. Opening a Non-Existent File

>>> fsock = open("/notthere", "r") O
Traceback (innermost last):
File "<interactive input>", line 1, in ?
IOError: [Errno 2] No such file or directory: '/notthere'
>>> try:
fsock = open("/notthere') []
. except IOError: O
print "The file does not exist, exiting gracefully"
. print "This line will always print" []
The file does not exist, exiting gracefully
This line will always print

[] Using the built-in open function, you can try to open afile for reading (more on open in the next
section). But the file doesn't exist, so this raises the IOError exception. Since you haven't provided
any explicit check for an 1OError exception, Python just prints out some debugging information about
what happened and then gives up.

[] Youretryingto openthe same non-existent file, but thistime you'redoing it withinatry. . .except
block.

[] When the open method raises an |OError exception, you're ready for it. The except IOError: line
catches the exception and executes your own block of code, which in this case just prints a more
pleasant error message.

[] Once an exception has been handled, processing continues normally on the first line after the
try...except block. Notethat thislinewill always print, whether or not an exception occurs. If you
really did have a file called notthere in your root directory, the call to open would succeed, the
except clause would be ignored, and this line would still be executed.

Exceptions may seem unfriendly (after al, if you don't catch the exception, your entire program will crash),
but consider the alternative. Would you rather get back an unusable file object to anon-existent file? You'd
need to check its validity somehow anyway, and if you forgot, somewhere down the line, your program
would give you strange errors somewhere down the line that you would need to trace back to the source.
I'm sure you've experienced this, and you know it's not fun. With exceptions, errors occur immediately,
and you can handle them in a standard way at the source of the problem.

Using Exceptions For Other Purposes

There are alot of other usesfor exceptions besides handling actual error conditions. A common usein the
standard Python library isto try toimport amodul e, and then check whether it worked. Importing amodule
that does not exist will raise an ImportError exception. You can use this to define multiple levels of func-
tionality based on which modules are available at run-time, or to support multiple platforms (where platform-
specific codeis separated into different modules).

You can also define your own exceptions by creating a class that inherits from the built-in Exception
class, and then raise your exceptions with the raise command. See the further reading section if you're
interested in doing this.

The next example demonstrates how to use an exception to support platform-specific functionality. This
code comes from the getpass module, awrapper module for getting a password from the user. Getting a
password isaccomplished differently on UNIX, Windows, and Mac OS platforms, but this code encapsulates
all of those differences.

80

Chapter 6

Example 6.2. Supporting Platfor m-Specific Functionality

Bind the name getpass to the appropriate function

try:
import termios, TERMIOS []
except ImportError:
try:
import msvcrt O
except ImportError:
try:
from EasyDialogs import AskPassword U
except ImportError:
getpass = default_getpass O
else: 0
getpass = AskPassword
else:
getpass = win_getpass
else:

getpass = unix_getpass

[] termios isaUNIX-specific module that provides low-level control over the input terminal. If this
moduleisnot available (becauseit's not on your system, or your system doesn't support it), theimport
fails and Python raises an ImportError, which you catch.

[] OK,youdidn'thavetermios, solet'stry msvert, which is aWindows-specific module that provides
an APl to many useful functions in the Microsoft Visual C++ runtime services. If this import fails,
Python will raise an ImportError, which you catch.

[] If thefirst two didn't work, you try to import a function from EasyDialogs, which is a Mac OS-
specific module that provides functions to pop up dialog boxes of various types. Once again, if this
import fails, Python will raise an ImportError, which you catch.

[1 Noneof these platform-specific modulesisavailable (whichis possible, since Python has been ported
to alot of different platforms), so you need to fall back on a default password input function (which
is defined elsawhere in the getpass module). Notice what you're doing here: assigning the function
default_getpass to the variable getpass. If you read the official getpass documentation, it tells
you that the getpass module defines a getpass function. It does this by binding getpass to the
correct function for your platform. Then when you call the getpass function, you'reredly calling a
platform-specific function that this code has set up for you. You don't need to know or care which
platform your code is running on -- just call getpass, and it will always do the right thing.

[] Atry...except block canhavean else clause, likean if statement. If no exceptionisraised during
the try block, the else clause is executed afterwards. In this case, that means that the from
EasyDialogs import AskPassword import worked, soyou should bind getpass tothe AskPassword
function. Each of the other try. . .except blocks has similar else clauses to bind getpass to the
appropriate function when you find an import that works.

Further Reading on Exception Handling

» Python Tutorial [http://www.python.org/doc/current/tut/tut.html] discusses defining and raising your
own exceptions, and handling multiple exceptions at once [http://www.python.org/doc/current/tut/-
nodel0.html#SECTION0010400000000000000000].

» Python Library Reference [http://mww.python.org/doc/current/lib/] summarizesall the built-in exceptions
[http:/Avww.python.org/doc/current/lib/modul e-exceptions.html].

81

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html

Chapter 6

e Python Library Reference [http://www.python.org/doc/current/lib/] documents the getpass [http://-
www.python.org/doc/current/lib/modul e-getpass.htmi] module.

* Python Library Reference [http://www.python.org/doc/current/lib/] documentsthe traceback module
[http:/Aww.python.org/doc/current/lib/modul e-traceback.html], which provides low-level access to
exception attributes after an exception is raised.

» Python Reference Manual [http://www.python.org/doc/current/ref/] discusses the inner workings of
the try. . .except block [http://www.python.org/doc/current/ref/try.html].

Working with File Objects

Python has a built-in function, open, for opening a file on disk. open returns a file object, which has
methods and attributes for getting information about and manipulating the opened file.

Example 6.3. Opening a File

>>> f = open("/music/_singles/kairo.mp3", "rb")]

>>> f [l

<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.mode U

"rb’

>>> f.name [l
'/music/_singles/kairo.mp3’

[] The open method can take up to three parameters: a filename, a mode, and a buffering parameter.
Only the first one, the filename, is required; the other two are optional. If not specified, the file is
opened for reading in text mode. Here you are opening the file for reading in binary mode. (print
open.__doc__ displays agreat explanation of all the possible modes.)

[1 Theopen function returns an object (by now, this should not surprise you). A file object has several
useful attributes.

[] Themode attribute of afile object tells you in which mode the file was opened.

[1 Thename attribute of afile object tells you the name of the file that the file object has open.

Reading Files

After you open afile, thefirst thing you'll want to do isread from it, as shown in the next example.

82

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html

Chapter 6

Example 6.4. Reading a File

>> f
<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.tell()

0
>>> f.seek(-128, 2) O
>>> f.tell() U
7542909

>>> tagData = f.read(128) []
>>> tagData

"TAGKAIRO****THE BEST GOA *%%DJ MARY-JANE***

Rave Mix 2000http://mp3.com/DIMARYJANE \037"
>>> f.tell() H

7543037

[] A fileobject maintains state about thefile it has open. The tell method of afile object tellsyou your
current position in the open file. Since you haven't done anything with thisfile yet, the current position
is0, which is the beginning of the file.

[] Theseek method of afile object moves to another position in the open file. The second parameter
specifies what the first one means; 0 means move to an absolute position (counting from the start of
thefile), 1 means move to arelative position (counting from the current position), and 2 means move
to aposition relative to the end of thefile. Since the MP3 tags you're looking for are stored at the end
of thefile, you use 2 and tell the file object to move to a position 128 bytes from the end of thefile.

[] Thetell method confirms that the current file position has moved.

[] Theread method reads a specified number of bytes from the open file and returns a string with the
data that was read. The optional parameter specifies the maximum number of bytes to read. If no
parameter is specified, read will read until the end of the file. (You could have smply said read ()
here, since you know exactly whereyou arein thefileand you are, in fact, reading the last 128 bytes.)
The read datais assigned to the tagData variable, and the current position is updated based on how
many bytes were read.

[1 The tell method confirms that the current position has moved. If you do the math, you'll see that
after reading 128 bytes, the position has been incremented by 128.

Closing Files

Open files consume system resources, and depending on the file mode, other programs may not be able to
access them. It'simportant to close files as soon as you're finished with them.

83

Chapter 6

Example 6.5. Closing a File

>>> f

<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.closed L]

False

>>> f.close() L]

>>> f

<closed file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.closed L]

True

>>> f.seek(0) L]

Traceback (innermost last):

File "<interactive input>", line 1, in ?

ValueError: I/0 operation on closed file
>>> f.tell()
Traceback (innermost last):

File "<interactive input>", line 1, in ?

ValueError: I/0 operation on closed file
>>> f.read()
Traceback (innermost last):

File "<interactive input>", line 1, in ?

ValueError: I/0 operation on closed file

>>> f.close() L]

[1 Theclosed attribute of afile object indicates whether the object has a file open or not. In this case,
thefileisstill open (closed isFalse).

[] Toclose afile, call the close method of the file object. This frees the lock (if any) that you were
holding on the file, flushes buffered writes (if any) that the system hadn't gotten around to actually
writing yet, and rel eases the system resources.

[] Theclosed attribute confirmsthat the fileis closed.

[] Just becauseafileisclosed doesn't mean that the file object ceasesto exist. The variable f will con-
tinue to exist until it goes out of scope or gets manually deleted. However, none of the methods that
manipulate an open file will work once the file has been closed; they all raise an exception.

[] Cadlingclose onafileobject whosefileisalready closed does not raise an exception; it failssilently.

Handling 1/O Errors

Now you've seen enough to understand the file handling code in the fileinfo.py sample code from teh
previous chapter. This example shows how to safely open and read from afile and gracefully handle errors.

Chapter 6

Example 6.6. File Objectsin MP3FileInfo

try: 0
fsock = open(filename, "rb", 0) O]
try:

fsock.seek(-128, 2) (]
tagdata = fsock.read(128) O
finally: O

fsock.close()

except IOError: O
pass

Because opening and reading filesis risky and may raise an exception, all of this code iswrapped in
atry...except block. (Hey, isn't standardized indentation great? Thisiswhere you start to appreciate
it.)

The open function may raise an IOError. (Maybe the file doesn't exist.)

The seek method may raise an |OError. (Maybe the file is smaller than 128 bytes.)

The read method may raise an |OError. (Maybe the disk has a bad sector, or it's on a network drive
and the network just went down.)

Thisisnew: atry. . .finally block. Oncethefile has been opened successfully by the open function,
you want to make absolutely surethat you closeit, evenif an exceptionisraised by the seek or read
methods. That'swhat a try. . .finally block isfor: code in the finally block will always be ex-
ecuted, even if something in the try block raises an exception. Think of it as code that gets executed
on the way out, regardless of what happened before.

[] Atlast, you handle your IOError exception. This could be the IOError exception raised by the call
to open, seek, or read. Here, you really don't care, because all you're going to do isignoreit silently
and continue. (Remember, pass is a Python statement that does nothing.) That's perfectly legal;
“handling” an exception can mean explicitly doing nothing. It still counts as handled, and processing
will continue normally on the next line of code after the try. . . except block.

|

O OoOod

Writing to Files

As you would expect, you can also write to files in much the same way that you read from them. There
are two basic file modes:

» "Append" mode will add datato the end of thefile.
o "write" mode will overwrite thefile.

Either mode will create the file automatically if it doesn't already exist, so there's never aneed for any sort
of fiddly "if thelog file doesn't exist yet, create a new empty file just so you can open it for the first time"
logic. Just open it and start writing.

85

Chapter 6

Example 6.7. Writing to Files

>>>
>>>
>>>
>>>
tes
>>>
>>>
>>>
>>>
tes

O

logfile = open('test.log', 'w') []
logfile.write('test succeeded') []
logfile.close()

print file('test.log').read() UJ
t succeeded

logfile = open('test.log', 'a') []
logfile.write('line 2')
logfile.close()

print file('test.log').read() UJ
t succeededline 2

You start boldly by creating either the new file test . log or overwrites the existing file, and opening
the file for writing. (The second parameter "w" means open the file for writing.) Yes, that's al as
dangerous as it sounds. | hope you didn't care about the previous contents of that file, because it's
gone now.

You can add data to the newly opened file with the write method of thefile object returned by open.

file isasynonym for open. This one-liner opens the file, reads its contents, and prints them.

You happen to know that test.log exists (sSince you just finished writing to it), so you can open it
and append toit. (The "a" parameter means open the file for appending.) Actually you could do this
even if the file didn't exist, because opening the file for appending will create the file if necessary.
But appending will never harm the existing contents of thefile.

As you can see, both the original line you wrote and the second line you appended are now in
test.log. Also notethat carriage returns are not included. Since you didn't write them explicitly to
the file either time, the file doesn't include them. You can write a carriage return with the "\n"
character. Since you didn't do this, everything you wrote to the file ended up smooshed together on
the same line.

Further Reading on File Handling

Python Tutorial [http://www.python.org/doc/current/tut/tut.html] discusses reading and writing files,
including how to read a file one line at a time into a list [http://www.python.org/doc/current/tut/-
node9.html#SECTION009210000000000000000].

eff-bot [http://www.effbot.org/guides/] discusses efficiency and performance of variousways of reading
afile [http://mww.effbot.org/guides/readline-performance.htm].

Python K nowledge Base [http://www.fagts.com/knowl edge-base/index.phtml/fid/199/] answers common
questions about files [http://www.fagts.com/knowl edge-base/index.phtml /fid/552].

Python Library Reference [http://www.python.org/doc/current/lib/] summarizes all the file object
methods [http://www.python.org/doc/current/lib/bltin-file-objects.html].

lterating with for Loops

Like most other languages, Python has for loops. The only reason you haven't seen them until now isthat
Python is good at so many other things that you don't need them as often.

Most other languages don't have a powerful list datatype like Python, so you end up doing alot of manual
work, specifying astart, end, and step to define arange of integers or characters or other iteratable entities.
But in Python, a for loop simply iterates over alist, the same way list comprehensions work.

86

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/lib/bltin-file-objects.html

Chapter 6

Example 6.8. Introducing the for L oop

>>> 1i = ['a", 'b", 'e']
>>> for s in 1i: O
print s O

[=n

>>> print "\n".join(1li) [

a

b

e

[] Thesyntax for afor loop issimilar to list comprehensions. 1i isalist, and s will take the value of
each element in turn, starting from the first element.

[] Likeanif statement or any other indented block, a for loop can have any number of lines of code
init.

[] Thisisthereasonyou haven't seen the for loop yet: you haven't needed it yet. It's amazing how often

you use for loops in other languages when al you really want isa join or alist comprehension.

Doing a“norma” (by Visual Basic standards) counter for loop isalso simple.

Example 6.9. Smple Counters

>>> for i in range(5): O
- print i

0

1

2

3

4

>>1i =['a', 'b', 'c', 'd', 'e'l]
>>> for i in range(len(1i)): O
.. print 1i[i]

a

b

C

d

e

[] Asyousaw in Example 3.20, “Assigning Consecutive Values’, range produces a list of integers,

which you then loop through. | know it looksabit odd, but it isoccasionally (and | stress occasionally)
useful to have a counter |oop.

[] Don'teverdothis. ThisisVisua Basic-stylethinking. Break out of it. Just iterate through the list, as
shown in the previous example.

for loops are not just for simple counters. They can iterate through all kinds of things. Here is an example
of using a for loop to iterate through a dictionary.

87

Chapter 6

Example 6.10. Iterating Through a Dictionary

>>> import os
>>> for k, v in os.environ.items(): 0 Qd

print "%s=%s" % (k, v)

USERPROFILE=C:\Documents and Settings\mpilgrim
0S=Windows_NT

COMPUTERNAME=MPILGRIM

USERNAME=mpilgrim

[...snip...]
>>> print "\n".join(["%s=%s" % (k, V)

for k, v in os.environ.items()]) [

USERPROFILE=C:\Documents and Settings\mpilgrim
0S=Windows_NT

COMPUTERNAME=MPILGRIM

USERNAME=mpilgrim

[...snip...]

O

os.environ isadictionary of the environment variables defined on your system. In Windows, these
areyour user and system variables accessiblefrom MS-DOS. In UNIX, they arethe variables exported
in your shell's startup scripts. In Mac OS, there is no concept of environment variables, so this dic-
tionary is empty.

os.environ.items() returns alist of tuples: [(keyl, valuel), (key2, value2), ...].The
for loop iterates through this list. The first round, it assigns key1 to k and valuel to v, SOk =
USERPROFILE and v = C:\Documents and Settings\mpilgrim. In the second round, k gets the
second key, 0S, and v gets the corresponding value, Windows_NT.

With multi-variable assignment and list comprehensions, you can replace the entire for loop with a
single statement. Whether you actually do thisin real codeis a matter of personal coding style. | like
it because it makes it clear that what I'm doing is mapping a dictionary into alist, then joining the
list into a single string. Other programmers prefer to write this out as a for loop. The output is the
samein either case, although thisversion isdightly faster, because thereisonly oneprint statement
instead of many.

Now we can look at the for loop in MP3FileInfo, from the sample fileinfo.py program introduced in
Chapter 5.

88

Chapter 6

Example 6.11. for L oop in MP3FileInfo

tagDataMap = {"title" : (3, 33, stripnulls),
"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" : (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)} O]
if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items(): O]
self[tag] = parseFunc(tagdata[start:end]) O]

[] tagDataMap isaclassattributethat definesthe tagsyou'relooking for inan MP3file. Tags are stored
in fixed-length fields. Once you read the last 128 bytes of the file, bytes 3 through 32 of those are
aways the song title, 33 through 62 are aways the artist name, 63 through 92 are the album name,
and so forth. Note that tagDataMap is a dictionary of tuples, and each tuple contains two integers
and afunction reference.

[] Thislooks complicated, but it's not. The structure of the for variables matches the structure of the
elementsof thelist returned by items. Remember that i tems returnsalist of tuplesof theform (key,
value). Thefirst element of that listis ("title", (3, 33, <function stripnulls>)), sothe
first time around the loop, tag gets "title", start gets 3, end gets 33, and parseFunc gets the
function stripnulls.

[1 Now that you've extracted all the parameters for a single MP3 tag, saving the tag data is easy. You
dlice tagdata from start to end to get the actual data for thistag, call parseFunc to post-process
the data, and assign this as the value for the key tag in the pseudo-dictionary self. After iterating
through all the elementsin tagDataMap, self hasthe valuesfor al the tags, and you know what that
looks like.

Using sys.modules

Modules, like everything else in Python, are objects. Once imported, you can aways get areferenceto a
modul e through the global dictionary sys.modules.

89

Chapter 6

Example 6.12. Introducing sys .modules

>>> import sys O
>>> print '\n'.join(sys.modules.keys()) O
win32api

os.path

0s

exceptions

__main__

ntpath

nt

sys

__builtin__

site

signal

UserDict

stat

[] The sys module contains system-level information, such as the version of Python you're running
(sys.version or sys.version_info), and system-level options such as the maximum allowed re-
cursion depth (sys.getrecursionlimit() and sys.setrecursionlimit()).

[] svs.modules isadictionary containing all the modules that have ever been imported since Python
was started; the key is the module name, the value is the module object. Note that this is more than
just the modules your program hasimported. Python prel oads some modules on startup, and if you're
using a Python IDE, sys.modules contains all the modulesimported by all the programs you've run

within the IDE.

This example demonstrates how to use sys.modules.

90

Chapter 6

Example 6.13. Using sys.modules

>>> import fileinfo C

>>> print '\n'.join(sys.modules.keys())
win32api

os.path

0s

fileinfo

exceptions

__main__

ntpath

nt

sys

__builtin__

site

signal

UserDict

stat

>>> fileinfo

<module 'fileinfo' from 'fileinfo.pyc'>
>>> sys.modules["fileinfo"] O

<module 'fileinfo' from 'fileinfo.pyc'>

[] Asnew modules are imported, they are added to sys.modules. This explains why importing the
same modul e twice is very fast: Python has already |oaded and cached the module in sys.modules,
so importing the second timeis simply a dictionary lookup.

[] Given the name (as a string) of any previously-imported module, you can get a reference to the
module itself through the sys.modules dictionary.

The next example shows how to use the __module__ class attribute with the sys.modules dictionary to
get areference to the module in which a classis defined.

Example 6.14. The __module__ ClassAttribute

>>> from fileinfo import MP3FileInfo

>>> MP3FileInfo.__module__ O
'fileinfo'

>>> sys.modules[MP3FileInfo.__module__] O
<module 'fileinfo' from 'fileinfo.pyc'>

[] Every Python class has a built-in class attribute __module__, which is the name of the module in
which the classis defined.

[] Combining this with the sys.modules dictionary, you can get areference to the module in which a
classis defined.

Now you're ready to see how sys.modules is used in fileinfo.py, the sample program introduced in
Chapter 5. This example shows that portion of the code.

91

Chapter 6

Example 6.15. sys.modules in fileinfo.py

def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]): O

"get file info class from filename extension"
subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:] O

return hasattr(module, subclass) and getattr(module, subclass) or FileInfo O

[] Thisisafunction with two arguments; filename is required, but module is optional and defaults to
themodulethat containsthe FileInfo class. Thislooksinefficient, because you might expect Python
to evaluate the sys.modules expression every time the function is called. In fact, Python evaluates
default expressions only once, the first time the module is imported. As you'll see later, you never
call thisfunction with amodule argument, so module serves as a function-level constant.

[] Youll plow through this line later, after you dive into the os module. For now, take it on faith that
subclass ends up as the name of aclass, like MP3FileInfo.

[] Youalready know about getattr, which gets a reference to an object by name. hasattr isacom-
plementary function that checks whether an object has a particular attribute; in this case, whether a
module has a particular class (although it works for any object and any attribute, just like getattr).
In English, this line of code says, “If this module has the class named by subclass then return it,
otherwise return the base class FileInfo.

Further Reading on M odules

* Python Tutorial [http://mww.python.org/doc/current/tut/tut.html] discusses exactly when and how default
arguments are evaluated [http://www.python.org/doc/current/tut/-
node6.html#SECTION006710000000000000000] .

» Python Library Reference [http://www.python.org/doc/current/lib/] documents the sys [http://-
www.python.org/doc/current/lib/modul e-sys.html] module.

Working with Directories

The os.path module has several functions for manipulating files and directories. Here, we're looking at
handling pathnames and listing the contents of a directory.

92

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html

Chapter 6

Example 6.16. Constructing Pathnames

>>> import os

>>> os.path.join("c:\\music\\ap\\", "mahadeva.mp3") [] [
'c:\\music\\ap\\mahadeva.mp3'

>>> os.path.join("c:\\music\\ap", "mahadeva.mp3")]
'c:\\music\\ap\\mahadeva.mp3'

>>> os.path.expanduser('~") [l
'c:\\Documents and Settings\\mpilgrim\\My Documents'

>>> os.path.join(os.path.expanduser("~"), "Python™)]
'c:\\Documents and Settings\\mpilgrim\\My Documents\\Python'

O

os.path is areference to amodule -- which module depends on your platform. Just as getpass en-
capsulates differences between platforms by setting getpass to a platform-specific function, os en-
capsulates differences between platforms by setting path to a platform-specific module.

The join function of os.path constructs a pathname out of one or more partial pathnames. In this
case, it simply concatenates strings. (Note that dealing with pathnames on Windows is annoying be-
cause the backslash character must be escaped.)

Inthisdlightly lesstrivial case, join will add an extra backslash to the pathname before joining it to
the filename. | was overjoyed when | discovered this, since addSlashIfNecessary is one of the
stupid little functions | always need to write when building up my toolbox in anew language. Do not
write this stupid little function in Python; smart people have already taken care of it for you.
expanduser Will expand a pathname that uses ~ to represent the current user's home directory. This
works on any platform where users have a home directory, like Windows, UNIX, and Mac OS X; it
has no effect on Mac OS.

Combining these techniques, you can easily construct pathnames for directories and files under the
user's home directory.

93

Chapter 6

Example 6.17. Splitting Pathnames

>>> os.path.split("c:\\music\\ap\\mahadeva.mp3") [l
('c:\\music\\ap', 'mahadeva.mp3')

>>> (filepath, filename) = os.path.split("c:\\music\\ap\\mahadeva.mp3") [l
>>> filepath [l
'c:\\music\\ap'

>>> filename [l
'mahadeva.mp3’

>>> (shortname, extension) = os.path.splitext(filename)]
>>> shortname

'mahadeva’

>>> extension

'.mp3"'

O

o o o O

The split function splitsafull pathname and returns a tuple containing the path and filename. Re-
member when | said you could use multi-variable assignment to return multiple valuesfrom afunction?
Well, split issuch afunction.

You assign thereturn value of the split functioninto atuple of two variables. Each variablereceives
the value of the corresponding element of the returned tuple.

Thefirst variable, filepath, receivesthe value of thefirst element of the tuple returned from split,
the file path.

The second variable, filename, receives the value of the second element of the tuple returned from
split, thefilename.

os.path also contains a function splitext, which splits a filename and returns a tuple containing
the filename and the file extension. You use the same technique to assign each of them to separate
variables.

94

Chapter 6

Example 6.18. Listing Directories

>>> os.listdir("c:\\music_singles\\") O
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',
'kairo.mp3', 'long_way_homel.mp3', 'sidewinder.mp3',
'spinning.mp3"']

>>> dirname = "c:\\"

>>> 0s.listdir(dirname) O

['AUTOEXEC.BAT', 'boot.ini', 'CONFIG.SYS', 'cygwin',
'docbook', 'Documents and Settings', 'Incoming', 'Inetpub', 'I0.SYS',
'MSDOS.SYS', 'Music', 'NTDETECT.COM', 'ntldr', 'pagefile.sys',
'Program Files', 'Python20', 'RECYCLER',
'System Volume Information', 'TEMP', 'WINNT']
>>> [f for f in os.listdir(dirname)
. if os.path.isfile(os.path.join(dirname, £))] U]
["AUTOEXEC.BAT', 'boot.ini', 'CONFIG.SYS', 'IO0.SYS', 'MSDOS.SYS',
'NTDETECT.COM', 'ntldr', 'pagefile.sys']
>>> [f for f in os.listdir(dirname)

if os.path.isdir(os.path.join(dirname, f))] U]
['cygwin', 'docbook', 'Documents and Settings', 'Incoming',
'Inetpub', 'Music', 'Program Files', 'Python20', 'RECYCLER',
'System Volume Information', 'TEMP', 'WINNT']

[1 Thelistdir function takes apathname and returns alist of the contents of the directory.
[] listdir returnsboth files and folders, with no indication of which iswhich.

[] Youcanuselist filtering and the isfile function of the os.path module to separate the files from
thefolders. isfile takesapathname and returns 1 if the path represents afile, and O otherwise. Here
you're using os.path. join to ensure a full pathname, but isfile also works with a partial path,
relative to the current working directory. You can use os . getcwd () to get the current working direct-
ory.

[] os.pathasohasaisdir functionwhichreturns1if the path representsadirectory, and O otherwise.
You can use thisto get alist of the subdirectories within a directory.

95

Chapter 6

Example 6.19. Listing Directoriesin fileinfo.py

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
filelist = [os.path.normcase(f)
for f in os.listdir(directory)] OO
filelist = [os.path.join(directory, f)
for f in filelist
if os.path.splitext(f)[1] in fileExtList] [[0 [J

[] os.listdir(directory) returnsalist of all thefiles and foldersin directory.

[] Iterating through the list with £, you use os.path.normcase(£) to normalize the case according to
operating system defaults. normcase is auseful little function that compensates for case-insensitive
operating systems that think that mahadeva.mp3 and mahadeva.MP3 are the samefile. For instance,
on Windows and Mac OS, normcase will convert the entire filename to lowercase; on UNIX-com-
patible systems, it will return the filename unchanged.

[] Iteratingthrough the normalizedlist with f again, you useos.path. splitext (f) to split eachfilename
into name and extension.

[] Foreachfile you seeif the extensionisin the list of file extensions you care about (fileExtList,
which was passed to the 1istDirectory function).

[] Foreachfileyou careabout, you useos.path. join(directory, f) toconstruct thefull pathname
of thefile, and return alist of the full pathnames.

Whenever possible, you should use the functions in os and os . path for file, directory, and path
manipulations. These modules are wrappers for platform-specific modules, so functions like
os.path.split work on UNIX, Windows, Mac OS, and any other platform supported by Python.

Thereisone other way to get the contents of adirectory. It'svery powerful, and it usesthe sort of wildcards
that you may already be familiar with from working on the command line.

96

Chapter 6

Example 6.20. Listing Directorieswith glob

>>> os.listdir("c:\\music_singles\\") O
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',
'kairo.mp3', 'long_way_homel.mp3', 'sidewinder.mp3',

'spinning.mp3"']

>>> import glob

>>> glob.glob('c:\\music_singles*.mp3") O
['c:\\music_singles\\a_time_long_forgotten_con.mp3',
"c:\\music_singles\\hellraiser.mp3"',
'c:\\music_singles\\kairo.mp3',
'c:\\music_singles\\long_way_homel.mp3"',
"c:\\music_singles\\sidewinder.mp3"',
'c:\\music_singles\\spinning.mp3']

>>> glob.glob('c:\\music_singles\\s*.mp3') O
['c:\\music_singles\\sidewinder.mp3"',
'c:\\music_singles\\spinning.mp3']

>>> glob.glob('c:\\music**.mp3') O

[] Asyousaw earlier, os.1istdir simply takesadirectory path and lists all files and directoriesin that
directory.

[1 Theglob module, onthe other hand, takes awildcard and returns the full path of all files and direct-
ories matching the wildcard. Here the wildcard is a directory path plus "*.mp3", which will match
al .mp3 files. Note that each element of the returned list already includes the full path of thefile.

[] If youwanttofindal thefilesin aspecific directory that start with "s" and end with ".mp3", you can
do that too.

[1 Now consider this scenario: you have amusic directory, with several subdirectories within it, with
.mp3 files within each subdirectory. You can get alist of all of those with a single call to glob, by
using two wildcards at once. Onewildcard isthe "+ .mp3" (to match .mp3 files), and onewildcard is
within the directory path itself, to match any subdirectory within c¢:\music. That's a crazy amount
of power packed into one deceptively simple-looking function!

Further Reading on the os Module

» Python Knowledge Base [http://mww.fagts.com/knowl edge-base/index.phtml/fid/199/] answers questions
about the os module [http://www.fagts.com/knowledge-base/index.phtml/fid/240].

» Python Library Reference [http://www.python.org/doc/current/lib/] documents the os [http://-
www.python.org/doc/current/lib/module-os.html] module and the os.path [http://www.python.org/-
doc/current/lib/modul e-os.path.html] module.

Putting It All Together

Once again, all the dominoes are in place. You've seen how each line of code works. Now let's step back
and see how it al fits together.

97

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html

Chapter 6

Example 6.21. 1listDirectory

def listDirectory(directory, fileExtList): O

"get list of file info objects for files of particular extensions"
filelist = [os.path.normcase(f)
for f in os.listdir(directory)]
filelist = [os.path.join(directory, f)
for f in filelist
if os.path.splitext(f)[1] in fileExtList] O

def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]): O

"get file info class from filename extension"
subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:] O

return hasattr(module, subclass) and getattr(module, subclass) or FileInfo O

return [getFileInfoClass(f)(f) for f in fileList] O

[] listDirectory is the main attraction of this entire module. It takes a directory (like
c:\music_singles\ inmy case) and alist of interesting fileextensions(like [' .mp3"' 1), and it returns
alist of class instances that act like dictionaries that contain metadata about each interesting file in
that directory. And it doesit in just afew straightforward lines of code.

[] Asyousaw inthe previous section, thisline of code gets alist of the full pathnames of all the files
in directory that have an interesting file extension (as specified by fileExtList).

[] Old-school Pascal programmers may be familiar with them, but most people give me a blank stare
when | tell them that Python supports nested functions -- literally, a function within a function. The
nested function getFileInfoClass can be called only from the function in which it is defined,
listDirectory. As with any other function, you don't need an interface declaration or anything
fancy; just define the function and code it.

[Now that you've seen the os module, this line should make more sense. It gets the extension of the
file(os.path.splitext(filename)[1]), forcesitto uppercase(.upper()), dicesoff thedot ([1:]),
and congtructsaclass nameout of it with string formatting. So ¢ : \music\ap\mahadeva.mp3 becomes
.mp3 becomes .MP3 becomes MP3 becomes MP3FileInfo.

[] Having constructed the name of the handler class that would handle thisfile, you check to seeif that
handler class actually existsin this module. If it does, you return the class, otherwise you return the
base classFileInfo. Thisisavery important point: this function returns a class. Not an instance of
aclass, but the classitself.

[] Foreachfileinthe“interesting files’ list (fileList), you call getFileInfoClass withthefilename
(£). Calling getFileInfoClass(f) returnsaclass; you don't know exactly which class, but you don't
care. You then create an instance of this class (whatever it is) and pass the filename (f again), to the
__init__ method. As you saw earlier in this chapter, the __init__ method of FileInfo sets
self["name"], which triggers__setitem__, which isoverridden in the descendant (MP3FileInfo)
to parse the file appropriately to pull out the file's metadata. You do all that for each interesting file
and return alist of the resulting instances.

Note that 1istDirectory iscompletely generic. It doesn't know ahead of time which types of filesit will
be getting, or which classes are defined that could potentially handle those files. It inspects the directory
for the files to process, and then introspects its own module to see what specia handler classes (like
MP3FileInfo) are defined. You can extend this program to handle other types of files simply by defining
an appropriately-named class: HTIMLFileInfo for HTML files, DOCFileInfo for Word .doc files, and so

98

Chapter 6

forth. 1istDirectory will handle them all, without modification, by handing off the real work to the ap-
propriate classes and collating the results.

Summary

The fileinfo.py program introduced in Chapter 5 should now make perfect sense.

"""Framework for getting filetype-specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key-value pairs for each piece of metadata.

import fileinfo

info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")

print "\\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):

Framework can be extended by adding classes for particular file types, e.g.
HTMLFileInfo, MPGFileInfo, DOCFileInfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.

import os

import sys

from UserDict import UserDict

def stripnulls(data):
"strip whitespace and nulls"
return data.replace("\00", "").strip()
class FileInfo(UserDict):
"store file metadata"
def __init__ (self, filename=None):
UserDict.__init__ (self)
self["name"] = filename

class MP3FileInfo(FileInfo):
"store ID3v1.0 MP3 tags"

tagDataMap = {"title" . (3, 33, stripnulls),
"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" : (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

def __parse(self, filename):
"parse ID3v1l.0 tags from MP3 file"
self.clear()
try:
fsock = open(filename, "rb", 0)
try:

99

Chapter 6

fsock.seek(-128, 2)
tagdata = fsock.read(128)

finally:
fsock.close()

if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items():

self[tag] = parseFunc(tagdata[start:end])
except IOError:
pass

def __setitem__(self, key, item):
if key == "name" and item:
self.__parse(item)
FileInfo.__setitem__(self, key, item)

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
filelist = [os.path.normcase(f)
for f in os.listdir(directory)]
filelist = [os.path.join(directory, f)
for f in fileList
if os.path.splitext(f)[1] in fileExtList]
def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
"get file info class from filename extension"
subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
return hasattr(module, subclass) and getattr(module, subclass) or FileInfo
return [getFileInfoClass(f)(f) for f in filelist]

if __name__ == "__main__":
for info in listDirectory("/music/_singles/", [".mp3"]):
print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
print
Before diving into the next chapter, make sure you're comfortable doing the following things:
» Catching exceptions with try. . .except
» Protecting external resourceswith try. ..finally
* Reading from files
e Assigning multiple values at oncein a for loop

» Using the os module for al your cross-platform file manipulation needs

» Dynamically instantiating classes of unknown type by treating classes as objects and passing them
around

100

Chapter 7. Regular Expressions

Regular expressions are a powerful and standardized way of searching, replacing, and parsing text with
complex patterns of characters. If you've used regular expressionsin other languages (like Perl), the syntax
will bevery familiar, and you get by just reading the summary of the re module [http://www.python.org/-
doc/current/lib/module-re.ntml] to get an overview of the available functions and their arguments.

Diving In

Strings have methods for searching (index, find, and count), replacing (replace), and parsing (split),
but they are limited to the ssmplest of cases. The search methods look for a single, hard-coded substring,
and they are always case-sensitive. To do case-insensitive searches of astring s, you must call s.lower()
or s.upper () and make sureyour search strings are the appropriate caseto match. Thereplace and split
methods have the same limitations.

If what you're trying to do can be accomplished with string functions, you should use them. They're fast
and simple and easy to read, and there's a lot to be said for fast, simple, readable code. But if you find
yourself using a lot of different string functions with if statements to handle special cases, or if you're
combining them with split and join and list comprehensions in weird unreadable ways, you may need
to move up to regular expressions.

Although the regular expression syntax istight and unlike normal code, the result can end up being more
readable than a hand-rolled solution that uses a long chain of string functions. There are even ways of
embedding comments within regular expressions to make them practically self-documenting.

Case Study: Street Addresses

This series of examples was inspired by areal-life problem | had in my day job several years ago, when |
needed to scrub and standardize street addresses exported from a legacy system before importing them
into a newer system. (See, | don't just make this stuff up; it's actually useful.) This example shows how |
approached the problem.

101

http://www.python.org/doc/current/lib/module-re.html

Chapter 7

Example 7.1. Matching at the End of a String

>>> s = '100 NORTH MAIN ROAD'

>>> s.replace('ROAD', 'RD.") [l
'100 NORTH MAIN RD.'

>>> s = '100 NORTH BROAD ROAD'

>>> s.replace('ROAD', 'RD.") [l
'100 NORTH BRD. RD.'

>>> s[:-4] + s[-4:].replace('ROAD', 'RD.') O
'100 NORTH BROAD RD.'

>>> import re U
>>> re.sub('ROAD$', 'RD.’', s) 0O
'100 NORTH BROAD RD.'

O

My goal is to standardize a street address so that 'ROAD' is always abbreviated as 'RD. '. At first
glance, | thought this was simple enough that | could just use the string method replace. After all,
al the datawas already uppercase, so case mismatcheswould not be aproblem. And the search string,
"ROAD', was a constant. And in this deceptively simple example, s.replace doesindeed work.
Life, unfortunately, is full of counterexamples, and | quickly discovered this one. The problem here
isthat 'ROAD' appears twice in the address, once as part of the street name 'BROAD' and once asits
own word. The replace method sees these two occurrences and blindly replaces both of them;
meanwhile, | see my addresses getting destroyed.

To solvethe problem of addresseswith more than one 'ROAD" substring, you could resort to something
likethis: only search and replace 'ROAD' inthelast four characters of the address(s[-4: 1), and leave
the string alone (s[:-41]). But you can see that thisis already getting unwieldy. For example, the
pattern is dependent on the length of the string you'rereplacing (if you werereplacing ' STREET ' with
'ST. ", you would need to use s[:-6] and s[-6:].replace(...)). Would you like to come back
in six months and debug this? | know | wouldn't.

It'stime to move up to regular expressions. In Python, all functionality related to regular expressions
is contained in the re module.

Take alook at the first parameter: 'ROADS '. Thisisasimple regular expression that matches 'ROAD'
only when it occurs at the end of astring. The $ means“end of the string”. (Thereisa corresponding
character, the caret A, which means “ beginning of the string”.)

Using the re. sub function, you search the string s for the regular expression 'ROADS ' and replace
it with 'RD. '. This matches the ROAD at the end of the string s, but does not match the ROAD that's
part of the word BROAD, because that's in the middle of s.

Continuing with my story of scrubbing addresses, | soon discovered that the previous example, matching
"ROAD" at the end of the address, was not good enough, because not all addresses included a street desig-
nation at all; some just ended with the street name. Most of the time, | got away with it, but if the street
name was 'BROAD', then the regular expression would match 'ROAD" at the end of the string as part of the
word 'BROAD', which is not what | wanted.

102

Chapter 7

Example 7.2. Matching Whole Words

>>> s = '100 BROAD'
>>> re.sub('ROAD$', 'RD.’', s)

'100 BRD.'
>>> re.sub('\\bROAD$', 'RD.', s) [J
'100 BROAD'
>>> re.sub(r'\bROAD$', 'RD.', s) L[]
'100 BROAD'

>>> s = '100 BROAD ROAD APT. 3'

>>> re.sub(r'\bROAD$', 'RD.', s) L[]
'100 BROAD ROAD APT. 3'

>>> re.sub(r'\bROAD\b', 'RD.', s) [
'100 BROAD RD. APT 3'

[] Whatl really wanted was to match 'ROAD"' when it was at the end of the string and it was its own
wholeword, not apart of some larger word. To expressthisin aregular expression, you use \b, which
means “aword boundary must occur right here”. In Python, this is complicated by the fact that the
"\ ' character inastring must itself be escaped. Thisis sometimesreferred to asthe backslash plague,
and it isone reason why regular expressions are easier in Perl than in Python. On the down side, Perl
mixes regular expressions with other syntax, so if you have abug, it may be hard to tell whether it's
abug in syntax or abug in your regular expression.

[] Towork around the backslash plague, you can use what is called araw string, by prefixing the string
with theletter r. Thistells Python that nothing in this string should be escaped; '\t ' isatab character,
but r'\t' isreally the backslash character \ followed by theletter t. | recommend always using raw
strings when dealing with regular expressions; otherwise, things get too confusing too quickly (and
regular expressions get confusing quickly enough all by themselves).

[] *sigh* Unfortunately, | soon found more cases that contradicted my logic. In this case, the street ad-
dress contained theword 'ROAD' asawholeword by itself, but it wasn't at the end, because the address
had an apartment number after the street designation. Because 'ROAD' isn't at the very end of the
string, it doesn't match, so the entire call to re. sub ends up replacing nothing at al, and you get the
origina string back, which is not what you want.

[] Tosolvethisproblem, | removed the $ character and added another \b. Now the regular expression
reads “match 'ROAD' when it's a whole word by itself anywhere in the string,” whether at the end,
the beginning, or somewhere in the middle.

Case Study: Roman Numerals

You've most likely seen Roman numerals, even if you didn't recognize them. You may have seen themin
copyrights of old movies and television shows (“ Copyright MCMXLVI” instead of “Copyright 1946"), or on
the dedication walls of libraries or universities (“established MDCCCLXXXVIII” instead of “established
1888"). You may a so have seen themin outlines and bibliographical references. It'sasystem of representing
numbers that really does date back to the ancient Roman empire (hence the name).

In Roman numerals, there are seven charactersthat are repeated and combined in various waysto represent
numbers.

e I=1
. V=5

e X=10

103

Chapter 7

L=50

C=100

D =500

M=1000

The following are some general rules for constructing Roman numerals:

Characters are additive. Tis1, ITis2,and IIT is3. VI is6 (literally, “5and 1"), VIT is7, and VIII is
8.

The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from
the next highest fives character. You can't represent 4 as II1T; instead, it is represented as IV (“1 less
than 5”). The number 40 is written as XL (10 less than 50), 41 as XLI, 42 as XLII, 43 as XLIII, and
then 44 asXLIV (10 lessthan 50, then 1 lessthan 5).

Similarly, at 9, you need to subtract from the next highest tens character: 8 isVIIT, but 9 isIX (1 less
than 10), not VIIII (since the I character can not be repeated four times). The number 90 is XC, 900
iSCM.

The fives characters can not be repeated. The number 10 is always represented as X, never asVvv. The
number 100 is always C, never LL.

Roman numerals are alwayswritten highest to lowest, and read | eft to right, so the order the of characters
matters very much. DC is 600; CD is acompletely different number (400, 100 less than 500). CI is101;
IC isnot even avalid Roman numeral (because you can't subtract 1 directly from 100; you would need
to writeit asXCIX, for 10 less than 100, then 1 less than 10).

Checking for Thousands

What would it take to validate that an arbitrary string is a valid Roman numeral? Let's take it one digit at
atime. Since Roman numerals are alwayswritten highest to lowest, |et's start with the highest: the thousands
place. For numbers 1000 and higher, the thousands are represented by a series of M characters.

104

Chapter 7

Example 7.3. Checking for Thousands

>>> import re

>>> pattern = 'AM?M?M?$’

>>> re.search(pattern, 'M')
<SRE_Match object at 0106FB58>
>>> re.search(pattern, 'MM')
<SRE_Match object at 0106C290>
>>> re.search(pattern, 'MMM')
<SRE_Match object at 0106AA38>
>>> re.search(pattern, 'MMMM')
>>> re.search(pattern, '')

oo o O OO

<SRE_Match object at 0106F4A8>

O

0

This pattern has three parts:

« A tomatch what follows only at the beginning of the string. If this were not specified, the pattern
would match no matter where the M characters were, which is not what you want. You want to
make sure that the M characters, if they're there, are at the beginning of the string.

e M? to optionally match a single M character. Since this is repeated three times, you're matching
anywhere from zero to three M charactersin arow.

¢ $ to match what precedes only at the end of the string. When combined with the ~ character at
the beginning, this means that the pattern must match the entire string, with no other characters
before or after the M characters.

The essence of the re moduleisthe search function, that takes aregular expression (pattern) and
astring ("M") to try to match against the regular expression. If a match isfound, search returns an
object which has various methods to describe the match; if no match isfound, search returns None,
the Python null value. All you care about at the moment is whether the pattern matches, which you
can tell by just looking at the return value of search. 'M' matches this regular expression, because
the first optional M matches and the second and third optional M characters are ignored.

'"MM' matches because the first and second optional M characters match and the third M is ignored.

'"MMM' matches because all three M characters match.

"MMMM' does not match. All three M characters match, but then the regular expression insists on the
string ending (because of the $ character), and the string doesn't end yet (because of the fourth M).
S0 search returns None.

Interestingly, an empty string aso matches this regular expression, since all the M characters are op-
tional.

Checking for Hundreds

The hundreds place is more difficult than the thousands, because there are several mutually exclusive ways
it could be expressed, depending on its value.

100=C

200 =CC

300 = CCC

400 =CD

105

Chapter 7

e 500=D

* 600=DC

e 700=DCC
* 800 =DCCC
e 900=CM

So there are four possible patterns:

e (M

e (D

» ZerotothreeC characters (zero if the hundreds placeis 0)
» D, followed by zero to three C characters

The last two patterns can be combined:

» anoptional D, followed by zero to three C characters

This example shows how to validate the hundreds place of a Roman numeral.

106

Chapter 7

Example 7.4. Checking for Hundreds

>>> import re

>>> pattern = 'AM?M?M?(CM|CD|D?C?C?C?)$' [l
>>> re.search(pattern, 'MCM') [l
<SRE_Match object at 01070390>

>>> re.search(pattern, 'MD') [l
<SRE_Match object at 01073A50>

>>> re.search(pattern, 'MMMCCC') [l
<SRE_Match object at 010748A8>

>>> re.search(pattern, 'MCMC') [l
>>> re.search(pattern, '') [l
<SRE_Match object at 01071D98>

[] Thispattern starts out the same as the previous one, checking for the beginning of the string (+), then
the thousands place (M?M?M?). Then it has the new part, in parentheses, which defines a set of three
mutually exclusive patterns, separated by vertical bars: CM, CD, and D?C?C?C? (which is an optional
D followed by zero to three optional C characters). The regular expression parser checks for each of
these patternsin order (from left to right), takes the first one that matches, and ignores the rest.

[] 'MCM' matches because the first M matches, the second and third M characters are ignored, and the CM
matches (so the CD and D?C?C?C? patterns are never even considered). MCM is the Roman numeral
representation of 1900.

[] 'MD' matches because the first M matches, the second and third M characters are ignored, and the
D?C?C?C? pattern matches D (each of the three C characters are optional and are ignored). MD is the
Roman numeral representation of 1500.

[] 'MMMCCC' matches because all three M characters match, and the D?C?C?C? pattern matches CCC (the
D isoptiona and isignored). MMMCCC is the Roman numeral representation of 3300.

[] 'MCMC' does not match. The first M matches, the second and third M characters are ignored, and the
CM matches, but then the $ does not match because you're not at the end of the string yet (you still
have an unmatched C character). The C does not match as part of the D?C?C?C? pattern, because the
mutually exclusive CM pattern has already matched.

[] [Interestingly, an empty string still matches this pattern, because all the M characters are optional and
ignored, and the empty string matchestheD?C?C?C? pattern where all the characters are optional and
ignored.

Whew! See how quickly regular expressions can get nasty? And you've only covered the thousands and
hundreds places of Roman numerals. But if you followed all that, the tensand ones places are easy, because
they're exactly the same pattern. But let's ook at another way to express the pattern.

Using the {n,m} Syntax

In the previous section, you were dealing with a pattern where the same character could be repeated up to
three times. There is another way to express this in regular expressions, which some people find more
readable. First look at the method we already used in the previous example.

107

Chapter 7

Example 7.5. The Old Way: Every Character Optional

>>> import re

>>> pattern = 'AM?M?M?$’

>>> re.search(pattern, 'M') [l
<_sre.SRE_Match object at OxO08EE090>
>>> pattern = 'AM?M?M?7$’

>>> re.search(pattern, 'MM') [l
<_sre.SRE_Match object at OxOO8EEB48>
>>> pattern = 'AM?M?M?$’

>>> re.search(pattern, 'MMM') [l
<_sre.SRE_Match object at OxO08EE090>
>>> re.search(pattern, 'MMMM') [l

>>>

This matches the start of the string, and then the first optional M, but not the second and third M (but
that's okay because they're optional), and then the end of the string.

This matches the start of the string, and then the first and second optional M, but not the third M (but
that's okay because it's optional), and then the end of the string.

This matches the start of the string, and then al three optional M, and then the end of the string.

This matches the start of the string, and then all three optional M, but then does not match the the end
of the string (because thereis still one unmatched M), so the pattern does not match and returns None.

OO O o

Example 7.6. The New Way: Fromnom

>>> pattern = 'AM{0,3}$' O

>>> re.search(pattern, 'M') O
<_sre.SRE_Match object at OxO08EEB48>
>>> re.search(pattern, 'MM') [l
<_sre.SRE_Match object at Ox008EE090>
>>> re.search(pattern, 'MMM') [l
<_sre.SRE_Match object at OxO08EEDA8>
>>> re.search(pattern, 'MMMM') [l

>>>

[] Thispattern says: “Match the start of the string, then anywhere from zero to three M characters, then
the end of the string.” The 0 and 3 can be any numbers; if you want to match at |east one but no more
than three M characters, you could say M{1, 3}.

This matches the start of the string, then one M out of a possible three, then the end of the string.

This matches the start of the string, then two M out of a possible three, then the end of the string.
This matches the start of the string, then three M out of a possible three, then the end of the string.

This matches the start of the string, then three M out of a possible three, but then does not match the
end of the string. The regular expression allows for up to only three M characters before the end of
the string, but you have four, so the pattern does not match and returns None.

I A

There is no way to programmatically determine that two regular expressions are equivalent. The
best you can do iswrite alot of test cases to make sure they behave the same way on al relevant
inputs. You'll talk more about writing test cases later in this book.

108

Chapter 7

Checking for Tens and Ones

Now let's expand the Roman numeral regular expression to cover the tens and ones place. This example
shows the check for tens.

Example 7.7. Checking for Tens

>>> pattern = 'AM?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)$"
>>> re.search(pattern, 'MCMXL') [l
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCML') [l
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCMLX') [l
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCMLXXX') [l
<_sre.SRE_Match object at OxOO8EEB48>
>>> re.search(pattern, 'MCMLXXXX') [l

>>>

O

This matches the start of the string, then the first optional M, then CM, then XL, then the end of the
string. Remember, the (A|B|C) syntax means “match exactly one of A, B, or C”. You match XL, so
youignorethe XC and L?X?X?X? choices, and then move onto the end of the string. MCML isthe Roman
numeral representation of 1940.

Thismatchesthe start of the string, then thefirst optional M, then CM, then L?x?X?x?. Of the L?X?X?X?,
it matches the L and skips all three optional X characters. Then you move to the end of the string.
MCML is the Roman numeral representation of 1950.

This matches the start of the string, then the first optional M, then CM, then the optional L and the first
optional X, skips the second and third optional X, then the end of the string. MCMLX is the Roman nu-
meral representation of 1960.

This matches the start of the string, then thefirst optional M, then CM, then the optional L and all three
optional X characters, then the end of the string. MCMLXXX is the Roman numeral representation of
1980.

This matches the start of the string, then thefirst optional M, then CM, then the optional L and all three
optional X characters, then fails to match the end of the string because there is till one more X unac-
counted for. So the entire pattern fails to match, and returns None. MCMLXXXX is not a valid Roman
numeral.

The expression for the ones place follows the same pattern. I'll spare you the details and show you the end
result.

>>> pattern = 'AM?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$’

So what does that look like using this alternate {n,m} syntax? This example shows the new syntax.

109

Chapter 7

Example 7.8. Validating Roman Numeralswith {n,m}

>>> pattern = 'AM{0,43}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,33})$"'
>>> re.search(pattern, 'MDLV') O

<_sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, 'MMDCLXVI') O

<_sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, 'MMMMDCCCLXXXVIII') O

<_sre.SRE_Match object at OxOO8EEB48>

>>> re.search(pattern, 'I') O

<_sre.SRE_Match object at OxOO8EEB48>

[] Thismatchesthe start of the string, then one of a possible four M characters, then D?C{0, 3}. Of that,
it matches the optional D and zero of three possible C characters. Moving on, it matches 1.?xX{0, 3}
by matching the optional L and zero of three possible X characters. Then it matches v?1{0,3} by
matching the optional V and zero of three possible T characters, and finally the end of the string.
MDLV is the Roman numeral representation of 1555.

[] Thismatchesthe start of the string, then two of a possible four M characters, then the D?C{0, 3} with
aD and one of three possible C characters; then L?X{0,3} with an L and one of three possible X
characters; then v?I{0, 3} with aVv and one of three possible I characters; then the end of the string.
MMDCLXVI is the Roman numeral representation of 2666.

[] This matches the start of the string, then four out of four M characters, then D?C{0,3} with aD and
three out of three C characters; then L?x{0, 3} with an L and three out of three X characters; then
v?1{0,3} with av and three out of three T characters; then the end of the string. MMMMDCCCLXXXVIITI
is the Roman numeral representation of 3888, and it's the longest Roman numeral you can write
without extended syntax.

[] Watchclosely. (I feel likeamagician. “Watch closely, kids, I'm going to pull arabbit out of my hat.”)
This matches the start of the string, then zero out of four M, then matchesD?C{0, 3} by skipping the
optional D and matching zero out of three C, then matches L?X{0, 3} by skipping the optional L and
matching zero out of three X, then matches v?1{0, 3} by skipping the optional v and matching one
out of three I. Then the end of the string. Whoa.

If you followed all that and understood it on the first try, you're doing better than | did. Now imaginetrying
to understand someone else's regular expressions, in the middle of a critical function of alarge program.
Or even imagine coming back to your own regular expressions afew months|ater. I've doneit, and it's not
apretty sight.

In the next section you'll explore an alternate syntax that can help keep your expressions maintainable.

Verbose Regular Expressions

So far you've just been dealing with what I'll call “compact” regular expressions. As you've seen, they are
difficult to read, and even if you figure out what one does, that's no guarantee that you'll be ableto understand
it six months later. What you really need is inline documentation.

Python allows you to do this with something called verbose regular expressions. A verbose regular expres-
sion is different from a compact regular expression in two ways:

* Whitespace isignored. Spaces, tabs, and carriage returns are not matched as spaces, tabs, and carriage
returns. They're not matched at all. (If you want to match aspacein averbose regular expression, you'll
need to escape it by putting a backslash in front of it.)

110

Chapter 7

e Comments are ignored. A comment in a verbose regular expression is just like a comment in Python
code: it starts with a# character and goes until the end of the line. In this case it's a comment within a
multi-line string instead of within your source code, but it works the same way.

Thiswill be more clear with an example. Let'srevisit the compact regular expression you've been working
with, and make it a verbose regular expression. This example shows how.

Example 7.9. Regular Expressionswith Inline Comments

>>> pattern =

A # beginning of string
M{0,4} # thousands - 0 to 4 M's
(CM|CD|D?C{0,33}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
or 500-800 (D, followed by 0 to 3 C's)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
or 50-80 (L, followed by 0 to 3 X's)
(IX|1IV|V?1{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
or 5-8 (V, followed by 0 to 3 I's)
$ # end of string
>>> re.search(pattern, 'M', re.VERBOSE) O
<_sre.SRE_Match object at OxQ08EEB48>
>>> re.search(pattern, 'MCMLXXXIX', re.VERBOSE) O

<_sre.SRE_Match object at OxQ08EEB48>
>>> re.search(pattern, 'MMMMDCCCLXXXVIII', re.VERBOSE) O
<_sre.SRE_Match object at OxQ08EEB48>
>>> re.search(pattern, 'M') O]

[] Themost important thing to remember when using verbose regular expressions is that you need to
pass an extra argument when working with them: re. VERBOSE is a constant defined in the re module
that signals that the pattern should be treated as a verbose regular expression. As you can see, this
pattern has quite a bit of whitespace (all of which isignored), and several comments (all of which
areignored). Once you ignore the whitespace and the comments, this is exactly the same regular ex-
pression as you saw in the previous section, but it's alot more readable.

[] Thismatchesthestart of the string, then one of apossible four M, then €M, then L and three of apossible
three X, then Ix, then the end of the string.

[] Thismatchesthe start of the string, then four of apossible four M, then D and three of a possible three
C, then L and three of a possible three X, then vV and three of a possible three I, then the end of the
string.

[] Thisdoesnot match. Why? Because it doesn't have the re . VERBOSE flag, so there. search function
is treating the pattern as a compact regular expression, with significant whitespace and literal hash
marks. Python can't auto-detect whether aregular expression isverbose or not. Python assumes every
regular expression is compact unless you explicitly state that it is verbose.

Case study: Parsing Phone Numbers

So far you've concentrated on matching whole patterns. Either the pattern matches, or it doesn't. But regular
expressions are much more powerful than that. When a regular expression does match, you can pick out
specific pieces of it. You can find out what matched where.

This example came from another real-world problem | encountered, again from a previous day job. The
problem: parsing an American phone number. The client wanted to be able to enter the number free-form

111

Chapter 7

(inasingle field), but then wanted to store the area code, trunk, number, and optionally an extension sep-
arately in the company's database. | scoured the Web and found many examples of regular expressions
that purported to do this, but none of them were permissive enough.

Here are the phone numbers | needed to be able to accept:
¢ 800-555-1212

e 800 555 1212

e 800.555.1212

e (800) 555-1212

¢ 1-800-555-1212

¢ 800-555-1212-1234

* 800-555-1212x1234

* 800-555-1212 ext. 1234

* work 1-(800) 555.1212 #1234

Quite avariety! In each of these cases, | need to know that the area code was 800, the trunk was 555, and
the rest of the phone number was 1212. For those with an extension, | need to know that the extension was
1234.

Let'swork through devel oping a solution for phone number parsing. This example shows the first step.

Example 7.10. Finding Numbers

>>> phonePattern = re.compile(r'A(\d{3})-(\d{3})-(\d{4}$") U
>>> phonePattern.search('800-555-1212").groups() O
('800', '555', '1212")

>>> phonePattern.search('800-555-1212-1234") O
>>>

[1 Alwaysread regular expressionsfrom left to right. This one matches the beginning of the string, and
then (\d{3}). What's\d{3}?Well, the {3} means " match exactly three numeric digits’; it'savariation
on the {n,m} syntax you saw earlier. \d means “any numeric digit” (0 through 9). Putting it in
parentheses means “match exactly three numeric digits, and then remember them as a group that |
can ask for later”. Then match alitera hyphen. Then match another group of exactly three digits.
Then another literal hyphen. Then another group of exactly four digits. Then match the end of the
string.

[] To get access to the groups that the regular expression parser remembered along the way, use the
groups () method on the object that the search function returns. It will return a tuple of however
many groups were defined in the regular expression. In this case, you defined three groups, one with
three digits, one with three digits, and one with four digits.

[] Thisregular expression is not the final answer, because it doesn't handle a phone number with an
extension on the end. For that, you'll need to expand the regular expression.

112

Chapter 7

Example 7.11. Finding the Extension

>>>
>>>

('800', '555', '1212', '1234')

>>>
>>>
>>>
>>>

O

phonePattern = re.compile(r'A(\d{3})-(\d{33})-(\d{4})-(\d+)$")
phonePattern. search('800-555-1212-1234").groups()

phonePattern.search('800 555 1212 1234')

o 0o OO

phonePattern.search('800-555-1212")

Thisregular expressionisamost identical to the previous one. Just as before, you match the beginning
of the string, then a remembered group of three digits, then a hyphen, then a remembered group of
three digits, then a hyphen, then a remembered group of four digits. What's new is that you then
match another hyphen, and a remembered group of one or more digits, then the end of the string.
The groups () method now returnsatuple of four elements, since the regular expression now defines
four groups to remember.

Unfortunately, this regular expression is not the final answer either, because it assumes that the dif-
ferent parts of the phone number are separated by hyphens. What if they're separated by spaces, or
commeas, or dots?You need a more general solution to match several different types of separators.
Oops! Not only doesthisregular expression not do everything you want, it's actually a step backwards,
because now you can't parse phone numbers without an extension. That's not what you wanted at al;
if the extension isthere, you want to know what it is, but if it's not there, you still want to know what
the different parts of the main number are.

The next example shows the regular expression to handle separators between the different parts of the
phone number.

Example 7.12. Handling Different Separators

>>>
>>>

phonePattern = re.compile(xr'A(\d{3})\D+(\d{3})\D+(\d{4})\D+(\d+)$"') Ol
phonePattern.search('800 555 1212 1234').groups() 0

('800', '555", '1212', '1234')

>>>

>>>
>>>
>>>

|

phonePattern. search('800-555-1212-1234").groups()

('800', '555', '1212', '1234")
phonePattern.search('80055512121234"') O
phonePattern.search('800-555-1212") O

>>>

O

O OooOgo o

Hang on to your hat. You're matching the beginning of the string, then a group of three digits, then
\D+. What the heck is that? Well, \D matches any character except a numeric digit, and + means “1
or more”. So \D+ matches one or more charactersthat are not digits. Thisiswhat you're using instead
of aliteral hyphen, to try to match different separators.

Using \D+ instead of - means you can now match phone numbers where the parts are separated by
spacesinstead of hyphens.

Of course, phone numbers separated by hyphens still work too.

Unfortunately, thisis still not thefinal answer, because it assumesthat thereisaseparator at al. What
if the phone number is entered without any spaces or hyphens at al?

Oops! This still hasn't fixed the problem of requiring extensions. Now you have two problems, but
you can solve both of them with the same technique.

The next example shows the regular expression for handling phone numbers without separators.

113

Chapter 7

Example 7.13. Handling Number s Without Separators

>>> phonePattern = re.compile(xr'A(\d{3})\D*(\d{3P)\D*(\d{4})\D*(\d*)$"')
>>> phonePattern.search('80055512121234").groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('800.555.1212 x1234').groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212").groups()

('800', '555', '1212', '")

>>> phonePattern.search('(800)5551212 x1234"')

>>>

O

O 0O O OO

The only change you've made since that last step is changing all the + to *. Instead of \D+ between
the parts of the phone number, you now match on \D*. Remember that + means “1 or more”? Well,
* means “zero or more”. So now you should be able to parse phone numbers even when there is no
separator character at all.

Lo and behold, it actually works. Why?You matched the beginning of the string, then aremembered
group of three digits (800), then zero non-numeric characters, then aremembered group of three digits
(555), then zero non-numeric characters, then a remembered group of four digits (1212), then zero
non-numeric characters, then aremembered group of an arbitrary number of digits (1234), then the
end of the string.

Other variationswork now too: dotsinstead of hyphens, and both a space and an x before the extension.

Finally, you've solved the other long-standing problem: extensions are optional again. If no extension
isfound, the groups () method still returns atuple of four elements, but the fourth element isjust an
empty string.

| hate to be the bearer of bad news, but you're not finished yet. What's the problem here? There's an
extracharacter before the area code, but the regular expression assumes that the area code is the first
thing at the beginning of the string. No problem, you can use the same technique of “zero or more
non-numeric characters’ to skip over the leading characters before the area code.

The next example shows how to handle |eading characters in phone numbers.

114

Chapter 7

Example 7.14. Handling L eading Characters

>>> phonePattern = re.compile(r'A\D*(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$"')
>>> phonePattern.search('(800)5551212 ext. 1234').groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212").groups()

('800', '555', '1212', '")

>>> phonePattern.search('work 1-(800) 555.1212 #1234')

>>>

o o OO

[] Thisisthesameasin the previous example, except now you're matching \D*, zero or more non-nu-
meric characters, before the first remembered group (the area code). Notice that you're not remem-
bering these non-numeric characters (they're not in parentheses). If you find them, you'll just skip
over them and then start remembering the area code whenever you get to it.

[] You can successfully parse the phone number, even with the leading left parenthesis before the area
code. (Theright parenthesis after the area code is already handled; it's treated as a non-numeric sep-
arator and matched by the \D* after the first remembered group.)

[] Just asanity check to make sure you haven't broken anything that used to work. Since the leading
characters are entirely optional, this matches the beginning of the string, then zero non-numeric
characters, then aremembered group of three digits (800), then one non-numeric character (the hyphen),
then aremembered group of three digits (555), then one non-numeric character (the hyphen), then a
remembered group of four digits (1212), then zero non-numeric characters, then aremembered group
of zero digits, then the end of the string.

[] Thisiswhere regular expressions make me want to gouge my eyes out with a blunt object. Why
doesn't this phone number match? Because there's a1 before the area code, but you assumed that all
the leading characters before the area code were non-numeric characters (\D*). Aargh.

Let'sback up for asecond. So far the regular expressions have all matched from the beginning of the string.
But now you see that there may be an indeterminate amount of stuff at the beginning of the string that you
want to ignore. Rather than trying to match it all just so you can skip over it, let'stake a different approach:
don't explicitly match the beginning of the string at all. This approach is shown in the next example.

Example 7.15. Phone Number, Wherever | May Find Ye

>>> phonePattern = re.compile(r' (\d{3})\D*(\d{33})\D*(\d{4})\D*(\d*)$"') O
>>> phonePattern.search('work 1-(800) 555.1212 #1234').groups() []
('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212") O
('800', '555', '1212', '")

>>> phonePattern.search('80055512121234") O
('800', '555', '1212', '1234")

[] Notethelack of » inthisregular expression. You are not matching the beginning of the string anymore.
There's nothing that saysyou need to match the entire input with your regular expression. Theregular
expression engine will do the hard work of figuring out where the input string starts to match, and
go from there.

[1 Now you can successfully parse a phone number that includes leading characters and aleading digit,
plus any number of any kind of separators around each part of the phone number.

[] Sanity check. thistill works.

[] That still works too.

115

Chapter 7

See how quickly aregular expression can get out of control? Take a quick glance at any of the previous
iterations. Can you tell the difference between one and the next?

While you still understand the final answer (and it isthe final answer; if you've discovered acase it doesn't

handle, | don't want to know about it), let's write it out as a verbose regular expression, before you forget
why you made the choices you made.

Example 7.16. Par sing Phone Numbers (Final Version)

>>> phonePattern = re.compile(r

don't match beginning of string, number can start anywhere

Ad{3p # area code is 3 digits (e.g. '800')

\D* # optional separator is any number of non-digits

Ad{3p # trunk is 3 digits (e.g. '555')

\D* # optional separator

Ad{4}) # rest of number is 4 digits (e.g. '1212')

\D* # optional separator

Ad*) # extension is optional and can be any number of digits

$ # end of string

"', re.VERBOSE)
>>> phonePattern.search('work 1-(800) 555.1212 #1234').groups() O
('800', '555', '1212', '1234")
>>> phonePattern.search('800-555-1212") [
('800', '555', '1212', '")

[] Other than being spread out over multiplelines, thisis exactly the same regular expression asthe last
step, so it's no surprise that it parses the same inputs.
[] Final sanity check. Yes, this still works. You're done.

Further Reading on Regular Expressions

* Regular Expression HOWTO [http://py-howto.sourcef orge.net/regex/regex.html] teaches about regular
expressions and how to use them in Python.

* Python Library Reference [http://www.python.org/doc/current/lib/] summarizes the re module
[http:/iwww.python.org/doc/current/lib/modul e-re.html].

Summary

Thisisjust the tiniest tip of the iceberg of what regular expressions can do. In other words, even though
you're completely overwhelmed by them now, believe me, you ain't seen nothing yet.

You should now be familiar with the following techniques:
e A matches the beginning of astring.

» $ matchesthe end of astring.

* \b matches aword boundary.

* \d matches any numeric digit.

* \D matches any non-numeric character.

116

http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html

Chapter 7

e x? matches an optional x character (in other words, it matches an x zero or one times).
* x* matches x zero or moretimes.

* x+ matches x one or more times.

* x{n,m} matches an x character at |east n times, but not more than m times.

* (al|blc) matcheseither a or b or c.

* (x) ingenerd isaremembered group. You can get the value of what matched by using the groups ()
method of the object returned by re.search.

Regular expressions are extremely powerful, but they are not the correct solution for every problem. You
should learn enough about them to know when they are appropriate, when they will solve your problems,
and when they will cause more problems than they solve.

Some people, when confronted with a problem, think “I know, I'll use regular expres-
sions” Now they have two problems.

—Jamie Zawinski, in comp.emacs.xemacs [http://groups.google.com/-

groups?sel m=33F0C496.370D 7C45%40netscape.com]

117

http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com

Chapter 8. HTML Processing
Diving in

| often see questions on comp.lang.python [http://groups.google.com/groups?group=comp.lang.python]
like“How can| list dl the[headerslimages|links] inmy HTML document?’ “How do | parse/trandate/munge
the text of my HTML document but leave the tags alone?’ “How can | add/remove/quote attributes of all
my HTML tags at once?’ This chapter will answer all of these questions.

Here is a complete, working Python program in two parts. The first part, BaseHIMLProcessor.py, iS a
generictool to help you processHTML files by walking through the tags and text blocks. The second part,
dialect.py, isan example of how to use BaseHTMLProcessor . py to trand ate the text of an HTML doc-
ument but leave the tags alone. Read the doc strings and comments to get an overview of what's going
on. Most of it will seem like black magic, because it's not obvious how any of these class methods ever
get called. Don't worry, al will be revealed in due time.

118

http://groups.google.com/groups?group=comp.lang.python

Chapter 8

Example 8.1. BaseHTMLProcessor. py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

from sgmllib import SGMLParser
import htmlentitydefs

class BaseHTMLProcessor (SGMLParser):

def

def

reset(self):

extend (called by SGMLParser.__init_)
self.pieces = []

SGMLParser.reset(self)

unknown_starttag(self, tag, attrs):

called for each start tag

attrs is a list of (attr, value) tuples

e.g. for <pre class="screen">, tag="pre", attrs=[("class", "screen")]

Ideally we would like to reconstruct original tag and attributes, but

we may end up quoting attribute values that weren't quoted in the source
document, or we may change the type of quotes around the attribute value
(single to double quotes).

Note that improperly embedded non-HTML code (like client-side Javascript)
may be parsed incorrectly by the ancestor, causing runtime script errors.
All non-HTML code must be enclosed in HTML comment tags (<!-- code -->)

to ensure that it will pass through this parser unaltered (in handle_comment).

def

def

def

def

nn

strattrs = .join([" %s="%s"' % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s¥%(strattrs)s>" % locals())

unknown_endtag(self, tag):

called for each end tag, e.g. for </pre>, tag will be "pre"
Reconstruct the original end tag.
self.pieces.append("</%(tag)s>" % locals())

handle_charref(self, ref):

called for each character reference, e.g. for " ", ref will be "160"
Reconstruct the original character reference.
self.pieces.append("&#%(ref)s;" % locals())

handle_entityref(self, ref):
called for each entity reference, e.g. for "©", ref will be "copy"
Reconstruct the original entity reference.
self.pieces.append("&%(ref)s" % locals())
standard HTML entities are closed with a semicolon; other entities are not
if htmlentitydefs.entitydefs.has_key(ref):
self.pieces.append(";")

handle_data(self, text):

called for each block of plain text, i.e. outside of any tag and
not containing any character or entity references

Store the original text verbatim.

self.pieces.append(text)

119

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 8

def

def

def

def

handle_comment (self, text):

called for each HTML comment, e.g. <!-- insert Javascript code here -->
Reconstruct the original comment.

It is especially important that the source document enclose client-side
code (like Javascript) within comments so it can pass through this

processor undisturbed; see comments in unknown_starttag for details.
self.pieces.append("<!--%(text)s-—>" % locals())

handle_pi(self, text):

called for each processing instruction, e.g. <?instruction>
Reconstruct original processing instruction.
self.pieces.append("<?%(text)s>" % locals())

handle_decl(self, text):

called for the DOCTYPE, if present, e.g.

<!DOCTYPE html PUBLIC "-//W3C//DTID HIML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

Reconstruct original DOCTYPE

self.pieces.append("<!%(text)s>" % locals())

output(self):
"""Return processed HIML as a single string
return "".join(self.pieces)

120

Chapter 8

Example 8.2. dialect.py

import re
from BaseHTMLProcessor import BaseHTMLProcessor

class Dialectizer(BaseHTMLProcessor):

subs

def

def

def

def

def

=0

reset(self):

extend (called from __init__ in ancestor)
Reset all data attributes

self.verbatim = 0
BaseHTMLProcessor.reset(self)

start_pre(self, attrs):

called for every <pre> tag in HTML source

Increment verbatim mode count, then handle tag like normal
self.verbatim += 1

self.unknown_starttag("pre", attrs)

end_pre(self):

called for every </pre> tag in HIML source
Decrement verbatim mode count
self.unknown_endtag("pre")

self.verbatim -= 1

handle_data(self, text):

override

called for every block of text in HTML source

If in verbatim mode, save text unaltered;

otherwise process the text with a series of substitutions
self.pieces.append(self.verbatim and text or self.process(text))

process(self, text):
called from handle_data
Process text block by performing series of regular expression
substitutions (actual substitions are defined in descendant)
for fromPattern, toPattern in self.subs:

text = re.sub(fromPattern, toPattern, text)
return text

class ChefDialectizer(Dialectizer):
"""convert HTML to Swedish Chef-speak

based on the classic chef.x, copyright (c) 1992, 1993 John Hagerman

nnn

subs

= ((r'a([nu])', r'u\l"),
(r'A([nu])", r'U\1"),
(r'a\B', r'e'"),
(r'A\B', r'E"),
(r'en\b', r'ee'),
(r'\Bew', r'oo'),

121

Chapter 8

(r'\Be\b', r'e-a'),
(r'\be', r'i'"),
(r'\bE', r'1I"),
(r'\Bf', r'ff'),
(r'\Bir', r'ur'),
(r'Aw*?2)i(\w*?)$', r'\lee\2'),
(r'\bow', r'oo'),
(r'\bo', r'oo'),
(r'\b0', r'0o0"),
(r'the', r'zee'),
(r'The', r'Zee'),
(r'th\b', r't'"),
(r'\Btion', r'shun'),
(r'\Bu', r'oo'),
(r'\BU', r'00"),

(r'v', r'f"),
(r'V', r'F"),
(r'w', r'w'),
(r'w', r'w"),

(r'([a-z])[.]1', r'\1. Bork Bork Bork!'))

class FuddDialectizer(Dialectizer):
"""convert HIML to Elmer Fudd-speak"""
subs = ((r'[rl]', r'w"),
(r'qu', r'gw"),
(r'th\b', r'f"),
(r'th', r'd"),
(r'n[.]', r'n, uh-hah-hah-hah.'))

class OldeDialectizer(Dialectizer):

"""convert HIML to mock Middle English"""

subs = ((r'i([bcdfghjklmnpgrstvwxyz])e\b', r'y\1'),
(r'i([bcdfghjklmnpgrstvwxyz])e', r'y\1l\le'),
(r'ick\b', r'yk"),
(r'ia([bcdfghjklmnpgrstvwxyz])', r'e\le'),
(r'e[ea]([bcdfghjklmnpgrstvwxyz])', r'e\le'),
(r' ([bcdfghjklmnpgrstvwxyz])y', r'\lee'),
(r' ([bcdfghjklmnpgrstvwxyz])er', r'\lre'),
(r'([aeiou])re\b', r'\1r'"),
(r'ia([bcdfghjklmnpgrstvwxyz])', r'i\le'),
(r'tion\b', r'cioun'),
(r'ion\b', r'ioun'),
(r'aid', r'ayde'),
(r'ai', r'ey'),
(r'ay\b', r'y"),
(r'ay', r'ey"),
(r'ant', r'aunt'),
(r'ea', r'ee'),
(r'oa', r'oo'),
(r'ue', r'e'"),
(r'oe', r'o"),
(r'ou', r'ow'),
(r'ow', r'ou'),
(r'\bhe', r'hi'"),

122

Chapter 8

(r've\b', r'veth'),
(r'se\b', r'e'),
(r"'s\b", r'es'),
(r'ic\b', r'ick"),
(r'ics\b', r'icc'),
(r'ical\b', r'ick"),
(r'tle\b', r'til"),
(r'11\b', r'l"),
(r'ould\b', r'olde'),
(r'own\b', r'oune'),
(r'un\b', r'onne'),
(r'rry\b', r'rye'),
(r'est\b', r'este'),
(r'pt\b', r'pte'),
(r'th\b', r'the'),
(r'ch\b', r'che'),
(r'ss\b', r'sse'),
(r' ([wybdp]D\b', r'\1le"),
(' ([rntD\b', r"\1\le"),
(r'from', r'fro'),
(r'when', r'whan'))

def translate(url, dialectName="chef"):
"""fetch URL and translate using dialect

dialect in ("chef", "fudd", "olde")"""
import urllib

sock = urllib.urlopen(url)

htmlSource = sock.read()

sock.close()

parserName = "%sDialectizer" % dialectName.capitalize()
parserClass = globals()[parserName]
parser = parserClass()
parser.feed(htmlSource)

parser.close()

return parser.output()

def test(url):

"""test all dialects against URL"""

for dialect in ("chef", "fudd", "olde"):
outfile = "%s.html" % dialect
fsock = open(outfile, "wb")
fsock.write(translate(url, dialect))
fsock.close()
import webbrowser
webbrowser.open_new(outfile)

if __name__ == "_main__":
test("http://diveintopython.org/odbchelper_list.html")

123

Chapter 8

Example 8.3. Output of dialect.py

Running this script will tranglate the section called “Introducing Lists” into mock Swedish Chef-speak
[../native_data types/chef.html] (from The Muppets), mock Elmer Fudd-speak [../native data types/-
fudd.html] (from Bugs Bunny cartoons), and mock Middle English[../native_data_types/olde.html] (loosely
based on Chaucer's The Canterbury Tales). If you look at the HTML source of the output pages, you'll see
that all the HTML tags and attributes are untouched, but the text between the tags has been “trandated”
into the mock language. If you look closer, you'll see that, in fact, only the titles and paragraphs were
tranglated; the code listings and screen examples were | eft untouched.

<div class="abstract">

<p>Lists awe Pydon's wowkhowse datatype.
If youw onwy expewience wif wists is awways in

Visuaw Basic ow (God fowbid) de datastowe
in Powewbuiwdew, bwace youwsewf fow
Pydon wists.</p>

</div>

Introducing sgmllib.py

HTML processing is broken into three steps: breaking down the HTML into its constituent pieces, fiddling
with the pieces, and reconstructing the pieces into HTML again. The first step is done by sgml1ib.py, a
part of the standard Python library.

The key to understanding this chapter is to realize that HTML is not just text, it is structured text. The
structure is derived from the more-or-less-hierarchical sequence of start tags and end tags. Usually you
don't work with HTML this way; you work with it textually in atext editor, or visually in aweb browser
or web authoring tool. sgml1lib.py presents HTML structurally.

sgmllib.py containsoneimportant class: SGMLParser. SGMLParser parsesHTML into useful pieces, like
start tags and end tags. As soon as it succeeds in breaking down some data into a useful piece, it callsa
method on itself based on what it found. In order to use the parser, you subclass the SGMLParser class and
override these methods. Thisiswhat | meant when | said that it presents HTML structurally: the structure
of the HTML determines the sequence of method calls and the arguments passed to each method.

SGMLParser parses HTML into 8 kinds of data, and calls a separate method for each of them:

Start tag An HTML tag that starts a block, like <html>, <head>, <body>, Or
<pre>, or a standalone tag like
 or . When it finds a start
tag tagname, SGMLParser will look for amethod called start_tagname
or do_tagname. For instance, when it finds a <pre> tag, it will look
for a start_pre or do_pre method. If found, SGMLParser cdls this
method with a list of the tag's attributes; otherwise, it calls
unknown_starttag with the tag name and list of attributes.

End tag AnHTML tag that ends ablock, like </html>, </head>, </body>, Of
</pre>. When it finds an end tag, SGMLParser will look for a method
called end_tagname. If found, SGMLParser callsthismethod, otherwise
it calls unknown_endtag with the tag name.

124

../native_data_types/chef.html
../native_data_types/fudd.html
../native_data_types/olde.html

Chapter 8

Character reference

Entity reference

Comment

Processing instruction

Declaration

Text data

An escaped character referenced by its decimal or hexadecimal equi-
valent, like . When found, SGMLParser callshandle_charref
with the text of the decimal or hexadecimal character equivalent.

An HTML entity, like ©. When found, SGMLParser calls
handle_entityref with the name of the HTML entity.

An HTML comment, enclosed in <!-- ... -->. When found,
SGMLParser callshandle_comment with the body of the comment.

AnHTML processing instruction, enclosedin<? ... >.Whenfound,
SGMLParser callshandle_pi with the body of the processing instruc-
tion.

An HTML declaration, such as a DOCTYPE, enclosed in <! ... >.
When found, SGMLParser callshandle_decl with the body of the de-
claration.

A block of text. Anything that doesn't fit into the other 7 categories.
When found, SGMLParser calshandle_data with the text.

L anguage evolution: DOCTY PE

Python 2.0 had a bug where SGMLParser would not recognize declarations at al (handle_decl
would never be called), which meant that DOCTYPEs were silently ignored. Thisisfixed in Python

21.

sgmllib.py comes with atest suite to illustrate this. You can run sgmllib.py, passing the name of an
HTML file on the command line, and it will print out the tags and other elements asit parses them. It does
thisby subclassing the SGMLParser classand defining unknown_starttag, unknown_endtag, handle_data
and other methods which simply print their arguments.

Specifying command line argumentsin Windows

In the ActivePython IDE on Windows, you can specify command line arguments in the “Run
script” dialog. Separate multiple arguments with spaces.

125

Chapter 8

Example 8.4. Sampletest of sgmllib.py

Hereis a snippet from the table of contents of the HTML version of this book. Of course your paths may
vary. (If you haven't downloaded the HTML version of the book, you can do so at http://diveintopython.org/.

c:\python23\1ib> type "c:\downloads\diveintopython\html\toc\index.html"

<!DOCTYPE html
PUBLIC "-//W3C//DTD HIML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">

<title>Dive Into Python</title>
<link rel="stylesheet" href="diveintopython.css" type="text/css">

. rest of file omitted for brevity ...
Running this through the test suite of sgm11ib.py yields this output:
c:\python23\1ib> python sgmllib.py "c:\downloads\diveintopython\html\toc\index.html"

data: '\n\n'
start tag: <html lang="en" >

data: '\n !
start tag: <head>
data: '\n !

start tag: <meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" >
data: '\n \n !

start tag: <title>

data: 'Dive Into Python'

end tag: </title>

data: '\n !

start tag: <link rel="stylesheet" href="diveintopython.css" type="text/css" >

data: '\n !

. rest of output omitted for brevity ...
Here's the roadmap for the rest of the chapter:
» Subclass SGMLParser to create classes that extract interesting data out of HTML documents.

» Subclass SGMLParser to create BaseHTMLProcessor, which overrides all 8 handler methods and uses
them to reconstruct the original HTML from the pieces.

* Subclass BaseHTMLProcessor to create Dialectizer, which adds some methods to process specific
HTML tags specially, and overrides the handle_data method to provide a framework for processing
the text blocks between the HTML tags.

* Subclass Dialectizer to create classes that define text processing rules used by
Dialectizer.handle_data

» Writeatest suite that grabs areal web page from http://diveintopython.org/ and processes it.

126

http://diveintopython.org/

Chapter 8

Along the way, you'll also learn about 1ocals, globals, and dictionary-based string formatting.

Extracting data from HTML documents

To extract data from HTML documents, subclass the SGMLParser class and define methods for each tag
or entity you want to capture.

Thefirst step to extracting datafrom an HTML document is getting some HTML. If you have some HTML

lying around on your hard drive, you can use file functions to read it, but the real fun begins when you get
HTML from live web pages.

Example 8.5. Introducing urllib

>>> import urllib O
>>> sock = urllib.urlopen("http://diveintopython.org/") U]
>>> htmlSource = sock.read() []
>>> sock.close() U]
>>> print htmlSource O

<!DOCTYPE html PUBLIC "-//W3C//DTID HIML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd"><html><head>
<meta http-equiv='Content-Type' content='text/html; charset=I1S0-8859-1"'>
<title>Dive Into Python</title>
<link rel='stylesheet' href='diveintopython.css' type='text/css'>
<link rev="'made' href='mailto:mark@diveintopython.org'>
<meta name='keywords' content='Python, Dive Into Python, tutorial, object-oriented,
programming, documentation, book, free'>
<meta name='description' content='a free Python tutorial for experienced programmers'>
</head>
<body bgcolor="'white' text='black' link='#O0000FF' vlink='#840084"' alink='#0000FF'>
<table cellpadding='0' cellspacing='0"' border='0' width="100%">
<tr><td class='header' width='1%' valign="'top'>diveintopython.org</td>
<td width='99%' align='right'><hr size='1l' noshade></td></tr>
<tr><td class='tagline'
colspan="2"'>Python for experienced programmers</td></tr>

[...snip...]

[] Theurllib moduleispart of the standard Python library. It contains functionsfor getting information
about and actually retrieving data from Internet-based URL s (mainly web pages).

[1 Thesmplest useof urllib isto retrieve the entire text of aweb page using the urlopen function.
Opening a URL is similar to opening afile. The return value of urlopen is afile-like object, which
has some of the same methods as a file object.

[] Thesimplest thing to do with thefile-like object returned by urlopen isread, which readsthe entire
HTML of the web page into a single string. The object also supports readlines, which reads the
text line by lineinto alist.

[1 Whenyou'redone with the object, make sure to close it, just like a normal file object.

[] Younow havethe complete HTML of the home page of http://diveintopython.org/ inastring,
and you're ready to parseit.

127

Chapter 8

Example 8.6. Introducing urllister.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

from sgmllib import SGMLParser

class URLLister (SGMLParser):

def reset(self): O
SGMLParser.reset(self)
self.urls = []

def start_a(self, attrs): O
href = [v for k, v in attrs if k=='href'] J [
if href:

self.urls.extend(href)

reset iscaled by the__init__ method of SGMLParser, and it can also be called manually once an
instance of the parser has been created. So if you need to do any initialization, do it in reset, not in
__init__, sothat it will bere-initialized properly when someone re-uses a parser instance.
start_aiscalled by SGMLParser whenever it finds an <a> tag. Thetag may contain an href attribute,
and/or other attributes, like name or title. The attrs parameter is alist of tuples, [(attribute,
value), (attribute, value), ...].Orit may bejustan<a>, avalid (if useless) HTML tag, in
which case attrs would be an empty list.

You can find out whether this <a> tag has an href attribute with asimple multi-variable list compre-
hension.

String comparisons like k=="href"' are always case-sensitive, but that's safe in this case, because
SGMLParser converts attribute names to lowercase while building attrs.

128

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 8

Example 8.7. Using urllister.py

>>> import urllib, urllister
>>> usock = urllib.urlopen("http://diveintopython.org/")
>>> parser = urllister.URLLister()

>>> parser.feed(usock.read()) O
>>> usock.close() 0
>>> parser.close() 0

>>> for url in parser.urls: print url 0
toc/index.html

#download

#languages

toc/index.html

appendix/history.html
download/diveintopython-html-5.0.zip
download/diveintopython-pdf-5.0.zip
download/diveintopython-word-5.0.zip
download/diveintopython-text-5.0.zip
download/diveintopython-html-flat-5.0.zip
download/diveintopython-xml-5.0.zip
download/diveintopython-common-5.0.zip

. rest of output omitted for brevity ...

[] Call the feed method, defined in SGMLParser, to get HTML into the parser.! It takes a string, which
iswhat usock.read() returns.
[] Likefiles, you should close your URL objects as soon as you're done with them.

[] Youshould close your parser object, too, but for a different reason. You've read all the data and fed
it to the parser, but the feed method isn't guaranteed to have actually processed al the HTML you
giveit; it may buffer it, waiting for more. Be sureto call close to flush the buffer and force everything
to be fully parsed.

[] Oncetheparserisclosed, the parsing is complete, and parser.urls containsalist of all the linked
URLs in the HTML document. (Your output may look different, if the download links have been
updated by the time you read this.)

Introducing BaseHTMLProcessor . py

SGMLParser doesn't produce anything by itself. It parses and parses and parses, and it calls a method for
each interesting thing it finds, but the methods don't do anything. SGMLParser isan HTML consumer: it
takesHTML and breaks it down into small, structured pieces. Asyou saw in the previous section, you can
subclass SGMLParser to define classes that catch specific tags and produce useful things, like alist of all
the links on aweb page. Now you'll take this one step further by defining a class that catches everything
SGMLParser throws at it and reconstructs the complete HTML document. In technical terms, this class
will bean HTML producer.

Thetechnical term for aparser like SGMLParser isaconsumer: it consumes HTML and breaksit down. Presumably, the name feed
was chosen to fit into the whole “consumer” motif. Personally, it makes me think of an exhibit in the zoo where there's just a dark
cage with no trees or plants or evidence of life of any kind, but if you stand perfectly still and look really closely you can make out
two beady eyes staring back at you from the far left corner, but you convince yourself that that's just your mind playing tricks on
you, and the only way you can tell that the whole thing isn't just an empty cage is a small innocuous sign on the railing that reads,
“Do not feed the parser.” But maybe that's just me. In any event, it's an interesting mental image.

129

Chapter 8

BaseHTMLProcessor sSubclasses SGMLParser and provides al 8 essential handler methods:
unknown_starttag, unknown_endtag, handle_charref, handle_entityref, handle_comment, handle_pi,
handle_decl, and handle_data.

130

Chapter 8

Example 8.8. I ntroducing BaseHTMLProcessor

class BaseHTMLProcessor (SGMLParser) :

O

def reset(self): O
self.pieces = []
SGMLParser.reset(self)

def unknown_starttag(self, tag, attrs):]
strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

def unknown_endtag(self, tag): O
self.pieces.append("</%(tag)s>" % locals())

def handle_charref(self, ref):]
self.pieces.append("&#%(ref)s;" % locals())

def handle_entityref(self, ref):]
self.pieces.append("&%(ref)s" % locals())
if htmlentitydefs.entitydefs.has_key(ref):
self.pieces.append(";")

def handle_data(self, text):]
self.pieces.append(text)

def handle_comment(self, text):]
self.pieces.append("<!--%(text)s-->" % locals())

def handle_pi(self, text):]
self.pieces.append("<?%(text)s>" % locals())

def handle_decl(self, text):
self.pieces.append("<!%(text)s>" % locals())

reset, called by SGMLParser.__init__, initializesself.pieces asan empty list before calling the
ancestor method. self.pieces isadataattribute which will hold the pieces of the HTML document
you're constructing. Each handler method will reconstruct the HTML that SGMLParser parsed, and
each method will append that string to self.pieces. Notethat self.pieces isalist. You might be
tempted to defineit asastring and just keep appending each pieceto it. That would work, but Python
is much more efficient at dealing with lists.?

Since BaseHTMLProcessor does not define any methods for specific tags (like the start_a method
in URLLister), SGMLParser will call unknown_starttag for every start tag. This method takes the
tag (tag) and thelist of attribute name/value pairs (attrs), reconstructsthe original HTML, and ap-
pendsit to self.pieces. The string formatting here is alittle strange; you'll untangle that (and also
the odd-looking locals function) later in this chapter.

Reconstructing end tagsis much simpler; just take the tag name and wrap it inthe </. . .> brackets.

2The reason Python is better at lists than strings is that lists are mutable but strings are immutable. This means that appending to a
list just adds the element and updates the index. Since strings can not be changed after they are created, codelikes = s + newpiece
will create an entirely new string out of the concatenation of the original and the new piece, then throw away the origina string. This
involves alot of expensive memory management, and the amount of effort involved increases as the string gets longer, so doing s

s + newpiece inaloopisdeadly. In technical terms, appending n itemsto alist is 0(n), while appending n items to a string is

0(n?).

131

Chapter 8

[] When SGMLParser finds a character reference, it calls handle_charref with the bare reference. If
the HTML document contains the reference , ref will be 160. Reconstructing the original
complete character reference just involves wrapping ref in &#. . . ; characters.

[] Entity references are similar to character references, but without the hash mark. Reconstructing the

original entity reference requires wrapping ref in &. . . ; characters. (Actually, as an erudite reader

pointed out to me, it's slightly more complicated than this. Only certain standard HTML entites end
in asemicolon; other similar-looking entitiesdo not. Luckily for us, the set of standard HTML entities
isdefined in adictionary in aPython module called htmlentitydefs. Hencethe extraif statement.)

Blocks of text are simply appended to self.pieces unaltered.

HTML comments are wrapped in <!--. . .--> characters.
Processing instructions are wrapped in <?. . .> characters.

OoOod

Processng HTML with embedded script

TheHTML specification requiresthat all non-HTML (like client-side JavaScript) must be enclosed
in HTML comments, but not al web pages do this properly (and al modern web browsers are
forgiving if they don't). BaseHTMLProcessor is not forgiving; if script isimproperly embedded,
it will be parsed asif it were HTML. For instance, if the script containsless-than and equals signs,
SGMLParser may incorrectly think that it hasfound tags and attributes. SGMLParser aways converts
tags and attribute namesto lowercase, which may break the script, and BaseHTMLProcessor always
encloses attribute valuesin double quotes (even if the original HTML document used single quotes
or no quotes), which will certainly break the script. Always protect your client-side script within
HTML comments.

Example 8.9. BaseHTMLProcessor output

def output(self): O
"""Return processed HIML as a single string
return "".join(self.pieces) 0

o

[] ThisistheonemethodinBaseHTMLProcessor thatisnever called by the ancestor SGMLParser. Since
the other handler methods store their reconstructed HTML in self.pieces, thisfunction is needed
tojoin all those piecesinto onestring. As noted before, Pythonisgreat at listsand mediocre at strings,
so you only create the complete string when somebody explicitly asks for it.

[] If you prefer, you could use the join method of the string module instead:
string.join(self.pieces, "")

Further reading

e W3C [http://www.w3.0rg/] discusses character and entity references [http://www.w3.org/TR/-
REC-html40/charset.html#entities].

* Python Library Reference [http://www.python.org/doc/current/lib/] confirms your suspicions that the
htmlentitydefs module [http://www.python.org/doc/current/lib/modul e-htmlentitydefs.html] is exactly
what it sounds like.

locals and globals

Let's digress from HTML processing for a minute and talk about how Python handles variables. Python
has two built-in functions, locals and globals, which provide dictionary-based access to local and
global variables.

132

http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html
http://www.python.org/doc/current/lib/module-htmlentitydefs.html

Chapter 8

Remember 1locals?You first saw it here:

def unknown_starttag(self, tag, attrs):
strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

No, wait, you can't learn about locals yet. First, you need to learn about namespaces. Thisis dry stuff,
but it'simportant, so pay attention.

Python uses what are called namespaces to keep track of variables. A namespace is just like a dictionary
where the keys are names of variables and the dictionary values are the values of those variables. In fact,
you can access a hamespace as a Python dictionary, as you'll seein aminute.

At any particular point in a Python program, there are several namespaces available. Each function hasits
own namespace, caled the local namespace, which keeps track of the function's variables, including
function arguments and locally defined variables. Each module has its own namespace, called the global
namespace, which keeps track of the module's variables, including functions, classes, any other imported
modules, and module-level variables and constants. And there is the built-in namespace, accessible from
any module, which holds built-in functions and exceptions.

When aline of code asksfor the value of avariablex, Python will search for that variablein all the available
namespaces, in order:

1. local namespace - specific to the current function or class method. If the function defines a local
variable x, or has an argument x, Python will use this and stop searching.

2. globa namespace - specific to the current module. If the module has defined a variable, function, or
class called x, Python will use that and stop searching.

3. built-in namespace - global to all modules. As alast resort, Python will assume that x is the name of
built-in function or variable.

If Python doesn't find x in any of these namespaces, it gives up and raises a NameError with the message
Thereisno variable named X', which you saw back in Example 3.18, “ Referencing an Unbound Variable”,
but you didn't appreciate how much work Python was doing before giving you that error.

L anguage evolution: nested scopes

Python 2.2 introduced a subtle but important change that affects the namespace search order:
nested scopes. In versions of Python prior to 2.2, when you reference a variable within a nested
function or 1ambda function, Python will search for that variablein the current (nested or 1ambda)
function's namespace, then in the module's namespace. Python 2.2 will search for the variablein
the current (nested or 1ambda) function's namespace, then in the parent function's namespace,
then in the modul €'s namespace. Python 2.1 can work either way; by default, it works like Python
2.0, but you can add the following line of code at the top of your module to make your module
work like Python 2.2:

from __future__ import nested_scopes

Areyou confused yet? Don't despair! Thisisreally cool, | promise. Like many thingsin Python, namespaces
are directly accessible at run-time. How? Well, the local nhamespace is accessible via the built-in 1locals
function, and the global (module level) namespace is accessible via the built-in globals function.

133

Chapter 8

Example 8.10. Introducing locals

>>> def foo(arg): [
x =1
print locals()

>>> f00(7) O
{'arg': 7, 'x': 1}

>>> foo('bar') O
{'arg': 'bar', 'x': 1}

[] The function foo has two variables in its local namespace: arg, whose value is passed in to the
function, and x, which is defined within the function.

[] locals returns adictionary of name/value pairs. The keys of this dictionary are the names of the
variables as strings; the values of the dictionary are the actual values of the variables. So calling foo
with 7 prints the dictionary containing the function'stwo local variables: arg (7) and x (1).

[] Remember, Python has dynamic typing, so you could just as easily pass a string in for arg; the
function (and the call to 1ocals) would still work just as well. 1ocals works with all variables of

all datatypes.

What 1locals doesfor the local (function) namespace, globals does for the global (modul€e) namespace.
globals is more exciting, though, because a module's namespace is more exciting.® Not only does the
modul €'s namespace include module-level variables and constants, it includes all the functions and classes
defined in the module. Plus, it includes anything that was imported into the module.

Remember the difference between from module import and import module?With import module, the
moduleitself isimported, but it retainsits own namespace, which iswhy you need to use the module name
to access any of itsfunctions or attributes: module. function. But with from module import, you're ac-
tually importing specific functions and attributes from another module into your own namespace, which
iswhy you accessthem directly without referencing the original modulethey camefrom. Withtheglobals

function, you can actually see this happen.

3| don't get out much.

134

Chapter 8

Example 8.11. Introducing globals

L ook at the following block of code at the bottom of BaseHTMLProcessor .py:

if __name_ == "_main_ ":
for k, v in globals().items(): [l
print k, "=", v
[] Justsoyou don't get intimidated, remember that you've seen all this before. The globals function
returns a dictionary, and you're iterating through the dictionary using the items method and multi-
variable assignment. The only thing new hereisthe globals function.

Now running the script from the command line gives this output (note that your output may be slightly
different, depending on your platform and where you installed Python):

c:\docbook\dip\py> python BaseHIMLProcessor.py

SGMLParser = sgmllib.SGMLParser N
htmlentitydefs = <module 'htmlentitydefs' from 'C:\Python23\lib\htmlentitydefs.py'>
il
BaseHIMLProcessor = __main__.BaseHTMLProcessor L]
__name__ = __main__ O
. rest of output omitted for brevity...

[] SGMLParser wasimported from sgmllib, using from module import. That means that it wasim-
ported directly into the modul €'s namespace, and hereit is.

[] Contrast this with htmlentitydefs, which was imported using import. That means that the
htmlentitydefs module itself is in the namespace, but the entitydefs variable defined within
htmlentitydefs isnot.

[] Thismodule only defines one class, BaseHTMLProcessor, and here it is. Note that the value here is
the classitsalf, not a specific instance of the class.

[] Remembertheif _ name__ trick?When running amodule (as opposed toimporting it from another
module), the built-in __name__ attribute is a special value, __main__. Since you ran this module as
ascript from the command line, __name__ is__main__, whichiswhy thelittle test code to print the
globals got executed.

Accessing variables dynamically

Using the locals and globals functions, you can get the value of arbitrary variablesdynamically,
providing the variable name as a string. This mirrors the functionality of the getattr function,
which alows you to access arbitrary functions dynamically by providing the function name as a
string.

There is one other important difference between the 1ocals and globals functions, which you should
learn now before it bites you. It will bite you anyway, but at least then you'll remember learning it.

135

Chapter 8

Example 8.12. locals isread-only, globals is not

def foo(arg):
x =1
print locals() O
localsO)["x"] = 2 [J
O

print "x=",x

z =7

print "z=",z

foo(3)

globals()["z"] = 8 0
print "z=",z O

[] Since foo iscalled with 3, thiswill print {'arg': 3, 'x': 1}. Thisshould not be a surprise.

[] localsisafunction that returnsadictionary, and here you are setting avalue in that dictionary. You
might think that this would change the value of the local variable x to 2, but it doesn't. 1ocals does
not actually return the local namespace, it returns a copy. So changing it does nothing to the value
of the variables in the local namespace.

[] Thisprintsx= 1, notx= 2.

[] After being burned by locals, you might think that this wouldn't change the value of z, but it does.
Dueto internal differencesin how Python isimplemented (which I'd rather not go into, since | don't
fully understand them myself), globals returns the actual global namespace, not a copy: the exact
opposite behavior of locals. So any changes to the dictionary returned by globals directly affect
your global variables.

[] Thisprintsz= 8, notz= 7.

Dictionary-based string formatting

Why did you learn about 1ocals and globals? So you can learn about dictionary-based string formatting.
Asyou recall, regular string formatting provides an easy way to insert valuesinto strings. Values are listed
in atuple and inserted in order into the string in place of each formatting marker. While thisis efficient,
it is not aways the easiest code to read, especialy when multiple values are being inserted. You can't
simply scan through the string in one pass and understand what the result will be; you're constantly
switching between reading the string and reading the tuple of values.

Thereis an aternative form of string formatting that uses dictionaries instead of tuples of values.

136

Chapter 8

Example 8.13. Introducing dictionary-based string formatting

>>> params = {"server":"mpilgrim", "database":'"master", "uid":"sa", "pwd":'secret"}
>>> "%(pwd)s" % params U
'secret’

>>> "%(pwd)s is not a good password for %(uid)s" % params H
'secret is not a good password for sa'

>>> "%(database)s of mind, %(database)s of body" % params [
'master of mind, master of body'

O

U
U

Instead of a tuple of explicit values, this form of string formatting uses a dictionary, params. And
instead of asimple %s marker in the string, the marker contains aname in parentheses. Thisnameis
used as a key in the params dictionary and subsitutes the corresponding value, secret, in place of
the %(pwd) s marker.

Dictionary-based string formatting works with any number of named keys. Each key must exist in
the given dictionary, or the formatting will fail with a KeyError.

You can even specify the same key twice; each occurrence will be replaced with the same value.

So why would you use dictionary-based string formatting? Well, it does seem like overkill to set up a
dictionary of keys and values simply to do string formatting in the next line; it's really most useful when
you happen to have a dictionary of meaningful keys and values already. Like locals.

Example 8.14. Dictionary-based string formatting in BaseHTMLProcessor . py

def handle_comment(self, text):
self.pieces.append("<!--%(text)s-—>" % locals()) O

Using the built-in 1locals function is the most common use of dictionary-based string formatting. It
means that you can use the names of local variableswithin your string (in this case, text, which was
passed to the class method as an argument) and each named variable will be replaced by itsvalue. If
text is 'Begin page footer',thestringformatting "<!--%(text)s-->" % locals() will resolve
tothestring '<!--Begin page footer-->'.

137

Chapter 8

Example 8.15. More dictionary-based string formatting

def unknown_starttag(self, tag, attrs):
strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs]) UJ
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

[1 When this method is called, attrs isalist of key/value tuples, just like the items of a dictionary,
which means you can use multi-variable assignment to iterate through it. This should be a familiar
pattern by now, but there's alot going on here, so let's break it down:

a Supposeattrsis[('href', 'index.html'), ('title', 'Go to home page')].

b. In the first round of the list comprehension, key will get 'href', and value will get
'index.html’.

c. Thestring formatting ' %s="%s"' % (key, value) will resolveto ' href="index.html"".
This string becomes the first element of the list comprehension's return value.

d. Inthesecond round, key will get 'title', and value will get 'Go to home page’.
e. Thestring formatting will resolveto ' title="Go to home page"'.

f. Thelist comprehension returnsalist of these two resolved strings, and strattrs will join both
elements of thislist together to form ' href="index.html" title="Go to home page"'.

[] Now, using dictionary-based string formatting, you insert the value of tag and strattrs into astring.
Soif tagis'a', thefina result would be '"',
and that iswhat gets appended to self.pieces.

Performance issues with locals

Using dictionary-based string formatting with locals is a convenient way of making complex
string formatting expressions more readable, but it comeswith aprice. Thereisadight performance
hit in making the call to 1locals, since locals builds a copy of the local namespace.

Quoting attribute values

Abstract

A common question on comp.lang.python [http://groups.google.com/groups?group=comp.lang.python] is
“1 have a bunch of HTML documents with unquoted attribute values, and | want to properly quote them
all. How can | do this?'* (Thisis generally precipitated by a project manager who has found the HTML-
is-a-standard religion joining alarge project and proclaiming that all pages must validate against an HTML
validator. Unquoted attribute values are acommon violation of the HTML standard.) Whatever the reason,
unquoted attribute values are easy to fix by feeding HTML through BaseHTMLProcessor.

BaseHTMLProcessor consumes HTML (since it's descended from SGMLParser) and produces equivalent
HTML, but the HTML output isnot identical to theinput. Tagsand attribute nameswill end up in lowercase,

4All right, it's not that common a guestion. It's not up there with “What editor should | use to write Python code?’ (answer: Emacs)
or “Is Python better or worse than Perl?” (answer: “ Perl isworse than Python because people wanted it worse” -Larry Wall, 10/14/1998)
But questions about HTML processing pop up in one form or another about once a month, and among those questions, thisis a
popular one.

138

http://groups.google.com/groups?group=comp.lang.python

Chapter 8

even if they started in uppercase or mixed case, and attribute values will be enclosed in double quotes,
even if they started in single quotes or with no quotes at all. It isthislast side effect that you can take ad-
vantage of .

Example 8.16. Quoting attribute values

>>> htmlSource = """ O
<html>
<head>
<title>Test page</title>
</head>
<body>

Home</1i>
Table of contents
Revision history</1li>
</body>
</html>
>>> from BaseHTMLProcessor import BaseHTMLProcessor
>>> parser = BaseHTIMLProcessor()
>>> parser.feed(htmlSource) [l
>>> print parser.output() O
<html>
<head>
<title>Test page</title>
</head>
<body>

Home</1i>
Table of contents</1i>
Revision history</1i>
</body>
</html>

[] Note that the attribute values of the href attributes in the <a> tags are not properly quoted. (Also
note that you're using triple quotes for something other than adoc string. And directly inthe IDE,
no less. They're very useful.)

[] Feedtheparser.

[] Using the output function defined in BaseHIMLProcessor, you get the output as a single string,
complete with quoted attribute values. While this may seem anti-climactic, think about how much
has actually happened here: SGMLParser parsed the entire HTML document, breaking it down into
tags, refs, data, and so forth; BaseHTMLProcessor Used those el ementsto reconstruct piecesof HTML
(which arestill storedinparser.pieces, if youwant to seethem); finally, you called parser. output,
which joined al the pieces of HTML into one string.

Introducing dialect.py

Dialectizer isasimple (and silly) descendant of BaseHIMLProcessor. It runs blocks of text through a
series of substitutions, but it makes sure that anything within a <pre>. . .</pre> block passes through
unaltered.

139

Chapter 8

To handle the <pre> blocks, you define two methodsin Dialectizer: start_pre and end_pre.

Example 8.17. Handling specific tags

I) O R

def start_pre(self, attrs):]
self.verbatim += 1 [l
self.unknown_starttag("pre", attrs)]

def end_pre(self): [l
self.unknown_endtag("pre") O
self.verbatim -= 1 O

start_pre is caled every time SGMLParser finds a <pre> tag in the HTML source. (In a minute,
you'll see exactly how this happens.) The method takes a single parameter, attrs, which contains
theattributes of thetag (if any). attrs isalist of key/valuetuples, just likeunknown_starttag takes.
In the reset method, you initialize a data attribute that serves as a counter for <pre> tags. Every
timeyou hit a<pre> tag, you increment the counter; every timeyou hit a</pre> tag, you'll decrement
the counter. (You could just use this as a flag and set it to 1 and reset it to 0, but it's just as easy to
do it thisway, and this handles the odd (but possible) case of nested <pre> tags.) In aminute, you'll
see how this counter is put to good use.

That'sit, that's the only special processing you do for <pre> tags. Now you passthe list of attributes
along to unknown_starttag So it can do the default processing.

end_pre iscalled every time SGMLParser findsa</pre> tag. Since end tags can not contain attributes,
the method takes no parameters.

First, you want to do the default processing, just like any other end tag.

Second, you decrement your counter to signal that this <pre> block has been closed.

At this point, it'sworth digging alittle further into SGMLParser. |'ve claimed repeatedly (and you've taken
it on faith so far) that SGMLParser looks for and calls specific methods for each tag, if they exist. For in-
stance, you just saw the definition of start_pre and end_pre to handle <pre> and </pre>. But how does
this happen? Well, it's not magic, it's just good Python coding.

140

Chapter 8

Example 8.18. SGMLParser

def finish_starttag(self, tag, attrs):
try:
method = getattr(self, 'start_' + tag)
except AttributeError:
try:
method = getattr(self, 'do_' + tag)
except AttributeError:
self.unknown_starttag(tag, attrs)
return -1
else:
self.handle_starttag(tag, method, attrs) O
return 0

O 0o oo o

else:
self.stack.append(tag)
self.handle_starttag(tag, method, attrs)
return 1 O

def handle_starttag(self, tag, method, attrs):
method(attrs) O

[] Atthispoint, SGMLParser has aready found a start tag and parsed the attribute list. The only thing
|eft to do is figure out whether there is a specific handler method for this tag, or whether you should
fall back on the default method (unknown_starttag).

[] The“magic” of SGMLParser is nothing more than your old friend, getattr. What you may not have
realized beforeisthat getattr will find methods defined in descendants of an object as well asthe
object itself. Here the object is self, the current instance. So if tag is 'pre', thiscall to getattr
will look for astart_pre method on the current instance, which is an instance of theDialectizer
class.

[] eetattr raisesan AttributeError if the method it's looking for doesn't exist in the object (or any of
its descendants), but that's okay, because you wrapped the call to getattr insideatry. . .except
block and explicitly caught the AttributeError.

[] Sinceyoudidn't find astart_xxx method, you'll also look for a do_xxx method before giving up.
Thisaternate naming scheme is generally used for standalonetags, like
, which have no corres-
ponding end tag. But you can use either naming scheme; as you can see, SGMLParser tries both for
every tag. (You shouldn't define both a start_xxx and do_xxx handler method for the same tag,
though; only the start_xxx method will get called.)

[] Another AttributeError, which means that the call to getattr failed with do_xxx. Since you found
neither a start_xxx nor a do_xxx method for this tag, you catch the exception and fall back on the
default method, unknown_starttag.

[] Remember, try...except blockscan have an else clause, whichiscalled if no exception israised
during the try. . .except block. Logicaly, that means that you did find a do_xxx method for this
tag, so you're going to call it.

[] By the way, don't worry about these different return values; in theory they mean something, but
they're never actually used. Don't worry about the self.stack.append(tag) either; SGMLParser
keeps track internally of whether your start tags are balanced by appropriate end tags, but it doesn't
do anything with this information either. In theory, you could use this module to validate that your
tags were fully balanced, but it's probably not worth it, and it's beyond the scope of this chapter. You
have better things to worry about right now.

[] start_xxxand do_xxx methodsare not called directly; the tag, method, and attributes are passed to
thisfunction, handle_starttag, So that descendants can overrideit and changethe way all start tags

141

Chapter 8

are dispatched. You don't need that level of control, so you just |et this method do itsthing, whichis
tocall themethod (start_xxx or do_xxx) withthelist of attributes. Remember, method isafunction,
returned from getattr, and functions are objects. (I know you're getting tired of hearing it, and |
promise I'll stop saying it as soon as| run out of ways to useit to my advantage.) Here, the function
object is passed into this dispatch method as an argument, and this method turns around and callsthe
function. At this point, you don't need to know what the function is, what it's named, or where it's
defined; the only thing you need to know about the function is that it is called with one argument,
attrs.

Now back to our regularly scheduled program: Dialectizer. When you left, you were in the process of
defining specific handler methods for <pre> and </pre> tags. There's only one thing left to do, and that
isto processtext blockswith the pre-defined substitutions. For that, you need to overridethehandle_data
method.

Example 8.19. Overriding the handle_data method

def handle_data(self, text): U]
self.pieces.append(self.verbatim and text or self.process(text)) U

[] handle_data iscalled with only one argument, the text to process.

[] Intheancestor BaseHTMLProcessor, thehandle_data method simply appended the text to the output
buffer, self.pieces. Here thelogic is only slightly more complicated. If you're in the middle of a
<pre>...</pre> block, self.verbatim will be some value greater than 0, and you want to put the
text in the output buffer unaltered. Otherwise, you will call a separate method to process the substitu-
tions, then put the result of that into the output buffer. In Python, thisis a one-liner, using the and-or
trick.

You're close to completely understanding Dialectizer. The only missing link is the nature of the text
substitutions themselves. If you know any Perl, you know that when complex text substitutions are required,
the only real solution is regular expressions. The classes later in dialect.py define a series of regular
expressions that operate on the text between the HTML tags. But you just had a whole chapter on regular
expressions. You don't really want to slog through regular expressions again, do you? God knows | don't.
| think you've learned enough for one chapter.

Putting it all together

It'stime to put everything you've learned so far to good use. | hope you were paying attention.

142

Chapter 8

Example 8.20. The translate function, part 1

def translate(url, dialectName="chef"): [
import urllib O
sock = urllib.urlopen(url) O
htmlSource = sock.read()
sock.close()

[] Thetranslate function hasan optional argument dialectName, whichisastring that specifies the
dialect you'll be using. You'll see how thisis used in aminute.

[] Hey, wait a minute, there's an import statement in this function! That's perfectly legal in Python.
You're used to seeing import statements at the top of a program, which means that the imported
module is available anywhere in the program. But you can aso import modules within a function,
which means that the imported module is only available within the function. If you have a module
that is only ever used in one function, thisis an easy way to make your code more modular. (When
you find that your weekend hack has turned into an 800-line work of art and decide to split it up into
a dozen reusable modules, you'll appreciate this.)

[1 Now you get the source of the given URL.

Example 8.21. The translate function, part 2: curiouser and curiouser

parserName = "%sDialectizer" % dialectName.capitalize() [
parserClass = globals()[parserName] O
parser = parserClass() O

[] capitalizeisastringmethodyou haven't seen before; it simply capitalizesthefirst letter of astring
and forces everything else to lowercase. Combined with some string formatting, you've taken the
name of a dialect and transformed it into the name of the corresponding Dialectizer class. If
dialectName isthe string 'chef', parserName will bethe string ' ChefDialectizer'.

[1 You have the name of a class as a string (parserName), and you have the global namespace as a
dictionary (globals()). Combined, you can get areference to the class which the string names. (Re-
member, classes are objects, and they can be assigned to variables just like any other object.) If
parserName isthe string 'ChefDialectizer', parserClass will bethe class ChefDialectizer.

[] Finaly, you have a class object (parserClass), and you want an instance of the class. Well, you
already know how to do that: call the class like a function. The fact that the classis being stored in
alocal variable makes absolutely no difference; you just call the local variable like a function, and
out pops an instance of the class. If parserClass isthe class ChefDialectizer, parser will bean
instance of the class ChefDialectizer.

Why bother? After all, there are only 3 Dialectizer classes; why not just use a case statement? (Well,
there'sno case statement in Python, but why not just use a series of if statements?) One reason: extensib-
ility. The translate function has absolutely no ideahow many Dialectizer classes you've defined. Imagine
if you defined a new FooDialectizer tomorrow; translate would work by passing 'foo' as the
dialectName.

Even better, imagine putting FooDialectizer in a separate module, and importing it with from module
import. You've already seen that this includes it in globals(), S0 translate would still work without
modification, even though FooDialectizer wasin a separate file.

Now imagine that the name of the dialect is coming from somewhere outside the program, maybe from a
database or from a user-inputted value on aform. You can use any number of server-side Python scripting

143

Chapter 8

architecturesto dynamically generate web pages; this function could take a URL and a dialect name (both
strings) in the query string of aweb page request, and output the “translated” web page.

Finally, imagine aDialectizer framework with a plug-in architecture. You could put each Dialectizer
classin aseparatefile, leaving only the translate functionin dialect . py. Assuming aconsistent naming
scheme, the translate function could dynamic import the appropiate class from the appropriate file,
given nothing but the dialect name. (You haven't seen dynamic importing yet, but | promiseto cover itin
alater chapter.) To add a new dialect, you would simply add an appropriately-named file in the plug-ins
directory (like foodialect .py which containsthe FooDialectizer class). Callingthe translate function
with the dialect name ' foo' would find the module foodialect.py, import the class FooDialectizer,
and away you go.

Example 8.22. The translate function, part 3

parser.feed(htmlSource) O
parser.close()]
return parser.output()]

[] Afterall that imagining, thisis going to seem pretty boring, but the feed function is what does the
entire transformation. You had the entire HTML source in a single string, so you only had to call
feed once. However, you can call feed as often as you want, and the parser will just keep parsing.
So if you were worried about memory usage (or you knew you were going to be dealing with very
large HTML pages), you could set this up in aloop, where you read a few bytes of HTML and fed
it to the parser. The result would be the same.

[] Because feed maintains an internal buffer, you should always call the parser's close method when
you're done (even if you fed it all at once, like you did). Otherwise you may find that your output is
missing the last few bytes.

[] Remember, output is the function you defined on BaseHTMLProcessor that joins all the pieces of
output you've buffered and returns them in a single string.

And just like that, you've “translated” aweb page, given nothing but a URL and the name of adialect.

Further reading

* You thought | was kidding about the server-side scripting idea. So did I, until | found this web-based
dialectizer [http://rinkworks.com/dialect/]. Unfortunately, source code does not appear to be available.

Summary

Python provides you with a powerful tool, sgm11ib.py, to manipulate HTML by turning its structure into
an object model. You can use thistool in many different ways.

e parsing the HTML looking for something specific
» aggregating the results, like the URL lister
» altering the structure along the way, like the attribute quoter

» transforming the HTML into something el se by manipulating the text while leaving the tags alone, like
theDialectizer

Along with these examples, you should be comfortable doing all of the following things:

144

http://rinkworks.com/dialect/
http://rinkworks.com/dialect/

Chapter 8

e Using locals() and globals() to access namespaces

» Formatting strings using dictionary-based substitutions

145

Diving In
These next two chapters are about XML processing in Python. It would be helpful if you already knew
what an XML document looks like, that it's made up of structured tags to form a hierarchy of elements,
and so on. If this doesn't make sense to you, there are many XML tutorials [http://directory.google.com/-

Top/Computers/Data_Formats/Markup_L anguages/XML/Resources/FAQs,_Help,_and_Tutorials] that
can explain the basics.

If you're not particularly interested in XML, you should still read these chapters, which cover important
topics like Python packages, Unicode, command line arguments, and how to use getattr for method dis-
patching.

Being a philosophy major is not required, although if you have ever had the misfortune of being subjected
to the writings of Immanuel Kant, you will appreciate the example program alot more than if you majored
in something useful, like computer science.

There are two basic ways to work with XML. Oneiscalled SAX (“Simple APl for XML"), and it works
by reading the XML a little bit at a time and calling a method for each element it finds. (If you read
Chapter 8, HTML Processing, this should sound familiar, because that's how the sgm11ib module works.)
Theother iscalled DOM (“Document Object Model"), and it works by reading in the entire XML document
at once and creating an internal representation of it using native Python classes linked in a tree structure.
Python has standard modulesfor both kinds of parsing, but this chapter will only deal with using the DOM.

The following is a complete Python program which generates pseudo-random output based on a context-
free grammar defined in an XML format. Don't worry yet if you don't understand what that means; you'll
examine both the program's input and its output in more depth throughout these next two chapters.

146

http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/

Chapter 9

Example 9.1. kgp.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

"""Kant Generator for Python
Generates mock philosophy based on a context-free grammar

Usage: python kgp.py [options] [source]

Options:
-g ..., ——grammar=... use specified grammar file or URL
-h, --help show this help
-d show debugging information while parsing
Examples:
kgp.py generates several paragraphs of Kantian philosophy

kgp.py -g husserl.xml generates several paragraphs of Husserl
kpg.py "<xref id='paragraph'/>" generates a paragraph of Kant
kgp.py template.xml reads from template.xml to decide what to generate
from xml.dom import minidom
import random
import toolbox
import sys
import getopt

_debug = 0
class NoSourceError(Exception): pass

class KantGenerator:
"""generates mock philosophy based on a context-free grammar"""
def __init__ (self, grammar, source=None):
self.loadGrammar (grammar)
self.loadSource(source and source or self.getDefaultSource())
self.refresh()

def _load(self, source):
"""load XML input source, return parsed XML document

a URL of a remote XML file ("http://diveintopython.org/kant.xml")

- a filename of a local XML file ("~/diveintopython/common/py/kant.xml")
standard input ("-")

- the actual XML document, as a string

sock = toolbox.openAnything(source)

xmldoc = minidom.parse(sock).documentElement
sock.close()

return xmldoc

147

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 9

def

def

def

def

def

def

def

loadGrammar (self, grammar):

"""load context-free grammar

self.grammar = self._load(grammar)

self.refs = {}

for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

loadSource(self, source):
|ll|l|10ad SOurCe"""
self.source = self._load(source)

getDefaultSource(self):
"""ouess default source of the current grammar

The default source will be one of the <ref>s that is not
cross-referenced. This sounds complicated but it's not.
Example: The default source for kant.xml is
"<xref id='section'/>", because 'section' is the one <ref>
that is not <xref>'d anywhere in the grammar.
In most grammars, the default source will produce the
longest (and most interesting) output.
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):
xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
if not standaloneXrefs:
raise NoSourceError, "can't guess source, and no source specified"
return '<xref id="%s"/>' % random.choice(standaloneXrefs)

reset(self):
"""reset parser
self.pieces = []
self.capitalizeNextWord = 0

refresh(self):
"""reset output buffer, re-parse entire source file, and return output

Since parsing involves a good deal of randomness, this is an

easy way to get new output without having to reload a grammar file
each time.

self.reset()

self.parse(self.source)

return self.output()

output(self):
"""output generated text
return "".join(self.pieces)

randomChildElement (self, node):
"""choose a random child element of a node

148

Chapter 9

def

def

def

def

This is a utility method used by do_xref and do_choice.
choices = [e for e in node.childNodes
if e.nodeType == e.ELEMENT_NODE]

chosen = random.choice(choices)
if _debug:

sys.stderr.write('%s available choices: %s\n' % \

(len(choices), [e.toxml() for e in choices]))

sys.stderr.write('Chosen: %s\n' % chosen.toxml())

return chosen

parse(self, node):
"""parse a single XML node

A parsed XML document (from minidom.parse) is a tree of nodes

of various types. Each node is represented by an instance of the
corresponding Python class (Element for a tag, Text for

text data, Document for the top-level document). The following
statement constructs the name of a class method based on the type
of node we're parsing ("parse_Element" for an Element node,
"parse_Text" for a Text node, etc.) and then calls the method.

parseMethod = getattr(self, "parse_%s" % node.__class__._ name__)
parseMethod(node)
parse_Document (self, node):

parse the document node

The document node by itself isn't interesting (to us), but
its only child, node.documentElement, is: it's the root node
of the grammar.

self.parse(node.documentElement)

parse_Text(self, node):
"""parse a text node

The text of a text node is usually added to the output buffer
verbatim. The one exception is that <p class='sentence'> sets
a flag to capitalize the first letter of the next word. If
that flag is set, we capitalize the text and reset the flag.
text = node.data
if self.capitalizeNextWord:
self.pieces.append(text[0].upper())
self.pieces.append(text[1:])
self.capitalizeNextWord = 0
else:
self.pieces.append(text)

parse_Element(self, node):
"""parse an element

An XML element corresponds to an actual tag in the source:

149

Chapter 9

<xref id='...'>, <p chance='...'>, <choice>, etc.

Each element type is handled in its own method. Like we did in
parse(), we construct a method name based on the name of the
element ("do_xref" for an <xref> tag, etc.) and

call the method.

handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

def parse_Comment(self, node):
"""parse a comment

The grammar can contain XML comments, but we ignore them

pass

def do_xref(self, node):
"""handle <xref id='...'> tag

An <xref id='...'> tag is a cross-reference to a <ref id='...'>
tag. <xref id='sentence'/> evaluates to a randomly chosen child of
<ref id='sentence'>.

id = node.attributes["id"].value

self.parse(self.randomChildElement (self.refs[id]))

def do_p(self, node):
"""handle <p> tag

The <p> tag is the core of the grammar. It can contain almost
anything: freeform text, <choice> tags, <xref> tags, even other
<p> tags. If a "class='sentence'" attribute is found, a flag
is set and the next word will be capitalized. If a "chance='X""
attribute is found, there is an X% chance that the tag will be
evaluated (and therefore a (100-X)% chance that it will be
completely ignored)
keys = node.attributes.keys()
if "class" in keys:
if node.attributes["class"].value == "sentence":
self.capitalizeNextWord = 1
if "chance" in keys:
chance = int(node.attributes["chance"].value)
doit = (chance > random.randrange(100))
else:
doit
if doit:
for child in node.childNodes: self.parse(child)

1

def do_choice(self, node):
"""handle <choice> tag

A <choice> tag contains one or more <p> tags. One <p> tag
is chosen at random and evaluated; the rest are ignored.

150

Chapter 9

self.parse(self.randomChildElement (node))

def usage():
print __doc__

def main(argv):
grammar = "kant.xml"
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
except getopt.GetoptError:
usage()
sys.exit(2)
for opt, arg in opts:

if opt in ("-h", "--help"):
usage()
sys.exit()
elif opt == '-d':
global _debug
_debug = 1
elif opt in ("-g", "--grammar"):

grammar = arg

source = .join(args)

k = KantGenerator(grammar, source)
print k.output()

if __name__ == "_main__":
main(sys.argv[1:])

151

Chapter 9

Example 9.2. toolbox.py

"""Miscellaneous utility functions

def openAnything(source):
"""URI, filename, or string --> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you're done with it.

Examples:
>>> from xml.dom import minidom
>>> sock = openAnything("http://localhost/kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("c:\\inetpub\\wwwroot\\kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("<ref
id="conjunction'><text>and</text><text>or</text></ref>")
>>> doc = minidom.parse(sock)
>>> sock.close()
if hasattr(source, "read"):
return source
if source == '-':
import sys
return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)
import urllib
try:
return urllib.urlopen(source)
except (IOError, OSError):
pass

try to open with native open function (if source is pathname)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
import StringIO
return StringIO.StringIO(str(source))

Run the program kgp . py by itself, and it will parse the default XML -based grammar, in kant.xml, and
print several paragraphs worth of philosophy in the style of Immanuel Kant.

152

Chapter 9

Example 9.3. Sample output of kgp.py

[vou@localhost kgp]$ python kgp.py

As is shown in the writings of Hume, our a priori concepts, in
reference to ends, abstract from all content of knowledge; in the study
of space, the discipline of human reason, in accordance with the
principles of philosophy, is the clue to the discovery of the
Transcendental Deduction. The transcendental aesthetic, in all
theoretical sciences, occupies part of the sphere of human reason
concerning the existence of our ideas in general; still, the
never-ending regress in the series of empirical conditions constitutes
the whole content for the transcendental unity of apperception. What
we have alone been able to show is that, even as this relates to the
architectonic of human reason, the Ideal may not contradict itself, but
it is still possible that it may be in contradictions with the
employment of the pure employment of our hypothetical judgements, but
natural causes (and I assert that this is the case) prove the validity
of the discipline of pure reason. As we have already seen, time (and
it is obvious that this is true) proves the validity of time, and the
architectonic of human reason, in the full sense of these terms,
abstracts from all content of knowledge. I assert, in the case of the
discipline of practical reason, that the Antinomies are just as
necessary as natural causes, since knowledge of the phenomena is a
posteriori.

The discipline of human reason, as I have elsewhere shown, is by
its very nature contradictory, but our ideas exclude the possibility of
the Antinomies. We can deduce that, on the contrary, the pure
employment of philosophy, on the contrary, is by its very nature
contradictory, but our sense perceptions are a representation of, in
the case of space, metaphysics. The thing in itself is a
representation of philosophy. Applied logic is the clue to the
discovery of natural causes. However, what we have alone been able to
show is that our ideas, in other words, should only be used as a canon
for the Ideal, because of our necessary ignorance of the conditions.

[...snip...]

Thisis, of course, complete gibberish. Well, not complete gibberish. It is syntactically and grammatically
correct (although very verbose -- Kant wasn't what you would call a get-to-the-point kind of guy). Some
of it may actually be true (or at least the sort of thing that Kant would have agreed with), some of it is
blatantly false, and most of it is simply incoherent. But all of it isin the style of Immanuel Kant.

Let me repeat that thisis much, much funnier if you are now or have ever been a philosophy major.

The interesting thing about this program is that there is nothing Kant-specific about it. All the content in
the previous examplewas derived from the grammar file, kant . xm1. If you tell the program to use adifferent
grammar file (which you can specify on the command line), the output will be completely different.

153

Chapter 9

Example 9.4. Simpler output from kgp.py

[vou@localhost kgp]$ python kgp.py -g binary.xml
00101001

[vou@localhost kgp]$ python kgp.py -g binary.xml
10110100

You will take a closer look at the structure of the grammar file later in this chapter. For now, all you need
to know isthat the grammar file defines the structure of the output, and the kgp . py program reads through
the grammar and makes random decisions about which words to plug in where.

Packages

Abstract

Actually parsing an XML document is very simple: one line of code. However, before you get to that line
of code, you need to take a short detour to talk about packages.

Example 9.5. Loading an XML document (a sneak peek)

>>> from xml.dom import minidom L]
>>> xmldoc = minidom.parse('~/diveintopython/common/py/kgp/binary.xml")

[] Thisisasyntax you haven't seen before. It looks almost like the from module import you know
and love, but the "." gives it away as something above and beyond a ssimple import. In fact, xml is
what is known as a package, dom is a nested package within xm1, and minidom is a module within
xml . dom.

That sounds complicated, but it'sreally not. Looking at the actual implementation may help. Packages are
little more than directories of modules; nested packages are subdirectories. The modules within a package
(or anested package) are till just . py files, like always, except that they're in a subdirectory instead of the
main 1ib/ directory of your Python installation.

Example 9.6. File layout of a package

Python21/ root Python installation (home of the executable)
1——lib/ library directory (home of the standard library modules)
l—— xml/ xml package (really just a directory with other stuff in it)
1——sax/ xml .sax package (again, just a directory)
l——dom/ xml.dom package (contains minidom.py)

+--parsers/ xml.parsers package (used internally)

So when you say from xml.dom import minidom, Python figures out that that means “look in the xml
directory for a dom directory, and look in that for the minidom module, and import it as minidom”. But
Python is even smarter than that; not only can you import entire modul es contained within a package, you
can selectively import specific classes or functions from a module contained within a package. You can

154

Chapter 9

also import the package itself as amodule. The syntax is all the same; Python figures out what you mean
based on the file layout of the package, and automatically does the right thing.

Example 9.7. Packages are modules, too

>>> from xml.dom import minidom O

>>> minidom

<module 'xml.dom.minidom' from 'C:\Python21\1lib\xml\dom\minidom.pyc'>
>>> minidom.Element

<class xml.dom.minidom.Element at 01095744>

>>> from xml.dom.minidom import Element []

>>> Element

<class xml.dom.minidom.Element at 01095744>

>>> minidom.Element

<class xml.dom.minidom.Element at 01095744>

>>> from xml import dom O

>>> dom

<module 'xml.dom' from 'C:\Python21\lib\xml\dom__init__.pyc'>
>>> import xml

>>> xml

<module 'xml' from 'C:\Python21\lib\xml__init__.pyc'>

O

O

Here you're importing a module (minidom) from a nested package (xml.dom). The result is that
minidom is imported into your namespace, and in order to reference classes within the minidom
module (like Element), you need to preface them with the module name.

Hereyou areimporting aclass (Element) from amodule (minidom) from anested package (xml . dom).
Theresult isthat Element isimported directly into your namespace. Note that this does not interfere
with the previous import; the Element class can now be referenced in two ways (but it's all still the
same class).

Here you are importing the dom package (a nested package of xm1) asamodulein and of itself. Any
level of a package can be treated as a module, as you'll see in a moment. It can even have its own
attributes and methods, just the modules you've seen before.

Here you are importing the root level xm1 package as a module.

So how can a package (which is just a directory on disk) be imported and treated as a module (which is
always a file on disk)? The answer is the magical __init__.py file. You see, packages are not simply
directories; they are directories with a specific file, __init__.py, inside. This file defines the attributes
and methods of the package. For instance, xml.dom contains a Node class, which is defined in
xml/dom/__init__.py. Whenyouimport apackage asamodule (like dom from xm1), you'rerealy importing
its__init__.py file.

What makes a package

A package is a directory with the special __init__.py fileinit. The _init__.py file defines
the attributes and methods of the package. It doesn't need to define anything; it can just be an
empty file, but it hasto exist. But if __init__.py doesn't exist, the directory isjust a directory,
not a package, and it can't be imported or contain modules or nested packages.

So why bother with packages? Well, they provide a way to logically group related modules. Instead of
having an xm1 package with sax and dom packagesinside, the authors could have chosen to put all the sax
functionality in xmlsax.py and all the dom functionality in xmldom.py, or even put all of it in a single
module. But that would have been unwieldy (as of this writing, the XML package has over 3000 lines of

155

Chapter 9

code) and difficult to manage (separate source files mean multiple people can work on different areas
simultaneousdly).

If you ever find yourself writing a large subsystem in Python (or, more likely, when you redlize that your
small subsystem has grown into alarge one), invest some time designing a good package architecture. It's
one of the many things Python is good at, so take advantage of it.

Parsing XML

Abstract

As| was saying, actually parsing an XML document is very simple: one line of code. Where you go from
thereis up to you.

Example 9.8. Loading an XML document (for real thistime)

>>> from xml.dom import minidom O
>>> xmldoc = minidom.parse('~/diveintopython/common/py/kgp/binary.xml"') O
>>> xmldoc
<xml.dom.minidom.Document instance at 010BE87C>
>>> print xmldoc.toxml() O
<?xml version="1.0" 7>
<grammar>
<ref id="bit">

<p>0</p>

<p>1</p>
</ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

[] Asyousaw inthe previous section, thisimports the minidom module from the xm1 . dom package.

[] Hereistheoneline of code that does all the work: minidom. parse takes one argument and returns
a parsed representation of the XML document. The argument can be many things; in this case, it's
simply afilename of an XML document on my local disk. (To follow along, you'll need to change
the path to point to your downloaded examples directory.) But you can also pass afile object, or even
afile-like object. You'll take advantage of this flexibility later in this chapter.

[] Theobject returned fromminidom.parse isaDocument object, adescendant of the Node class. This
Document object isthe root level of acomplex tree-like structure of interlocking Python objects that
completely represent the XML document you passed to minidom. parse.

[] toxmlisamethod of theNode class (and istherefore available on the Document object you got from
minidom.parse). toxml prints out the XML that this Node represents. For the Document node, this
prints out the entire XML document.

Now that you have an XML document in memory, you can start traversing through it.

156

Chapter 9

Example 9.9. Getting child nodes

>>> xmldoc.childNodes O

[<DOM Element: grammar at 17538908>]
>>> xmldoc.childNodes[0] []

<DOM Element: grammar at 17538908>
>>> xmldoc. firstChild il

<DOM Element: grammar at 17538908>

[] EveryNode hasachildNodes attribute, which is alist of the Node objects. A Document always has
only one child node, the root element of the XML document (in this case, the grammar element).

[] Togetthefirst (and in this case, the only) child node, just use regular list syntax. Remember, there
is nothing special going on here; thisisjust aregular Python list of regular Python objects.

[] Since getting the first child node of a node is a useful and common activity, the Node class has a
firstChild attribute, whichissynonymouswith childNodes[0]. (ThereisalsoalastChild attribute,
which is synonymous with childNodes[-1].)

Example 9.10. toxml works on any node

>>> grammarNode = xmldoc.firstChild
>>> print grammarNode.toxml() [J
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
</ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

[] Sincethe toxml method is defined in the Node class, it is available on any XML node, not just the
Document €lement.

157

Chapter 9

Example 9.11. Child nodes can betext

>>> grammarNode.childNodes L]

[<DOM Text node "\n">, <DOM Element: ref at 17533332>, \

<DOM Text node "\n">, <DOM Element: ref at 17549660>, <DOM Text node "\n">]
>>> print grammarNode.firstChild.toxml()]

>>> print grammarNode.childNodes[1].toxml() [I
<ref id="bit">
<p>0</p>
<p>1</p>
</ref>
>>> print grammarNode.childNodes[3].toxml() [I
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
>>> print grammarNode.lastChild.toxml() H

[] Lookingatthe XML inbinary.xml, you might think that the grammar has only two child nodes, the
two ref elements. But you're missing something: the carriage returns! After the '<grammar>' and
beforethefirst '<ref>' isacarriagereturn, and thistext counts asachild node of the grammar element.
Similarly, there is a carriage return after each '</ref>'; these also count as child nodes. So
grammar . childNodes isactually alist of 5 objects: 3 Text objects and 2 Element objects.

Thefirst child isaText object representing the carriage return after the ' <grammar>"' tag and before
thefirst '<ref>" tag.

The second child isan Element object representing the first ref element.

The fourth child isan Element object representing the second ref element.

Thelast child isaText object representing the carriage return after the ' </ref>" end tag and before
the '</grammar>"' end tag

I O R

158

Chapter 9

Example 9.12. Drilling down all the way to text

>>> grammarNode

<DOM Element: grammar at 19167148>

>>> refNode = grammarNode.childNodes[1] [l
>>> refNode

<DOM Element: ref at 17987740>

>>> refNode.childNodes O
[<DOM Text node "\n">, <DOM Text node " ">, <DOM Element: p at 19315844>, \
<DOM Text node "\n">, <DOM Text node " ">, \

<DOM Element: p at 19462036>, <DOM Text node "\n'">]
>>> pNode = refNode.childNodes[2]

>>> pNode

<DOM Element: p at 19315844>

>>> print pNode.toxml() O

<p>0</p>

>>> pNode.firstChild U

<DOM Text node "0">

>>> pNode.firstChild.data O

u'o’

[] Asyousaw in the previous example, the first ref element is grammarNode. childNodes[1], since
childNodeg[0] isaText node for the carriage return.

[] Theref element has its own set of child nodes, one for the carriage return, a separate one for the
spaces, one for the p element, and so forth.

[] You caneven usethe toxml method here, deeply nested within the document.

[] The p element has only one child node (you can't tell that from this example, but look at
pNode. childNodes if you don't believe me), and it is a Text node for the single character '0'.

[] The.data attribute of aText node gives you the actual string that the text node represents. But what
isthat 'u' in front of the string? The answer to that deservesits own section.

Unicode

Unicode is a system to represent characters from all the world's different languages. When Python parses
an XML document, all datais stored in memory as unicode.

You'll get to al that in aminute, but first, some background.

Historical note. Before unicode, there were separate character encoding systems for each language,
each using the same numbers (0-255) to represent that language's characters. Some languages (like Russian)
have multiple conflicting standards about how to represent the same characters; other languages (like Ja-
panese) have so many characters that they require multiple-byte character sets. Exchanging documents
between systems was difficult because there was no way for acomputer to tell for certain which character
encoding scheme the document author had used; the computer only saw numbers, and the numbers could
mean different things. Then think about trying to store these documentsin the same place (like in the same
database table); you would need to store the character encoding alongside each piece of text, and make
sureto passit around whenever you passed the text around. Then think about multilingual documents, with
characters from multiple languages in the same document. (They typically used escape codes to switch
modes; poof, you're in Russian koi8-r mode, so character 241 means this; poof, now you're in Mac Greek
mode, so character 241 means something else. And so on.) These are the problems which unicode was
designed to solve.

159

Chapter 9

To solve these problems, unicode represents each character as a 2-byte number, from 0 to 65535.% Each
2-byte number represents a unique character used in at least one of the world's languages. (Characters that
are used in multiple languages have the same numeric code.) Thereis exactly 1 number per character, and
exactly 1 character per number. Unicode datais never ambiguous.

Of course, there is till the matter of all these legacy encoding systems. 7-bit ASCII, for instance, which
stores English characters as numbersranging from 0 to 127. (65 is capital “A”, 97 islowercase“a”, and so
forth.) English has a very simple alphabet, so it can be completely expressed in 7-bit ASCII. Western
European languages like French, Spanish, and German all use an encoding system called | SO-8859-1 (also
caled “latin-1"), which uses the 7-bit ASCII characters for the numbers O through 127, but then extends
into the 128-255 range for characters like n-with-a-tilde-over-it (241), and u-with-two-dots-over-it (252).
And unicode uses the same characters as 7-bit ASCII for 0 through 127, and the same characters as | SO-
8859-1 for 128 through 255, and then extends from there into characters for other languages with the re-

maining numbers, 256 through 65535.

When dealing with unicode data, you may at some point need to convert the data back into one of these
other legacy encoding systems. For instance, to integrate with some other computer system which expects
its data in a specific 1-byte encoding scheme, or to print it to a non-unicode-aware terminal or printer. Or
to storeit in an XML document which explicitly specifies the encoding scheme.

And on that note, let's get back to Python.

Python has had unicode support throughout the language since version 2.0. The XML package uses unicode
to store al parsed XML data, but you can use unicode anywhere.

Example 9.13. Introducing unicode

>>> s = u'Dive in’ O
>>> 8

u'Dive in'

>>> print s O
Dive in

[] Tocreateaunicode string instead of aregular ASCII string, add the letter “u” before the string. Note
that this particular string doesn't have any non-ASCII characters. That's fine; unicode is a superset
of ASCII (avery large superset at that), so any regular ASCII string can aso be stored as unicode.

[1 When printing astring, Python will attempt to convert it to your default encoding, which is usually
ASCII. (More on this in a minute.) Since this unicode string is made up of characters that are also
ASCII characters, printing it has the same result as printing a normal ASCII string; the conversion
isseamless, and if you didn't know that s was a unicode string, you'd never notice the difference.

SThis, sadly, is still an oversimplification. Unicode now has been extended to handle ancient Chinese, Korean, and Japanese texts,
which had so many different characters that the 2-byte unicode system could not represent them all. But Python doesn't currently
support that out of the box, and | don't know if there is a project afoot to add it. You've reached the limits of my expertise, sorry.

160

Chapter 9

Example 9.14. Storing non-ASCI | characters

>>> s = u'La Pe\xfla' O
>>> print s O
Traceback (innermost last):
File "<interactive input>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> print s.encode('latin-1') O
La Pena

[] Therea advantage of unicode, of course, isitsability to store non-ASCII characters, like the Spanish
“fi” (n with atilde over it). The unicode character code for the tilde-n is 0xf1 in hexadecimal (241
in decimal), which you can type like this: \xf1.

[] Remember | said that the print function attemptsto convert aunicode string to ASCII so it can print
it? Well, that's not going to work here, because your unicode string contains non-ASCII characters,
so Python raises a UnicodeError error.

[] Here'swherethe converson-from-unicode-to-other-encoding-schemes comesin. s isaunicode string,
but print can only print aregular string. To solve this problem, you call the encode method, available
on every unicode string, to convert the unicode string to aregular string in the given encoding scheme,
which you pass as a parameter. In this case, you're using latin-1 (also known as iso-8859-1),
whichincludesthetilde-n (whereasthe default ASCI | encoding schemedid not, sinceit only includes
characters numbered 0 through 127).

Remember | said Python usually converted unicode to ASCI1 whenever it needed to make aregular string
out of a unicode string? Well, this default encoding scheme is an option which you can customize.

Example 9.15. sitecustomize.py

sitecustomize.py O

this file can be anywhere in your Python path,

but it usually goes in ${pythondir}/lib/site-packages/
import sys

sys.setdefaultencoding('iso-8859-1") O

[] sitecustomize.py isaspecial script; Python will try to import it on startup, so any code in it will
be run automatically. As the comment mentions, it can go anywhere (aslong as import can find it),
but it usually goesin the site-packages directory within your Python 1ib directory.

[] setdefaultencoding function sets, well, the default encoding. This is the encoding scheme that
Python will try to use whenever it needs to auto-coerce a unicode string into aregular string.

161

Chapter 9

Example 9.16. Effects of setting the default encoding

>>> import sys

>>> sys.getdefaultencoding() U]
'is0-8859-1"

>>> s = u'La Pe\xfla'

>>> print s O
La Pena

[] This example assumes that you have made the changes listed in the previous example to your
sitecustomize.py file, and restarted Python. If your default encoding still says 'ascii', youdidn't
Set up your sitecustomize.py properly, or you didn't restart Python. The default encoding can only
be changed during Python startup; you can't changeit later. (Dueto some wacky programming tricks
that | won't get into right now, you can't even call sys.setdefaultencoding after Python has started
up. Diginto site.py and search for “setdefaultencoding” to find out how.)

[] Now that the default encoding scheme includes all the characters you use in your string, Python has
no problem auto-coercing the string and printing it.

Example 9.17. Specifying encoding in .py files

If you are going to be storing non-ASCI|1 stringswithin your Python code, you'll need to specify the encoding
of each individual .py file by putting an encoding declaration at the top of each file. This declaration
definesthe . py fileto be UTF-8:

#!/usr/bin/env python
-*- coding: UTF-8 -*-
Now, what about XML? Well, every XML document is in a specific encoding. Again, 1SO-8859-1 is a

popular encoding for data in Western European languages. KOI8-R is popular for Russian texts. The en-
coding, if specified, isin the header of the XML document.

Example 9.18. russiansample.xml

<?xml version="1.0" encoding="koi8-r"?> H
<preface>

<title> </title> W
</preface>

[] Thisisasampleextract from area Russian XML document; it's part of a Russian translation of this
very book. Note the encoding, koi8-r, specified in the header.

[] Theseare Cyrillic characters which, as far as | know, spell the Russian word for “Preface”. If you
open thisfile in aregular text editor, the characters will most likely like gibberish, because they're
encoded using the koi8-r encoding scheme, but they're being displayed in iso-8859-1.

162

Chapter 9

Example 9.19. Parsing russiansample.xml

>>> from xml.dom import minidom

>>> xmldoc = minidom.parse('russiansample.xml') O

>>> title = xmldoc.getElementsByTagName('title')[0].firstChild.data
>>> title O
u'\u041f\u0440\u0435\u0434\u0438\u0441\u043b\u043e\u0432\u0438\u0435"'
>>> print title [

Traceback (innermost last):

File "<interactive input>", line 1, in ?

UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> convertedtitle = title.encode('koi8-r') O

>>> convertedtitle
"\xf0\xd2\xc5\xc4\xc9\xd3\xcc\xcf\xd7\xc9\xc5"'

>>> print convertedtitle O

I'm assuming here that you saved the previous example asrussiansample . xml in the current directory.
| am also, for the sake of completeness, assuming that you've changed your default encoding back
to 'ascii' by removing your sitecustomize.py file, or at least commenting out the
setdefaultencoding line.

Note that the text data of the title tag (now inthe title variable, thanksto that long concatenation
of Python functionswhich | hastily skipped over and, annoyingly, won't explain until the next section)
-- the text datainside the XML document's title element is stored in unicode.

Printing thetitleis not possible, because this unicode string contains non-ASCI| characters, so Python
can't convert it to ASCII because that doesn't make sense.

You can, however, explicitly convert it to koi8-r, in which case you get a (regular, not unicode)
string of single-byte characters (£0, d2, c¢5, and so forth) that are the koi8-r-encoded versions of the
charactersin the original unicode string.

Printing the koi8-r-encoded string will probably show gibberish on your screen, because your Python
IDE isinterpreting those characters as iso-8859-1, not koi8-r. But at least they do print. (And, if
you look carefully, it'sthe same gibberish that you saw when you opened the original XML document
in anon-unicode-aware text editor. Python converted it from koi8-r into unicode when it parsed the
XML document, and you've just converted it back.)

To sum up, unicodeitself isabit intimidating if you've never seen it before, but unicode dataisreally very
easy to handle in Python. If your XML documents are all 7-bit ASCII (like the examples in this chapter),
you will literally never think about unicode. Python will convert the ASCII data in the XML documents
into unicode while parsing, and auto-coerce it back to ASCII whenever necessary, and you'll never even
notice. But if you need to deal with that in other languages, Python is ready.

Further reading

Unicode.org [http://www.unicode.org/] is the home page of the unicode standard, including a brief
technical introduction [http://www.unicode.org/standard/principles.ntmi].

Unicode Tutorial [http://www.reportlab.com/i18n/python_unicode_tutorial.html] has some more ex-
amples of how to use Python's unicode functions, including how to force Python to coerce unicode
into ASCII even when it doesn't really want to.

PEP 263 [http://www.python.org/peps/pep-0263.html] goes into more detail about how and when to
define a character encoding in your .py files.

163

http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html

Chapter 9

Searching for elements

Traversing XML documents by stepping through each node can betedious. If you'relooking for something
in particular, buried deep within your XML document, there is a shortcut you can use to find it quickly:
getElementsByTagName.

For this section, you'll be using the binary.xml grammar file, which looks like this:

Example 9.20. binary.xml

<?xml version="1.0"7?>
<!DOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN"
"kgp.dtd">
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
</ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

It hastwo refs, 'bit' and 'byte'. A bitiseithera'0' or '1', and abyte is8bits.

Example 9.21. Introducing getElementsByTagName

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('binary.xml')
>>> reflist = xmldoc.getElementsByTagName('ref') []
>>> reflist
[<DOM Element: ref at 136138108>, <DOM Element: ref at 136144292>]
>>> print reflist[0].toxml()
<ref id="bit">
<p>0</p>
<p>1</p>
</ref>
>>> print reflist[1].toxml()
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>

[] getElementsByTagName takes one argument, the name of the element you wish to find. It returns a
list of Element objects, corresponding to the XML elements that have that name. In this case, you
find two ref elements.

164

Chapter 9

Example 9.22. Every element is searchable

>>> firstref = reflist[0] O
>>> print firstref.toxml()
<ref id="bit">

<p>0</p>

<p>1</p>
</ref>
>>> plist = firstref.getElementsByTagName("p") [
>>> plist
[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>]
>>> print plist[0].toxml() U
<p>0</p>
>>> print plist[1].toxml()
<p>1</p>

[] Continuing from the previous example, the first object in your reflist isthe 'bit' ref element.

[] Youcan usethe same getElementsByTagName method on thisElement to find all the <p> elements
withinthe 'bit' ref element.

[] Justasbefore, the getElementsByTagName method returns alist of all the elementsit found. In this
case, you have two, one for each bit.

Example 9.23. Searching is actually recursive

>>> plist = xmldoc.getElementsByTagName("p") 0

>>> plist

[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>, <DOM Element: p at
136146124>]

>>> plist[0].toxml()]

'<p>0</p>"'

>>> plist[1].toxml()

'<p>1</p>"

>>> plist[2].toxml()]

'<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>'

[1 Notecarefully the difference between thisand the previous example. Previously, you were searching
for p elements within firstref, but here you are searching for p elements within xmldoc, the root-
level object that represents the entire XML document. This does find the p elements nested within
the ref elements within the root grammar € ement.

[1 Thefirst twop elements are within thefirst ref (the 'bit' ref).

[] Thelastp element isthe one within the second ref (the 'byte' ref).

Accessing element attributes

XML elements can have one or more attributes, and it is incredibly simple to access them once you have
parsed an XML document.

For this section, you'll be using the binary.xml grammar file that you saw in the previous section.

165

Chapter 9

XML attributes and Python attributes

This section may be alittle confusing, because of some overlapping terminology. Elementsin an
XML document have attributes, and Python objects al so have attributes. When you parsean XML
document, you get a bunch of Python objects that represent all the pieces of the XML document,
and some of these Python objects represent attributes of the XML elements. But the (Python)
objectsthat represent the (XML) attributes al so have (Python) attributes, which are used to access
various parts of the (XML) attribute that the object represents. | told you it was confusing. | am
open to suggestions on how to distinguish these more clearly.

Example 9.24. Accessing element attributes

>>> xmldoc = minidom.parse('binary.xml')

>>> reflist = xmldoc.getElementsByTagName('ref"')
>>> bitref = reflist[0]

>>> print bitref.toxml()

<ref id="bit">

<p>0</p>
<p>1</p>

</ref>

>>> bitref.attributes O
<xml.dom.minidom.NamedNodeMap instance at 0x81eOc9c>
>>> bitref.attributes.keys() [[

[u'id']

>>> bitref.attributes.values() L
[<xm]l.dom.minidom.Attr instance at 0x81d5044>]

>>> bitref.attributes["id"] D
<xml.dom.minidom.Attr instance at 0x81d5044>

O

Each Element object has an attribute called attributes, which is a NamedNodeMap object. This
sounds scary, but it's not, because a NamedNodeMap is an object that acts like a dictionary, so you
aready know how to useit.

Treating the NamedNodeMap as a dictionary, you can get alist of the names of the attributes of this
element by using attributes.keys(). This element has only one attribute, 'id".

Attribute names, like al other text in an XML document, are stored in unicode.

Again treating the NamedNodeMap as a dictionary, you can get alist of the values of the attributes by
using attributes.values(). The values are themselves objects, of type Attr. You'll see how to
get useful information out of this object in the next example.

Still treating the NamedNodeMap as adictionary, you can access an individual attribute by name, using
normal dictionary syntax. (Readers who have been paying extra-close attention will aready know
how the NamedNodeMap class accomplishesthisneat trick: by defininga__getitem__ special method.
Other readers can take comfort in the fact that they don't need to understand how it works in order
to useit effectively.)

166

Chapter 9

Example 9.25. Accessing individual attributes

>>> a = bitref.attributes["id"]

>>> a

<xml.dom.minidom.Attr instance at 0x81d5044>
>>> a.name L[]

u'id'

>>> a.value [J

u'bit’

[] TheAttr object completely represents asingle XML attribute of asingle XML element. The name
of the attribute (the same name as you used to find this object in the bitref.attributes
NamedNodeMap pseudo-dictionary) is stored in a.name.

[1 Theactua text value of this XML attributeis stored in a.value.

Attributes have no order

Like a dictionary, attributes of an XML element have no ordering. Attributes may happen to be
listed in a certain order in the original XML document, and the Attr objects may happen to be
listed in a certain order when the XML document is parsed into Python objects, but these orders
are arbitrary and should carry no special meaning. You should always access individual attributes
by name, like the keys of a dictionary.

Segue

OK, that'sit for the hard-core XML stuff. The next chapter will continue to use these same example pro-
grams, but focus on other aspects that make the program more flexible: using streamsfor input processing,
using getattr for method dispatching, and using command-line flags to allow users to reconfigure the
program without changing the code.

Before moving on to the next chapter, you should be comfortable doing all of these things:

» Parsing XML documents using minidom, Searching through the parsed document, and accessing arbitrary
element attributes and element children

» Organizing complex libraries into packages

» Converting unicode strings to different character encodings

167

Chapter 10. Scripts and Streams

Abstracting input sources

One of Python's greatest strengths isits dynamic binding, and one powerful use of dynamic binding isthe
file-like object.

Many functions which require an input source could simply take afilename, go open the file for reading,
read it, and close it when they're done. But they don't. Instead, they take afile-like object.

In the simplest case, afile-like object is any object with aread method with an optional size parameter,
which returns a string. When called with no size parameter, it reads everything thereis to read from the
input source and returns all the data as a single string. When called with a size parameter, it reads that
much from the input source and returns that much data; when called again, it picks up whereit left off and
returns the next chunk of data.

This is how reading from real files works; the difference is that you're not limiting yourself to real files.
The input source could be anything: afile on disk, aweb page, even a hard-coded string. As long as you
pass afile-like object to the function, and the function simply calls the object's read method, the function
can handle any kind of input source without specific code to handle each kind.

In case you were wondering how this relates to XML processing, minidom. parse is one such function
which can take afile-like object.

Example 10.1. Parsing XML from afile

>>> from xml.dom import minidom

>>> fsock = open('binary.xml') O
>>> xmldoc = minidom.parse(fsock) O
>>> fsock.close() O
>>> print xmldoc.toxml() O
<?xml version="1.0" ?>
<grammar>
<ref id="bit">

<p>0</p>

<p>1</p>
</ref>

<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
</ref>
</grammar>

[] First, you openthefile on disk. This gives you afile object.

[] You pass the file object to minidom.parse, which calls the read method of fsock and reads the
XML document from the file on disk.

[] Besureto call the close method of the file object after you're done with it. minidom. parse will not
do thisfor you.

[] Calling the toxml () method on the returned XML document prints out the entire thing.

168

Chapter 10

WEell, that all seems like a colossal waste of time. After all, you've already seen that minidom.parse can
simply take the filename and do all the opening and closing nonsense automatically. And it's true that if
you know you're just going to be parsing a local file, you can pass the filename and minidom. parse is
smart enough to Do The Right Thing™. But notice how similar -- and easy -- it isto parsean XML document
straight from the Internet.

Example 10.2. Parsing XML from a URL

>>> import urllib

>>> usock = urllib.urlopen('http://slashdot.org/slashdot.rdf') []
>>> xmldoc = minidom.parse(usock)

>>> usock.close()

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<rdf:RDF xmlns="http://my.netscape.com/rdf/simple/0.9/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

Oood

<channel>

<title>Slashdot</title>

<link>http://slashdot.org/</1link>

<description>News for nerds, stuff that matters</description>
</channel>



<item>

<title>To HDTV or Not to HDTV?</title>
<link>http://slashdot.org/article.pl?sid=01/12/28/0421241</1ink>
</item>

[...snip...]

[] Asyousaw inapreviouschapter, urlopen takesaweb page URL and returns afile-like object. Most
importantly, this object has a read method which returns the HTML source of the web page.

[] Now you passthefile-like object to minidom.parse, which obediently calls the read method of the
object and parses the XML data that the read method returns. The fact that this XML data is now
coming straight from aweb page is completely irrelevant. minidom. parse doesn't know about web
pages, and it doesn't care about web pages; it just knows about file-like objects.

[] Assoonasyou'redonewith it, be sureto close the file-like object that urlopen gives you.

[] Bytheway,thisURL isrea, anditreally isXML.It'san XML representation of the current headlines
on Slashdot [http://dashdot.org/], atechnical news and gossip site.

169

http://slashdot.org/

Chapter 10

Example 10.3. Parsing XML from a string (the easy but inflexible way)

>>> contents = '<grammar><ref id='bit'><p>0</p><p>1</p></ref></grammar>"
>>> xmldoc = minidom.parseString(contents) O

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

[] minidom hasamethod, parseString, which takes an entire XML document as a string and parses
it. You can use thisinstead of minidom. parse if you know you already have your entire XML docu-
ment in a string.

OK, so you can use the minidom.parse function for parsing both local files and remote URLS, but for
parsing strings, you use... adifferent function. That means that if you want to be able to take input from a
file, aURL, or astring, you'll need special logic to check whether it's a string, and call the parseString
function instead. How unsatisfying.

If there were a way to turn a string into a file-like object, then you could simply pass this object to
minidom.parse. And in fact, there is amodule specifically designed for doing just that: StringIO.

Example 10.4. Introducing StringIO

>>> contents = "<grammar><ref id='bit'><p>0</p><p>1</p></ref></grammar>"
>>> import StringIO

>>> ssock = StringI0.StringI0(contents) O

>>> ssock.read() H
"<grammar><ref id='bit'><p>0</p><p>1</p></ref></grammar>"
>>> ssock.read()

>>> ssock.seek(0) H

>>> ssock.read(15) H
'<grammar><ref i'

>>> ssock.read(15)

"d="bit'><p>0</p"

>>> ssock.read()

'><p>1</p></ref></grammar>"'

>>> ssock.close() H

[] TheStringIOmodulecontainsasingleclass, aso called StringI0, whichalowsyoutoturnastring
into afile-like object. The StringIO class takesthe string as a parameter when creating an instance.

[1 Now you haveafile-like object, and you can do al sorts of file-like thingswith it. Like read, which
returns the original string.

[] Calingread again returns an empty string. Thisis how real file objects work too; once you read the
entirefile, you can't read any more without explicitly seeking to the beginning of thefile. The StringI0
object works the same way.

[] You can explicitly seek to the beginning of the string, just like seeking through afile, by using the
seek method of the StringIO object.

[] Youcanalso read the string in chunks, by passing a size parameter to the read method.

[] Atanytime, read will returntherest of the string that you haven't read yet. All of thisis exactly how
file objects work; hence the term file-like object.

170

Chapter 10

Example 10.5. Parsing XML from a string (the file-like object way)

>>> contents = '<grammar><ref id='bit'><p>0</p><p>1</p></ref></grammar>"
>>> ssock = StringIO.StringIO(contents)

>>> xmldoc = minidom.parse(ssock) O

>>> ssock.close()

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

[] Now you can pass the file-like object (really a StringI0) to minidom.parse, which will call the
object's read method and happily parse away, never knowing that its input came from a hard-coded
string.

So now you know how to use a single function, minidom. parse, to parse an XML document stored on a
web page, inalocal file, or in ahard-coded string. For aweb page, you useurlopen to get afile-like object;
for alocal file, you use open; and for a string, you use StringI0. Now let's take it one step further and
generalize these differences as well.

171

Chapter 10

Example 10.6. openAnything

def openAnything(source): O
try to open with urllib (if source is http, ftp, or file URL)
import urllib

try:

return urllib.urlopen(source) O
except (IOError, OSError):

pass

try to open with native open function (if source is pathname)
try:

return open(source) O
except (IOError, OSError):

pass

treat source as string
import StringIO
return StringIO.StringIO(str(source)) O

[] TheopenAnything function takes asingle parameter, source, and returns afile-like object. source
is a string of some sort; it can either be a URL (like 'http://slashdot.org/slashdot.rdf'), a
full or partial pathnameto alocal file (like 'binary.xml"), or astring that contains actual XML data
to be parsed.

[] First, you seeif source isaURL. You do this through brute force: you try to open it asa URL and
silently ignore errors caused by trying to open something whichisnot aURL. Thisisactually elegant
inthe sensethat, if urllib ever supports new types of URLsin the future, you will also support them
without recoding. If urllib is able to open source, then the return kicks you out of the function
immediately and the following try statements never execute.

[] Ontheother hand, if urllib yelled at you and told you that source wasn't avalid URL, you assume
it's a path to afile on disk and try to open it. Again, you don't do anything fancy to check whether
source isavalidfilenameor not (therulesfor valid filenames vary wildly between different platforms
anyway, so you'd probably get them wrong anyway). Instead, you just blindly open thefile, and silently
trap any errors.

[] By thispoint, you need to assumethat source isastring that has hard-coded datain it (since nothing
else worked), so you use StringIO to create afile-like object out of it and return that. (In fact, since
you're using the str function, source doesn't even need to be a string; it could be any object, and
you'll use its string representation, as defined by its__str__ special method.)

Now you can use this openAnything function in conjunction withminidom. parse to make afunction that
takesa source that refersto an XML document somehow (either asa URL, or alocal filename, or a hard-
coded XML document in a string) and parses it.

Example 10.7. Using openAnything in kgp.py

class KantGenerator:
def _load(self, source):
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()
return xmldoc

172

Chapter 10

Standard input, output, and error

UNIX users are aready familiar with the concept of standard input, standard output, and standard error.
This section isfor the rest of you.

Standard output and standard error (commonly abbreviated stdout and stderr) are pipes that are built
into every UNIX system. When you print something, it goes to the stdout pipe; when your program
crashes and prints out debugging information (like atraceback in Python), it goesto the stderr pipe. Both
of these pipes are ordinarily just connected to the terminal window where you are working, so when a
program prints, you see the output, and when a program crashes, you see the debugging information. (If
you're working on a system with awindow-based Python IDE, stdout and stderr default to your “Inter-
active Window”.)

Example 10.8. Introducing stdout and stderr

>>> for i in range(3):
print 'Dive in' O

Dive in

Dive in

Dive in

>>> import sys

>>> for i in range(3):
sys.stdout.write('Dive in') []

Dive inDive inDive in

>>> for i in range(3):
sys.stderr.write('Dive in') []

Dive inDive inDive in

[] AsyousawinExample 6.9, “Simple Counters’, you can use Python's built-inrange function to build
simple counter loops that repeat something a set number of times.

[] stdout isafilelike object; calling itswrite function will print out whatever string you giveit. In
fact, thisiswhat the print function really does; it adds a carriage return to the end of the string you're
printing, and calls sys.stdout.write.

[] Inthe simplest case, stdout and stderr send their output to the same place: the Python IDE (if
you'rein one), or theterminal (if you're running Python from the command line). Like stdout, stderr
does not add carriage returns for you; if you want them, add them yourself.

stdout and stderr are both file-like objects, like the ones you discussed in the section called “Abstracting
input sources’, but they are both write-only. They have no read method, only write. Still, they are file-
like objects, and you can assign any other file- or file-like object to them to redirect their output.

173

Chapter 10

Example 10.9. Redirecting output

[vou@localhost kgp]$ python stdout.py

Dive in

[vou@localhost kgp]$ cat out.log

This message will be logged instead of displayed

(On Windows, you can use type instead of cat to display the contents of afile.)

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

#stdout.py
import sys

print 'Dive in'

saveout = sys.stdout

fsock = open('out.log', 'w')

sys.stdout = fsock

print 'This message will be logged instead of displayed'
sys.stdout = saveout

fsock.close()

I o |

Thiswill print to the IDE “Interactive Window” (or the terminal, if running the script from the com-
mand line).
Always save stdout before redirecting it, so you can set it back to normal later.

Open a file for writing. If the file doesn't exigt, it will be created. If the file does exigt, it will be
overwritten.
Redirect all further output to the new file you just opened.

Thiswill be*printed” to the log file only; it will not be visible in the IDE window or on the screen.
Set stdout back to the way it was before you mucked with it.
Closethelog file.

OooOooOo oo

Redirecting stderr works exactly the same way, using sys. stderr instead of sys.stdout.

174

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 10

Example 10.10. Redirecting error information

[vou@localhost kgp]$ python stderr.py
[vou@localhost kgp]$ cat error.log
Traceback (most recent line last):
File "stderr.py", line 5, in ?
raise Exception, 'this error will be logged'
Exception: this error will be logged

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

#stderr.py
import sys

fsock = open('error.log', 'w') []
sys.stderr = fsock O
raise Exception, 'this error will be logged' [[

Open the log file where you want to store debugging information.
Redirect standard error by assigning the file object of the newly-opened log file to stderr.

Raise an exception. Note from the screen output that this does not print anything on screen. All the
normal traceback information has been written to error. log.

Also notethat you're not explicitly closing your log file, nor are you setting stderr back toitsoriginal
value. Thisisfine, since once the program crashes (because of the exception), Python will clean up
and close thefile for us, and it doesn't make any difference that stderr is never restored, since, as|
mentioned, the program crashes and Python ends. Restoring the original ismoreimportant for stdout,
if you expect to go do other stuff within the same script afterwards.

U
U
U
U

Since it is so common to write error messages to standard error, there is a shorthand syntax that can be
used instead of going through the hassle of redirecting it outright.

Example 10.11. Printing to stderr

>>> print 'entering function'

entering function

>>> import sys

>>> print >> sys.stderr, 'entering function' []
entering function

[] Thisshorthand syntax of the print statement can be used to write to any open file, or file-like object.
Inthiscase, you can redirect asingle print statement to stderr without affecting subsequent print
Statements.

Standard input, on the other hand, is a read-only file object, and it represents the data flowing into the
program from some previous program. This will likely not make much sense to classic Mac OS users, or
even Windows users unless you were ever fluent on the MS-DOS command line. The way it works is that
you can construct a chain of commands in a single line, so that one program's output becomes the input
for the next program in the chain. The first program simply outputs to standard output (without doing any
special redirecting itself, just doing normal print statements or whatever), and the next program reads

175

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 10

from standard input, and the operating system takes care of connecting one program'’s output to the next
program's input.

Example 10.12. Chaining commands

[vou@localhost kgp]$ python kgp.py -g binary.xml O
01100111
[vou@localhost kgp]$ cat binary.xml O

<?xml version="1.0"7>

<!DOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN"
"kgp.dtd">

<grammar>

<ref id="bit">

<p>0</p>
<p>1</p>

</ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\

<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>

</ref>

</grammar>

[vou@localhost kgp]$ cat binary.xml | python kgp.py -g - 0 Qd

10110001

[] Asyousaw inthe section called “Diving in”, thiswill print a string of eight random bits, 0 or 1.

[] Thissimply prints out the entire contents of binary.xml. (Windows users should use type instead
of cat.)

[] Thisprintsthe contents of binary.xml, but the® |” character, called the " pipe” character, means that
the contents will not be printed to the screen. Instead, they will become the standard input of the next
command, which in this case calls your Python script.

[] Instead of specifying amodule (like binary.xml), you specify “-”, which causes your script to load

the grammar from standard input instead of from a specific file on disk. (More on how this happens
in the next example.) So the effect is the same as the first syntax, where you specified the grammar
filename directly, but think of the expansion possibilities here. Instead of simply doing cat
binary.xml, you could run a script that dynamically generates the grammar, then you can pipe it
into your script. It could come from anywhere: a database, or some grammar-generating meta-script,
or whatever. The point is that you don't need to change your kgp . py script at al to incorporate any
of thisfunctionality. All you need to do is be able to take grammar files from standard input, and you
can separate all the other logic into another program.

So how does the script “know” to read from standard input when the grammar fileis“-"? It's not magic;
it'sjust code.

176

Chapter 10

Example 10.13. Reading from standard input in kgp.py

def openAnything(source):
if source == "-": O
import sys
return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)
import urllib
try:

[... snip ...]

[] ThisistheopenAnything function from toolbox.py, which you previously examined in the section
called “Abstracting input sources”. All you've done is add three lines of code at the beginning of the
functionto check if the sourceis“-"; if so, you return sys. stdin. Really, that'sit! Remember, stdin
is a file-like object with a read method, so the rest of the code (in kgp.py, where you call
openAnything) doesn't change a bit.

Caching node lookups

kgp .py employs severa tricks which may or may not be useful to you in your XML processing. The first
one takes advantage of the consistent structure of the input documents to build a cache of nodes.

A grammar file defines a series of ref elements. Each ref contains one or more p elements, which can
contain alot of different things, including xrefs. Whenever you encounter an xref, you look for a corres-
ponding ref element with the same id attribute, and choose one of the ref element's children and parse
it. (You'll see how this random choice is made in the next section.)

Thisishow you build up the grammar: defineref elementsfor the smallest pieces, then defineref elements
which "include" the first ref elements by using xref, and so forth. Then you parse the "largest” reference
and follow each xref, and eventually output real text. Thetext you output depends on the (random) decisions
you make each time you fill in an xref, so the output is different each time.

Thisisall very flexible, but there is one downside: performance. When you find an xref and need to find
the corresponding ref element, you have a problem. The xref has an id attribute, and you want to find
the ref element that has that same id attribute, but there is no easy way to do that. The slow way to do it
would be to get the entire list of ref elements each time, then manually loop through and look at each id
attribute. The fast way isto do that once and build a cache, in the form of adictionary.

177

Chapter 10

Example 10.14. loadGrammar

def loadGrammar(self, grammar):
self.grammar = self._load(grammar)

self.refs = {} O
for ref in self.grammar.getElementsByTagName("ref"): [
self.refs[ref.attributes["id"].value] = ref 00

[] Start by creating an empty dictionary, self.refs.

[1 Asyousaw inthe section called “ Searching for elements’, getElementsByTagName returns alist of
al the elements of a particular name. You easily can get alist of al the ref elements, then simply
loop through that list.

[] Asyousaw inthesection called “Accessing element attributes’, you can accessindividual attributes
of an element by name, using standard dictionary syntax. So the keys of the self.refs dictionary
will be the values of the id attribute of each ref element.

[] Thevalues of the self.refs dictionary will be the ref elements themselves. As you saw in the
section called “ Parsing XML”, each element, each node, each comment, each piece of text in aparsed
XML document is an object.

Once you build this cache, whenever you come across an xref and need to find the ref element with the
same id attribute, you can simply look it up in self.refs.

Example 10.15. Using the ref element cache

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement (self.refs[id]))

You'll explore the randomChildElement function in the next section.

Finding direct children of a node

Another useful techique when parsing XML documentsisfinding al the direct child elements of apartic-
ular element. For instance, in the grammar files, aref element can have several p elements, each of which
can contain many things, including other p elements. You want to find just the p elementsthat are children
of the ref, not p elements that are children of other p elements.

You might think you could simply use getElementsByTagName for this, but you can't.
getElementsByTagName searches recursively and returns a single list for all the elements it finds. Since
p €lements can contain other p elements, you can't use getElementsByTagName, because it would return
nested p elements that you don't want. To find only direct child elements, you'll need to do it yourself.

178

Chapter 10

Example 10.16. Finding direct child elements

def randomChildElement(self, node):
choices = [e for e in node.childNodes
if e.nodeType == e.ELEMENT_NODE] [[U
chosen = random.choice(choices) []
return chosen

[] Asyousaw in Example 9.9, " Getting child nodes’, the childNodes attribute returns alist of all the
child nodes of an element.

[] However, asyou saw in Example 9.11, “Child nodes can be text”, the list returned by childNodes
contains all different types of nodes, including text nodes. That's not what you're looking for here.
You only want the children that are elements.

[] Each node has anodeType attribute, which can be ELEMENT_NODE, TEXT_NODE, COMMENT_NODE, or
any number of other values. The complete list of possible valuesisinthe __init__.py filein the
xml . dom package. (Seethe section called “ Packages’ for more on packages.) But you'rejust interested
in nodes that are elements, so you can filter the list to only include those nodes whose nodeType is
ELEMENT_NODE.

[] Onceyou havealist of actual elements, choosing arandom oneis easy. Python comes with amodule
called random which includes several useful functions. The random. choice function takes alist of
any number of items and returns a random item. For example, if the ref elements contains severa
p elements, then choices would be alist of p elements, and chosen would end up being assigned
exactly one of them, selected at random.

Creating separate handlers by node type

The third useful XML processing tip involves separating your code into logical functions, based on node
types and element names. Parsed XML documents are made up of varioustypes of nodes, each represented
by aPython object. Theroot level of the document itself isrepresented by aDocument object. TheDocument
then contains one or moreElement objects (for actual XML tags), each of which may contain other Element
objects, Text objects (for bits of text), or Comment objects (for embedded comments). Python makes it
easy to write a dispatcher to separate the logic for each node type.

179

Chapter 10

Example 10.17. Class names of parsed XML objects

>>> from xml.dom import minidom

>>> xmldoc = minidom.parse('kant.xml') []

>>> xmldoc

<xml.dom.minidom.Document instance at 0x01359DE8>

>>> xmldoc.__class__ 0

<class xml.dom.minidom.Document at 0x01105D40>

>>> xmldoc.__class__.__name__ L]

'Document’

[] Assume for amoment that kant.xml isin the current directory.

[] Asyousaw inthe section called “Packages’, the object returned by parsing an XML document is a
Document object, as defined in the minidom. py in the xml.dom package. As you saw in the section
called “Instantiating Classes’, __class__ isbuilt-in attribute of every Python object.

[] Furthermore, __name__ isa built-in attribute of every Python class, and it isa string. This string is

not mysterious; it's the same as the class name you type when you define a class yourself. (See the
section called “Defining Classes’.)

Fine, so now you can get the class name of any particular XML node (since each XML nodeisrepresented
as a Python object). How can you use this to your advantage to separate the logic of parsing each node
type? The answer is getattr, which you first saw in the section called “ Getting Object References With
getattr”.

Example 10.18. parse, a generic XML node dispatcher

def parse(self, node):
parseMethod = getattr(self, "parse_%s" % node.__class__._ name__) 0
parseMethod(node) U]

First off, notice that you're constructing alarger string based on the class name of the node you were
passed (in the node argument). So if you're passed a Document node, you're constructing the string
'parse_Document ', and so forth.

Now you can treat that string as a function name, and get a reference to the function itself using
getattr

Finally, you can call that function and pass the node itself as an argument. The next example shows
the definitions of each of these functions.

180

Chapter 10

Example 10.19. Functions called by the parse dispatcher

def parse_Document(self, node): O
self.parse(node.documentElement)

def parse_Text(self, node): O

text = node.data

if self.capitalizeNextWord:
self.pieces.append(text[0].upper())
self.pieces.append(text[1:])
self.capitalizeNextWord = 0

else:
self.pieces.append(text)

def parse_Comment(self, node): O
pass

def parse_Element(self, node): O
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

[] parse_Document isonly ever called once, sincethereisonly oneDocument nodeinan XML document,
and only one Document object in the parsed XML representation. It simply turns around and parses
the root element of the grammar file.

[] parse_Text iscalled on nodes that represent bits of text. The function itself does some specia pro-
cessing to handle automatic capitalization of thefirst word of asentence, but otherwise simply appends
the represented text to alist.

[] parse_Comment iSjustapass, sinceyou don't care about embedded commentsin the grammar files.
Note, however, that you still need to define the function and explicitly make it do nothing. If the
function did not exist, the generic parse function would fail as soon as it stumbled on a comment,
because it would try to find the non-existent parse_Comment function. Defining a separate function
for every node type, even ones you don't use, allows the generic parse function to stay simple and
dumb.

[Theparse_Element method is actually itself a dispatcher, based on the name of the element's tag.
The basic idea is the same: take what distinguishes elements from each other (their tag names) and
dispatch to aseparate function for each of them. You construct astring like ' do_xref' (for an <xref>
tag), find afunction of that name, and call it. And so forth for each of the other tag names that might
be found in the course of parsing agrammar file (<p> tags, <choice> tags).

In this example, the dispatch functions parse and parse_Element simply find other methods in the same
class. If your processing is very complex (or you have many different tag names), you could break up your
codeinto separate modules, and use dynamic importing to import each module and call whatever functions
you needed. Dynamic importing will be discussed in Chapter 16, Functional Programming.

Handling command-line arguments

Python fully supports creating programs that can be run on the command line, complete with command-
line arguments and either short- or long-style flagsto specify various options. None of thisis XM L-specific,
but this script makes good use of command-line processing, so it seemed like a good time to mention it.

It's difficult to talk about command-line processing without understanding how command-line arguments
are exposed to your Python program, so let's write a simple program to see them.

181

Chapter 10

Example 10.20. Introducing sys.argv

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

#argecho.py
import sys

for arg in sys.argv:]
print arg

[] Each command-line argument passed to the program will bein sys.argv, whichisjust alist. Here
you are printing each argument on a separate line.

Example 10.21. The contents of sys.argv

[you@localhost py]$ python argecho.py O
argecho.py

[you@localhost pyl$ python argecho.py abc def O
argecho.py

abc

def

[you@localhost py]$ python argecho.py --help O
argecho.py

--help

[you@localhost py]$ python argecho.py -m kant.xml []
argecho.py

-m

kant .xml

[] Thefirst thing to know about sys.argv isthat it contains the name of the script you're calling. You
will actually use this knowledge to your advantage later, in Chapter 16, Functional Programming.
Don't worry about it for now.

[] Command-line arguments are separated by spaces, and each shows up as a separate element in the
sys.argv list.

[] Command-lineflags, like --help, also show up as their own element in the sys. argv list.

[] To make things even more interesting, some command-line flags themselves take arguments. For
instance, here you have aflag (-m) which takes an argument (kant .xm1). Both the flag itself and the
flag's argument are simply sequential elementsin the sys. argv list. No attempt is made to associate
one with the other; al you get isalist.

S0 as you can see, you certainly have all the information passed on the command line, but then again, it
doesn't look like it's going to be al that easy to actually useit. For smple programsthat only take asingle
argument and have no flags, you can simply use sys.argv[1] to access the argument. There's no shame
inthis; I doit al the time. For more complex programs, you need the getopt module.

182

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 10

Example 10.22. Introducing getopt

def main(argv):
grammar = "kant.xml" O
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="]) O
except getopt.GetoptError:
usage() O
sys.exit(2)

if __name__ == "__main__":
main(sys.argv[1l:])

[] First off, look at the bottom of the example and notice that you're calling the main function with
sys.argv[1:]. Remember, sys.argv[0] is the name of the script that you're running; you don't
care about that for command-line processing, so you chop it off and pass the rest of thelist.

[] Thisiswhere al the interesting processing happens. The getopt function of the getopt module
takes three parameters: the argument list (which you got from sys.argv[1:1), a string containing
al the possible single-character command-line flags that this program accepts, and a list of longer
command-line flags that are equivalent to the single-character versions. This is quite confusing at
first glance, and is explained in more detail below.

[] If anything goes wrong trying to parse these command-line flags, getopt will raise an exception,
which you catch. You told getopt all the flags you understand, so this probably means that the end
user passed some command-line flag that you don't understand.

[] Asisstandard practicein the UNIX world, when the script is passed flags it doesn't understand, you
print out asummary of proper usage and exit gracefully. Notethat | haven't shown theusage function
here. You would still need to code that somewhere and have it print out the appropriate summary;
it's not automatic.

So what are all those parameters you passto the getopt function? Well, the first oneissimply the raw list
of command-line flags and arguments (not including the first element, the script name, which you already
chopped off before calling the main function). The second isthe list of short command-line flags that the
script accepts.

"hg:d"

-h print usage summary

-g ... usespecified grammar file or URL

-d show debugging information while parsing

The first and third flags are smply standalone flags; you specify them or you don't, and they do things
(print help) or change state (turn on debugging). However, the second flag (-g) must be followed by an
argument, which isthe name of the grammar fileto read from. Infact it can be afilename or aweb address,
and you don't know which yet (you'll figure it out later), but you know it has to be something. So you tell
getopt thisby putting a colon after the g in that second parameter to the getopt function.

To further complicate things, the script accepts either short flags (like -h) or long flags (like --help), and
you want them to do the same thing. Thisiswhat the third parameter to getopt isfor, to specify alist of
the long flags that correspond to the short flags you specified in the second parameter.

183

Chapter 10

["help", "grammar="]

—-help print usage summary

--grammar ... use specified grammar file or URL
Three things of note here:

1. All long flags are preceded by two dashes on the command line, but you don't include those dashes
when calling getopt. They are understood.

2. The --grammar flag must always be followed by an additional argument, just like the -g flag. This
is notated by an equals sign, "grammar=".

3. Thelist of long flagsis shorter than the list of short flags, because the -d flag does not have a corres-
ponding long version. Thisisfine; only -d will turn on debugging. But the order of short and long
flags needs to be the same, so you'll need to specify all the short flags that do have corresponding
long flags first, then all the rest of the short flags.

Confused yet? Let'slook at the actual code and seeif it makes sensein context.

184

Chapter 10

Example 10.23. Handling command-line argumentsin kgp . py

def main(argv): O
grammar = "kant.xml"
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
except getopt.GetoptError:

usage()
sys.exit(2)
for opt, arg in opts: O

if opt in ("-h", "--help"): O
usage()
sys.exit()

elif opt == '-d': O
global _debug
_debug = 1

elif opt in ("-g", "--grammar"): N

grammar = arg

source = .join(args) O

k = KantGenerator(grammar, source)
print k.output()

[] Thegrammar variable will keep track of the grammar file you're using. You initialize it here in case
it's not specified on the command line (using either the -g or the --grammar flag).

[] Theopts variablethat you get back from getopt containsalist of tuples: flag and argument. If the
flag doesn't take an argument, then arg will simply be None. This makesit easier to loop through the
flags.

[] getopt validatesthat the command-line flags are acceptable, but it doesn't do any sort of conversion
between short and long flags. If you specify the -h flag, opt will contain "-h"; if you specify the
--help flag, opt will contain "--help". So you need to check for both.

[Remember, the-d flag didn't have acorresponding long flag, so you only need to check for the short
form. If youfindit, you set aglobal variablethat you'll refer to later to print out debugging information.
(I used this during the development of the script. What, you thought all these examples worked on
thefirst try?)

[] If you find a grammar file, either with a -g flag or a --grammar flag, you save the argument that
followed it (stored in arg) into the grammar variable, overwriting the default that you initialized at
the top of the main function.

[] That'sit. You'velooped through and dealt with all the command-line flags. That means that anything
left must be command-line arguments. These come back fromthe getopt functionintheargs variable.
Inthiscase, you'retreating them as source material for the parser. If there are no command-line argu-
ments specified, args will be an empty list, and source will end up as the empty string.

Putting it all together

You've covered alot of ground. Let's step back and see how all the pieces fit together.

To start with, thisis a script that takes its arguments on the command line, using the getopt module.

def main(argv):

185

Chapter 10

try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
except getopt.GetoptError:

for opt, arg in opts:

You create a new instance of the KantGenerator class, and pass it the grammar file and source that may
or may not have been specified on the command line.

k = KantGenerator(grammar, source)

TheKantGenerator instance automatically loads the grammar, whichisan XML file. You use your custom
openAnything function to open the file (which could be stored in alocal file or aremote web server), then
use the built-in minidom parsing functions to parse the XML into atree of Python objects.

def _load(self, source):
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()

Oh, and along the way, you take advantage of your knowledge of the structure of the XML document to
set up alittle cache of references, which are just elementsin the XML document.

def loadGrammar(self, grammar):
for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

If you specified some source material on the command line, you use that; otherwise you rip through the
grammar looking for the "top-level" reference (that isn't referenced by anything else) and use that as a
starting point.

def getDefaultSource(self):
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):
xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
return '<xref id="%s"/>' % random.choice(standaloneXrefs)

Now you rip through the source material. The source material isaso XML, and you parse it one node at
atime. To keep the code separated and more maintainable, you use separate handlers for each node type.

def parse_Element(self, node):
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

You bounce through the grammar, parsing al the children of each p element,

186

Chapter 10

def do_p(self, node):

if doit:
for child in node.childNodes: self.parse(child)

replacing choice elements with arandom child,
def do_choice(self, node):
self.parse(self.randomChildElement (node))
and replacing xref elementswith arandom child of the corresponding ref element, which you previously

cached.

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

Eventually, you parse your way down to plain text,

def parse_Text(self, node):
text = node.data

self.pieces.append(text)

which you print out.

def main(argv):

k = KantGenerator(grammar, source)
print k.output()

Summary

Python comes with powerful libraries for parsing and manipulating XML documents. The minidom takes
an XML file and parsesit into Python objects, providing for random accessto arbitrary elements. Further-
more, this chapter shows how Python can be used to create a "real" standalone command-line script,
complete with command-line flags, command-line arguments, error handling, even the ability to takeinput
from the piped result of a previous program.

Before moving on to the next chapter, you should be comfortable doing all of these things:
» Chaining programs with standard input and output
» Defining dynamic dispatchers with getattr.

» Using command-line flags and validating them with getopt

187

Chapter 11. HTTP Web Services
Diving in

You'velearned about HTML processing and XML processing, and along the way you saw how to download
aweb page and how to parse XML from a URL, but let's dive into the more general topic of HTTP web
services.

Simply stated, HTTP web services are programmatic ways of sending and receiving data from remote
servers using the operations of HTTP directly. If you want to get datafrom the server, useastraight HTTP
GET; if you want to send new datato the server, use HT TP POST. (Some more advanced HT TP web service
APIsalso defineways of modifying existing dataand deleting data, usngHTTPPUT and HTTPDELETE.)
In other words, the “verbs’ built into the HTTP protocol (GET, POST, PUT, and DELETE) map directly
to application-level operations for receiving, sending, modifying, and deleting data.

The main advantage of this approach is simplicity, and its simplicity has proven popular with alot of dif-
ferent sites. Data -- usually XML data -- can be built and stored statically, or generated dynamically by a
server-side script, and al major languagesinclude an HTTP library for downloading it. Debugging is also
easier, because you can load up the web servicein any web browser and seethe raw data. Modern browsers
will even nicely format and pretty-print XML datafor you, to allow you to quickly navigate through it.

Examples of pure XML-over-HTTP web services:

* Amazon API [http://www.amazon.com/webservices] allows you to retrieve product information from
the Amazon.com online store.

» National Weather Service [http://www.nws.noaa.gov/aerts/] (United States) and Hong Kong Observatory
[http://demo.xml.weather.gov.hk/] (Hong Kong) offer weather alerts as aweb service.

» Atom API [http://atomenabled.org/] for managing web-based content.

» Syndicated feeds [http://syndic8.com/] from weblogs and news sites bring you up-to-the-minute news
from avariety of sites.

In later chapters, you'll explore APIs which use HTTP as a transport for sending and receiving data, but
don't map application semantics to the underlying HTTP semantics. (They tunnel everything over HTTP
POST.) But this chapter will concentrate on using HTTP GET to get data from aremote server, and you'll
explore several HTTP features you can use to get the maximum benefit out of pure HTTP web services.

Here is amore advanced version of the openanything module that you saw in the previous chapter:

188

http://www.amazon.com/webservices
http://www.nws.noaa.gov/alerts/
http://demo.xml.weather.gov.hk/
http://atomenabled.org/
http://syndic8.com/

Chapter 11

Example 11.1. openanything.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

import urllib2, urlparse, gzip
from StringIO import StringIO

USER_AGENT = 'OpenAnything/1.0 +http://diveintopython.org/http_web_services/'

class SmartRedirectHandler (urllib2.HTTPRedirectHandler):
def http_error_301(self, req, fp, code, msg, headers):
result = urllib2.HTTPRedirectHandler.http_error_301(
self, req, fp, code, msg, headers)
result.status = code
return result

def http_error_302(self, req, fp, code, msg, headers):
result = urllib2.HTTPRedirectHandler.http_error_302(
self, req, fp, code, msg, headers)
result.status = code
return result

class DefaultErrorHandler (urllib2.HTTPDefaultErrorHandler):
def http_error_default(self, req, fp, code, msg, headers):
result = urllib2.HTTPError(
req.get_full_url(), code, msg, headers, fp)
result.status = code
return result

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
'"'URL, filename, or string --> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you're done with it.

If the etag argument is supplied, it will be used as the value of an
If-None-Match request header.

If the lastmodified argument is supplied, it must be a formatted
date/time string in GMT (as returned in the Last-Modified header of
a previous request). The formatted date/time will be used

as the value of an If-Modified-Since request header.

If the agent argument is supplied, it will be used as the value of a
User-Agent request header.

if hasattr(source, 'read'):
return source

189

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 11

if source == '-':
return sys.stdin

if urlparse.urlparse(source)[0] == 'http':
open URL with urllib2
request = urllib2.Request(source)
request.add_header('User-Agent', agent)
if etag:
request.add_header('If-None-Match', etag)
if lastmodified:
request.add_header('If-Modified-Since', lastmodified)
request.add_header('Accept-encoding', 'gzip')
opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())
return opener.open(request)

try to open with native open function (if source is a filename)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
return StringIO(str(source))

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT) :

''"'"Fetch data and metadata from a URL, file, stream, or string'''
result = {}
f = openAnything(source, etag, last_modified, agent)
result['data'] = f.read()
if hasattr(f, 'headers'):

save ETag, if the server sent one

result['etag'] = f.headers.get('ETag')

save Last-Modified header, if the server sent one

result['lastmodified'] = f.headers.get('Last-Modified")

if f.headers.get('content-encoding', '') == 'gzip':

data came back gzip-compressed, decompress it
result['data'] = gzip.GzipFile(fileobj=StringIO(result['data’']])).read()

if hasattr(f, 'url'):

result['url'] = f.url

result['status'] = 200
if hasattr(f, 'status'):

result['status'] = f.status
f.close()
return result

Further reading

e Paul Prescod believes that pure HTTP web services are the future of the Internet [http://-
webservices.xml.com/pub/alws/2002/02/06/rest.html].

190

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

Chapter 11

How not to fetch data over HTTP

Let's say you want to download a resource over HTTP, such as a syndicated Atom feed. But you don't just
want to download it once; you want to download it over and over again, every hour, to get the latest news
from the site that's offering the news feed. Let's do it the quick-and-dirty way first, and then see how you
can do better.

Example 11.2. Downloading a feed the quick-and-dirty way

>>> import urllib
>>> data = urllib.urlopen('http://diveintomark.org/xml/atom.xml"').read() O
>>> print data
<?xml version="1.0" encoding="1is0-8859-1"7>
<feed version="0.3"
xmlns="http://purl.org/atom/ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<-- rest of feed omitted for brevity -->

1 Downloading anything over HTTPisincredibly easy in Python; in fact, it's aone-liner. The urllib
module has a handy urlopen function that takes the address of the page you want, and returns afile-
like object that you can just read() from to get the full contents of the page. It just can't get much
easier.

So what's wrong with this? Well, for a quick one-off during testing or development, there's nothing wrong
withit. | do it all the time. | wanted the contents of the feed, and | got the contents of the feed. The same
technique works for any web page. But once you start thinking in terms of aweb service that you want to
access on aregular basis -- and remember, you said you were planning on retrieving this syndicated feed
once an hour -- then you're being inefficient, and you're being rude.

Let'stalk about some of the basic features of HTTP.

Features of HTTP

There are five important features of HT TP which you should support.

User-Agent

The User-Agent is simply away for aclient to tell a server who it iswhen it requests a web page, a syn-
dicated feed, or any sort of web service over HTTP. When the client requests aresource, it should always
announce who it is, as specifically as possible. This allows the server-side administrator to get in touch
with the client-side devel oper if anything is going fantastically wrong.

By default, Python sends ageneric User-Agent: Python-urllib/1.15. Inthe next section, you'll see how
to change this to something more specific.

191

Chapter 11

Redirects

Sometimes resources move around. Web sites get reorganized, pages move to new addresses. Even web
services can reorganize. A syndicated feed at http://example.com/index.xml might be moved to
http://example.com/xml/atom.xml. Or an entire domain might move, as an organization expands and
reorganizes, for instance, http://www.example.com/index.xml might be redirected to
http://server-farm-1.example.com/index.xml.

Every time you request any kind of resource from an HTTP server, the server includes a status code in its
response. Status code 200 means “everything's normal, here's the page you asked for”. Status code 404
means “ page not found”. (You've probably seen 404 errors while browsing the web.)

HTTP has two different ways of signifying that a resource has moved. Status code 302 is atemporary re-
direct; it means “oops, that got moved over here temporarily” (and then gives the temporary addressin a
Location: header). Status code 301 isapermanent redirect; it means“ oops, that got moved permanently”
(and then gives the new addressin aLocation: header). If you get a 302 status code and a new address,
the HT TP specification says you should use the new address to get what you asked for, but the next time
you want to access the same resource, you should retry the old address. But if you get a 301 status code
and a new address, you're supposed to use the new address from then on.

urllib.urlopen will automatically “follow” redirects when it receives the appropriate status code from
the HTTP server, but unfortunately, it doesn't tell you when it does so. You'll end up getting datayou asked
for, but you'll never know that the underlying library “helpfully” followed a redirect for you. So you'll
continue pounding away at the old address, and each time you'll get redirected to the new address. That's
two round trips instead of one: not very efficient! Later in this chapter, you'll see how to work around this
S0 you can deal with permanent redirects properly and efficiently.

Last-Modified/If-Modified-Since

Some data changes al the time. The home page of CNN.com is constantly updating every few minutes.
On the other hand, the home page of Google.com only changes once every few weeks (when they put up
aspecial holiday logo, or advertise anew service). Web services are no different; usually the server knows
when the data you requested last changed, and HTTP provides a way for the server to include this last-
modified date along with the data you requested.

If you ask for the same data a second time (or third, or fourth), you can tell the server the last-modified
date that you got last time: you send an If-Modified-Since header with your request, with the date you
got back from the server last time. If the data hasn't changed since then, the server sends back a special
HTTP status code 304, which means “this data hasn't changed since the last time you asked for it”. Why
is this an improvement? Because when the server sends a 304, it doesn't re-send the data. All you get is
the status code. So you don't need to download the same data over and over again if it hasn't changed; the
server assumes you have the data cached locally.

All modern web browsers support last-modified date checking. If you've ever visited apage, re-visited the
same page aday later and found that it hadn't changed, and wondered why it loaded so quickly the second
time -- this could be why. Your web browser cached the contents of the page locally the first time, and
when you visited the second time, your browser automatically sent the last-modified date it got from the
server thefirst time. The server simply says304: Not Modified, so your browser knowsto load the page
from its cache. Web services can be this smart too.

Python's URL library has no built-in support for last-modified date checking, but since you can add arbitrary
headers to each request and read arbitrary headers in each response, you can add support for it yourself.

192

Chapter 11

ETag/If-None-Match

ETags are an dternate way to accomplish the same thing as the last-modified date checking: don't re-
download data that hasn't changed. The way it worksis, the server sends some sort of hash of the data (in
an ETag header) along with the data you requested. Exactly how this hash is determined is entirely up to
the server. The second time you request the same data, you include the ETag hash in an If-None-Match:
header, and if the data hasn't changed, the server will send you back a 304 status code. As with the last-
modified date checking, the server just sends the 304; it doesn't send you the same data a second time. By
including the ETag hash in your second request, you're telling the server that there's no need to re-send the
same data if it still matches this hash, since you still have the data from the last time.

Python's URL library has no built-in support for ETags, but you'll see how to add it later in this chapter.

Compression

The last important HTTP feature is gzip compression. When you talk about HTTP web services, you're
almost always talking about moving XML back and forth over the wire. XML is text, and quite verbose
text at that, and text generally compresses well. When you request aresource over HTTP, you can ask the
server that, if it has any new data to send you, to please send it in compressed format. You include the
Accept-encoding: gzip header inyour request, and if the server supports compression, it will send you
back gzip-compressed data and mark it with aContent-encoding: gzip header.

Python's URL library has no built-in support for gzip compression per se, but you can add arbitrary headers
to the request. And Python comes with aseparate gzip modul e, which has functionsyou can useto decom-
press the data yourself.

Notethat our little one-line script to downl oad asyndicated feed did not support any of these HT TP features.
Let's see how you can improveit.

Debugging HTTP web services

First, let'sturn on the debugging features of Python'sHTTP library and see what's being sent over the wire.
Thiswill be useful throughout the chapter, as you add more and more features.

193

Chapter 11

Example 11.3. Debugging HTTP

>>> import httplib

>>> httplib.HTTPConnection.debuglevel = 1 L]

>>> import urllib

>>> feeddata = urllib.urlopen('http://diveintomark.org/xml/atom.xml').read()
connect: (diveintomark.org, 80) []

send:
GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/1.15

reply: 'HTTP/1.1 200 OK\r\n'

[R R

header: Date: Wed, 14 Apr 2004 22:27:30 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Content-Type: application/atom+xml

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT UJ
header: ETag: "e8284-68e0-4de30f80" O
header: Accept-Ranges: bytes

header: Content-Length: 26848

header: Connection: close

O

urllib relies on another standard Python library, httplib. Normally you don't need to import
httplib directly (urllib does that automatically), but you will here so you can set the debugging
flag on the HTTPConnection class that urllib uses internally to connect to the HTTP server. This
is an incredibly useful technique. Some other Python libraries have similar debug flags, but there's
no particular standard for naming them or turning them on; you need to read the documentation of
each library to seeif such afeatureis available.

Now that the debugging flag is set, information on the the HTTP request and response is printed out
inrea time. Thefirst thing it tellsyou is that you're connecting to the server diveintomark.org on
port 80, which is the standard port for HTTP.

When you request the Atom feed, ur11ib sends three lines to the server. The first line specifies the
HTTP verb you're using, and the path of the resource (minus the domain name). All the requestsin
this chapter will use GET, but in the next chapter on SOAP, you'll seethat it uses POST for everything.
The basic syntax is the same, regardless of the verb.

The second lineisthe Host header, which specifies the domain name of the service you're accessing.
Thisisimportant, because asingle HTTP server can host multiple separate domains. My server cur-
rently hosts 12 domains; other servers can host hundreds or even thousands.

Thethird lineisthe User-Agent header. What you see hereisthe generic User-Agent that theurllib
library adds by default. In the next section, you'll see how to customize this to be more specific.
The server replies with a status code and a bunch of headers (and possibly some data, which got
stored in the feeddata variable). The status code here is 200, meaning “ everything's normal, here's
the datayou requested” . The server also tellsyou the date it responded to your request, someinform-
ation about the server itself, and the content type of the data it's giving you. Depending on your ap-
plication, this might be useful, or not. It's certainly reassuring that you thought you were asking for
an Atom feed, and lo and behold, you're getting an Atom feed (application/atom+xml, which is
the registered content type for Atom feeds).

The server tells you when this Atom feed was last modified (in this case, about 13 minutes ago). You
can send this date back to the server the next time you request the same feed, and the server can do
last-modified checking.

The server also tells you that this Atom feed has an ETag hash of "e8284-68e0-4de30f80". The
hash doesn't mean anything by itself; there's nothing you can do with it, except send it back to the

194

Chapter 11

server the next time you request this same feed. Then the server can use it to tell you if the data has
changed or not.

Setting the User-Agent

Thefirst step toimproving your HTTPweb servicesclient istoidentify yourself properly with aUser-Agent.
To do that, you need to move beyond the basic ur11ib and dive into url1lib2.

Example 11.4. Introducing urllib2

>>>
>>>
>>>
>>>
>>>
>>>

import httplib
httplib.HTTPConnection.debuglevel = 1 O
import urllib?2
request = urllib2.Request('http://diveintomark.org/xml/atom.xml’')]
opener = urllib2.build_opener() []
feeddata = opener.open(request).read() []

connect: (diveintomark.org, 80)

send:

GET

/xml/atom.xml HTITP/1.0

Host: diveintomark.org
User-agent: Python-urllib/2.1

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Wed, 14 Apr 2004 23:23:12 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

header: Accept-Ranges: bytes

header: Content-Length: 26848

header: Connection: close

O

If you still have your Python IDE open from the previous section's example, you can skip this, but
this turns on HTTP debugging so you can see what you're actually sending over the wire, and what
gets sent back.

Fetching an HTTP resource with ur11ib2 isathree-step process, for good reasons that will become
clear shortly. Thefirst step isto create aRequest object, which takes the URL of the resource you'll
eventually get around to retrieving. Note that this step doesn't actually retrieve anything yet.

The second step isto build a URL opener. This can take any number of handlers, which control how
responses are handled. But you can also build an opener without any custom handlers, which iswhat
you're doing here. You'll see how to define and use custom handlers later in this chapter when you
explore redirects.

The final step isto tell the opener to open the URL, using the Request object you created. As you
can see from all the debugging information that gets printed, this step actually retrieves the resource
and storesthe returned datain feeddata.

195

Chapter 11

Example 11.5. Adding header s with the Request

>>> request O
<urllib2.Request instance at 0x00250AA8>

>>> request.get_full url()
http://diveintomark.org/xml/atom.xml

>>> request.add_header('User-Agent',

'OpenAnything/1.0 +http://diveintopython.org/"') O

>>> feeddata = opener.open(request).read() O
connect: (diveintomark.org, 80)

send:

GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User-agent: OpenAnything/1.0 +http://diveintopython.org/ O

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Wed, 14 Apr 2004 23:45:17 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

header: Accept-Ranges: bytes

header: Content-Length: 26848

header: Connection: close

U
U

You're continuing from the previous example; you've already created aRequest object with the URL
you want to access.

Using the add_header method on the Request object, you can add arbitrary HTTP headers to the
request. The first argument is the header, the second is the value you're providing for that header.
Convention dictatesthat aUser-Agent should bein this specific format: an application name, followed
by a dlash, followed by a version number. The rest is free-form, and you'll see alot of variationsin
the wild, but somewhere it should include a URL of your application. The User-Agent is usually
logged by the server along with other details of your request, and including aURL of your application
allows server administrators looking through their access logs to contact you if something iswrong.
The opener object you created before can be reused too, and it will retrieve the same feed again, but
with your custom User-Agent header.

And here's you sending your custom User-Agent, in place of the generic one that Python sends by
default. If you look closely, you'll notice that you defined a User-Agent header, but you actually
sent aUser-agent header. See the difference? ur11ib2 changed the case so that only the first letter
was capitalized. It doesn't really matter; HT TP specifiesthat header field names are completely case-
insensitive.

Handling Last-Modified and ETag

Now that you know how to add custom HTTP headers to your web service requests, let's look at adding
support for Last-Modified and ETag headers.

These examples show the output with debugging turned off. If you still haveit turned on from the previous
section, you can turn it off by setting httplib.HTTPConnection.debuglevel = 0. Or you can just leave
debugging on, if that helps you.

196

Chapter 11

Example 11.6. Testing Last-Modified

>>> import urllib2
>>> request = urllib2.Request('http://diveintomark.org/xml/atom.xml"')
>>> opener = urllib2.build_opener()
>>> firstdatastream = opener.open(request)
>>> firstdatastream.headers.dict O
{'date': 'Thu, 15 Apr 2004 20:42:41 GMT',
'server': 'Apache/2.0.49 (Debian GNU/Linux)',

'content-type': 'application/atom+xml',
'last-modified': 'Thu, 15 Apr 2004 19:45:21 GMT',
'etag': '"e842a-3e53-55d97640"',
'content-length': '15955',

'accept-ranges': 'bytes',

'connection': 'close'}

>>> request.add_header('If-Modified-Since’,
firstdatastream.headers.get('Last-Modified')) O
>>> seconddatastream = opener.open(request) O
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\1lib\urllib2.py", line 326, in open
'_open', req)
File "c:\python23\1lib\urllib2.py", line 306, in _call_chain
result = func(*args)
File "c:\python23\1lib\urllib2.py", line 901, in http_open
return self.do_open(httplib.HTTP, req)
File "c:\python23\1lib\urllib2.py", line 895, in do_open
return self.parent.error('http', req, fp, code, msg, hdrs)
File "c:\python23\1lib\urllib2.py", line 352, in error
return self._call_chain(*args)
File "c:\python23\1lib\urllib2.py", line 306, in _call_chain
result = func(*args)
File "c:\python23\1lib\urllib2.py", line 412, in http_error_default
raise HTTPError(req.get_full_url(), code, msg, hdrs, fp)
urllib2.HTTPError: HTTP Error 304: Not Modified

[] Remember al those HTTP headers you saw printed out when you turned on debugging? Thisis how
you can get access to them programmatically: firstdatastream.headers isan object that actslike
adictionary and allows you to get any of the individual headers returned from the HTTP server.

[] Onthesecond request, you add the If-Modified-Since header with the last-modified date from the
first request. If the data hasn't changed, the server should return a 304 status code.

[] Sureenough, the data hasn't changed. You can see from the traceback that urllib2 throws aspecial
exception, HTTPError, in response to the 304 status code. This is a little unusual, and not entirely
helpful. After al, it's not an error; you specifically asked the server not to send you any data if it
hadn't changed, and the data didn't change, so the server told you it wasn't sending you any data.
That's not an error; that's exactly what you were hoping for.

urllib2 also raises an HTTPError exception for conditions that you would think of as errors, such as 404
(page not found). In fact, it will raise HTTPError for any status code other than 200 (OK), 301 (permanent
redirect), or 302 (temporary redirect). It would be more helpful for your purposesto capture the status code
and simply return it, without throwing an exception. To do that, you'll need to define a custom URL
handler.

197

Chapter 11

Example 11.7. Defining URL handlers

This custom URL handler is part of openanything.py.

class DefaultErrorHandler (urllib2.HTTPDefaultErrorHandler): U]

O

def http_error_default(self, req, fp, code, msg, headers): O
result = urllib2.HTTPError(
req.get_full_url(), code, msg, headers, fp)
result.status = code O
return result

urllib2 isdesigned around URL handlers. Each handler isjust a class that can define any number
of methods. When something happens-- likean HTTP error, or even a304 code-- url1ib?2 introspects
into the list of defined handlers for a method that can handle it. You used a similar introspection in
Chapter 9, XML Processing to define handlersfor different node types, but ur11ib2 ismoreflexible,
and introspects over as many handlers as are defined for the current request.

urllib2 searches through the defined handlers and callsthe http_error_default method when it
encounters a 304 status code from the server. By defining a custom error handler, you can prevent
urllib2 from raising an exception. Instead, you create the HTTPError object, but return it instead
of raising it.

This is the key part: before returning, you save the status code returned by the HTTP server. This
will allow you easy accessto it from the calling program.

Example 11.8. Using custom URL handlers

>>>

request.headers O

{'If-modified-since': 'Thu, 15 Apr 2004 19:45:21 GMT'}

>>>
>>>
>>>
>>>

304
>>>

O

import openanything

opener = urllib2.build_opener(
openanything.DefaultErrorHandler()) U]

seconddatastream = opener.open(request)

seconddatastream. status O

seconddatastream.read() U]

You're continuing the previous example, so the Request object isaready set up, and you've aready
added the If-Modified-Since header.

Thisisthe key: now that you've defined your custom URL handler, you need to tell ur11ib2 to use
it. Remember how | said that ur11ib2 broke up the process of accessing an HTTP resourceinto three
steps, and for good reason? This is why building the URL opener is its own step, because you can
build it with your own custom URL handlers that override ur11ib2's default behavior.

Now you can quietly open the resource, and what you get back is an object that, along with the usual
headers (use seconddatastream.headers. dict to acessthem), also containsthe HT TP status code.
In this case, as you expected, the status is 304, meaning this data hasn't changed since the last time
you asked for it.

Note that when the server sends back a 304 status code, it doesn't re-send the data. That's the whole
point: to save bandwidth by not re-downl oading datathat hasn't changed. So if you actually want that
data, you'll need to cacheit locally the first time you get it.

Handling ETag works much the same way, but instead of checking for Last-Modified and sending
If-Modified-Since, you check for ETag and send If-None-Match. Let's start with afresh IDE session.

198

Chapter 11

Example 11.9. Supporting ETag/If-None-Match

>>>
>>>
>>>

>>>
>>>

import urllib2, openanything

request = urllib2.Request('http://diveintomark.org/xml/atom.xml"’)

opener = urllib2.build_opener(
openanything.DefaultErrorHandler())

firstdatastream = opener.open(request)

firstdatastream.headers.get('ETag') O

'"e842a-3e53-55d97640" '

>>>
>>>

firstdata = firstdatastream.read()
print firstdata O

<?xml version="1.0" encoding="1is0-8859-1"7>

<feed version="0.3"
xmlns="http://purl.org/atom/ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<-- rest of feed omitted for brevity -->

>>>

>>>
>>>
304
>>>

O Ooogo O

request.add_header('If-None-Match',
firstdatastream.headers.get('ETag')) O

seconddatastream = opener.open(request)

seconddatastream. status O

seconddatastream.read() O

Using the firstdatastream.headers pseudo-dictionary, you can get the ETag returned from the
server. (What happensif the server didn't send back an ETag? Then this line would return None.)
OK, you got the data.

Now set up the second call by setting the If-None-Match header to the ETag you got from the first
cal.

The second call succeeds quietly (without throwing an exception), and once again you see that the
server has sent back a 304 status code. Based on the ETag you sent the second time, it knows that the
data hasn't changed.

Regardless of whether the 304 istriggered by Last-Modified date checking or ETag hash matching,
you'll never get the data along with the 304. That's the whole point.

Support Last-Modified and ETag

In these examples, the HTTP server has supported both Last-Modified and ETag headers, but
not all serversdo. Asaweb services client, you should be prepared to support both, but you must
code defensively in case a server only supports one or the other, or neither.

Handling redirects

You

can support permanent and temporary redirects using a different kind of custom URL handler.

First, let's see why aredirect handler is necessary in the first place.

199

Chapter 11

Example 11.10. Accessing web services without a redirect handler

>>> import urllib2, httplib
>>> httplib.HTTPConnection.debuglevel = 1 L]
>>> request = urllib2.Request(
.. 'http://diveintomark.org/redir/example301.xml") UJ
>>> opener = urllib2.build_opener()
>>> f = opener.open(request)
connect: (diveintomark.org, 80)
send: '
GET /redir/example301.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1
reply: 'HTTP/1.1 301 Moved Permanently\r\n' []
header: Date: Thu, 15 Apr 2004 22:06:25 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml UJ
header: Content-Length: 338
header: Connection: close
header: Content-Type: text/html; charset=iso-8859-1
connect: (diveintomark.org, 80)
send: '
GET /xml/atom.xml HTTP/1.0 []
Host: diveintomark.org
User-agent: Python-urllib/2.1
reply: 'HTTP/1.1 200 OK\r\n'
header: Date: Thu, 15 Apr 2004 22:06:25 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"
header: Accept-Ranges: bytes
header: Content-Length: 15955
header: Connection: close
header: Content-Type: application/atom+xml
>>> f.url l
'http://diveintomark.org/xml/atom.xml"'
>>> f_headers.dict
{'content-length': '15955',
'accept-ranges': 'bytes',
'server': 'Apache/2.0.49 (Debian GNU/Linux)',
'last-modified': 'Thu, 15 Apr 2004 19:45:21 GMT',
'connection': 'close',
'etag': '"e842a-3e53-55d97640"',
'date': 'Thu, 15 Apr 2004 22:06:25 GMT',
'content-type': 'application/atom+xml'}
>>> f.status
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AttributeError: addinfourl instance has no attribute 'status'

200

Chapter 11

O OOgo o oOod

You'll be better able to see what's happening if you turn on debugging.

This is a URL which | have set up to permanently redirect to my Atom feed at
http://diveintomark.org/xml/atom.xml.

Sure enough, when you try to download the data at that address, the server sends back a 301 status
code, telling you that the resource has moved permanently.

The server also sends back aLocation: header that gives the new address of this data.

urllib2 noticestheredirect status code and automatically triesto retrieve the dataat the new location
specified in the Location: header.

The object you get back from the opener contains the new permanent address and all the headers
returned from the second request (retrieved from the new permanent address). But the status codeis
missing, so you have no way of knowing programmatically whether this redirect was temporary or
permanent. And that matters very much: if it was atemporary redirect, then you should continue to
ask for the data at the old location. But if it was a permanent redirect (as this was), you should ask
for the data at the new location from now on.

Thisis suboptimal, but easy to fix. ur11ib2 doesn't behave exactly as you want it to when it encounters a
301 or 302, so let's override its behavior. How? With a custom URL handler, just like you did to handle
304 codes.

Example 11.11. Defining the redirect handler

This classis defined in openanything.py.

class SmartRedirectHandler (urllib2.HTTPRedirectHandler): O

H
O

def http_error_301(self, req, fp, code, msg, headers):
result = urllib2.HTTPRedirectHandler.http_error_301(O
self, req, fp, code, msg, headers)
result.status = code O
return result

def http_error_302(self, req, fp, code, msg, headers): O
result = urllib2.HTTPRedirectHandler.http_error_302(
self, req, fp, code, msg, headers)
result.status = code
return result

Redirect behavior isdefined in ur1lib2 in aclass called HTTPRedirectHandler. You don't want to
completely override the behavior, you just want to extend it a little, so you'll subclass
HTTPRedirectHandler SO you can call the ancestor classto do all the hard work.

When it encounters a 301 status code from the server, ur11ib2 will search through its handlers and
call thehttp_error_301 method. Thefirst thing ours doesisjust call the http_error_301 method
in the ancestor, which handles the grunt work of looking for the Location: header and following
the redirect to the new address.

Here's the key: before you return, you store the status code (301), so that the calling program can
access it later.

Temporary redirects (status code 302) work the same way: override the http_error_302 method,
call the ancestor, and save the status code before returning.

So what has this bought us?You can now build a URL opener with the custom redirect handler, and it will
still automatically follow redirects, but now it will also expose the redirect status code.

201

Chapter 11

Example 11.12. Using the redirect handler to detect permanent redirects

>>> request = urllib2.Request('http://diveintomark.org/redir/example301.xml')

>>> import openanything, httplib

>>> httplib.HTTPConnection.debuglevel = 1

>>> opener = urllib2.build_opener(
openanything.SmartRedirectHandler()) []

>>> f = opener.open(request)

connect: (diveintomark.org, 80)

send: 'GET /redir/example301.xml HTTP/1.0

Host: diveintomark.org

User-agent: Python-urllib/2.1

reply: 'HTTP/1.1 301 Moved Permanently\r\n' []

header: Date: Thu, 15 Apr 2004 22:13:21 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Location: http://diveintomark.org/xml/atom.xml

header: Content-Length: 338

header: Connection: close

header: Content-Type: text/html; charset=iso-8859-1

connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User-agent: Python-urllib/2.1

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:13:21 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT

header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

header: Content-Type: application/atom+xml

>>> f.status 0
301

>>> f.url

'http://diveintomark.org/xml/atom.xml"'

[] First, build aURL opener with the redirect handler you just defined.

[] Yousentoff arequest, and you got a301 status code in response. At this point, the http_error_301
method gets called. You call the ancestor method, which follows the redirect and sends a request at
the new location (http://diveintomark.org/xml/atom.xml).

[] Thisisthe payoff: now, not only do you have access to the new URL, but you have access to the re-
direct status code, so you can tell that this was a permanent redirect. The next time you request this
data, you should request it from the new location (http://diveintomark.org/xml/atom.xml, as
specified in £.url). If you had stored the location in a configuration file or a database, you need to
update that so you don't keep pounding the server with requests at the old address. It's time to update
your address book.

202

Chapter 11

The same redirect handler can also tell you that you shouldn't update your address book.

203

Chapter 11

Example 11.13. Using the redirect handler to detect temporary redirects

>>> request = urllib2.Request(

'http://diveintomark.org/redir/example302.xml") []

>>> f = opener.open(request)
connect: (diveintomark.org, 80)

send:

GET /redir/example302.xml HTTP/1.0
Host: diveintomark.org
User-agent: Python-urllib/2.1

reply: 'HTTP/1.1 302 Found\r\n' []
header: Date: Thu, 15 Apr 2004 22:18:21 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Location: http://diveintomark.org/xml/atom.xml
header: Content-Length: 314

header: Connection: close

header: Content-Type: text/html; charset=iso-8859-1
connect: (diveintomark.org, 80)

send:

GET /xml/atom.xml HTTP/1.0 []
Host: diveintomark.org
User-agent: Python-urllib/2.1

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:18:21 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

header: Content-Type: application/atom+xml

>>> f.status U

302

>>> f.url
http://diveintomark.org/xml/atom.xml

U
U

This is a sample URL I've set up that is configured to tell clients to temporarily redirect to
http://diveintomark.org/xml/atom.xml.

The server sends back a302 status code, indicating atemporary redirect. Thetemporary new location
of the datais giveninthe Location: header.

urllib2 callsyour http_error_302 method, which calls the ancestor method of the same hamein
urllib2.HTTPRedirectHandler, which follows the redirect to the new location. Then your
http_error_302 method stores the status code (302) so the calling application can get it later.
And here you are, having successfully followed the redirect to
http://diveintomark.org/xml/atom.xml. f.status tellsyou that this was atemporary redirect,
which means that you should continue to request data from the origina address
(http://diveintomark.org/redir/example302.xml). Maybe it will redirect next time too, but
maybe not. Maybe it will redirect to a different address. It's not for you to say. The server said this
redirect was only temporary, so you should respect that. And now you're exposing enough information
that the calling application can respect that.

204

Chapter 11

Handling compressed data

Thelast important HT TP feature you want to support is compression. Many web services have the ability
to send data compressed, which can cut down the amount of data sent over the wire by 60% or more. This
is especially true of XML web services, since XML data compresses very well.

Servers won't give you compressed data unless you tell them you can handle it.

Example 11.14. Telling the server you would like compressed data

>>> import urllib2, httplib

>>> httplib.HTTPConnection.debuglevel = 1

>>> request = urllib2.Request('http://diveintomark.org/xml/atom.xml"')
>>> request.add_header('Accept-encoding', 'gzip') O
>>> opener = urllib2.build_opener()

>>> f = opener.open(request)

connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User-agent: Python-urllib/2.1

Accept-encoding: gzip O
reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:24:39 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Vary: Accept-Encoding

header: Content-Encoding: gzip O
header: Content-Length: 6289 H
header: Connection: close

header: Content-Type: application/atom+xml

[] Thisisthe key: once you've created your Request object, add an Accept-encoding header to tell
the server you can accept gzip-encoded data. gzip is the name of the compression algorithm you're
using. In theory there could be other compression algorithms, but gzip isthe compression algorithm
used by 99% of web servers.

[] There'syour header going across the wire.

[] And here'swhat the server sends back: the Content-Encoding: gzip header means that the data
you're about to receive has been gzip-compressed.

[] The Content-Length header is the length of the compressed data, not the uncompressed data. As
you'll seein a minute, the actual length of the uncompressed data was 15955, so gzip compression
cut your bandwidth by over 60%!

205

Chapter 11

Example 11.15. Decompressing the data

>>> compresseddata = f.read() U
>>> len(compresseddata)
6289

>>> import StringIO
>>> compressedstream = StringI0.StringI0(compresseddata)
>>> import gzip
>>> gzipper = gzip.GzipFile(fileobj=compressedstream)
>>> data = gzipper.read()
>>> print data
<?xml version="1.0" encoding="1is0-8859-1"7>
<feed version="0.3"
xmlns="http://purl.org/atom/ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<-- rest of feed omitted for brevity -->
>>> len(data)
15955

oo O

[] Continuing from the previous example, f isthefile-like object returned from the URL opener. Using
itsread () method would ordinarily get you the uncompressed data, but since this data has been gzip-

compressed, thisisjust the first step towards getting the data you really want.

[1 OK,thisstepisalittlebit of messy workaround. Python hasagzip module, which reads (and actually
writes) gzip-compressed files on disk. But you don't have afile on disk, you have a gzip-compressed
buffer in memory, and you don't want to write out atemporary file just so you can uncompressit. So
what you're going to do iscreate afile-like object out of thein-memory data (compresseddata), using
the StringT0 module. You first saw the StringIO module in the previous chapter, but now you've

found another use for it.

[] Now you can create an instance of GzipFile, and tell it that its “file” is the file-like object

compressedstream.

[] Thisistheline that does al the actual work: “reading” from GzipFile will decompress the data.
Strange?Yes, but it makes sensein atwisted kind of way. gzipper isafile-like object which represents
agzip-compressed file. That “file” isnot areal file on disk, though; gzipper isreally just “reading”
from the file-like object you created with StringI0 to wrap the compressed data, which isonly in
memory in the variable compresseddata. And where did that compressed data come from? You
originaly downloaded it from aremote HT TP server by “reading” from the file-like object you built
withurllib2.build_opener. And amazingly, thisall just works. Every step in the chain hasno idea

that the previous step is faking it.
[] Look ma, real data (15955 bytesof it, in fact.)

“But wait!” | hear you cry. “This could be even easier!” | know what you're thinking. You're thinking that
opener . open returnsafile-like object, so why not cut out the StringI0 middleman and just pass f directly

to GzipFile? OK, maybe you weren't thinking that, but don't worry about it, because it doesn't work.

206

Chapter 11

Example 11.16. Decompressing the data directly from the server

>>> f = opener.open(request) 0
>>> f._headers.get('Content-Encoding') L]
v ngp v

>>> data = gzip.GzipFile(fileobj=f).read() O
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\1lib\gzip.py", line 217, in read
self._read(readsize)
File "c:\python23\1lib\gzip.py", line 252, in _read
pos = self.fileobj.tell() # Save current position
AttributeError: addinfourl instance has no attribute 'tell'

[] Continuing from the previous example, you aready have a Request object set up with an
Accept-encoding: gzip header.

[] Simply opening the request will get you the headers (though not download any data yet). Asyou can
see from the returned Content-Encoding header, this data has been sent gzip-compressed.

[] Sinceopener.open returns afile-like object, and you know from the headers that when you read it,
you're going to get gzip-compressed data, why not simply pass that file-like object directly to
GzipFile?Asyou“read” fromtheGzipFile instance, it will “read” compressed datafrom the remote
HTTP server and decompressit on thefly. It'sagood idea, but unfortunately it doesn't work. Because
of the way gzip compression works, GzipFile needs to save its position and move forwards and
backwards through the compressed file. Thisdoesn't work when the“file” isastream of bytescoming
from aremote server; al you can do with it is retrieve bytes one at atime, not move back and forth
through the data stream. So the inelegant hack of using StringIO0 isthe best solution: download the
compressed data, create afile-like object out of it with StringI0, and then decompressthe datafrom
that.

Putting it all together

You've seen all the pieces for building an intelligent HTTP web services client. Now let's see how they all
fit together.

207

Chapter 11

Example 11.17. The openanything function

Thisfunction is defined in openanything.py.

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):

O

o o o o

I I O

|

non-HTITP code omitted for brevity
if urlparse.urlparse(source)[0] == 'http':

open URL with urllib2
request = urllib2.Request(source)
request.add_header('User-Agent', agent)

if etag:
request.add_header('If-None-Match', etag)

if lastmodified:
request.add_header('If-Modified-Since', lastmodified)

request.add_header('Accept-encoding', 'gzip')
opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())

return opener.open(request)

urlparse is a handy utility module for, you guessed it, parsing URLSs. It's primary function, also
caledurlparse, takesaURL and splitsit into atuple of (scheme, domain, path, params, query string
parameters, and fragment identifier). Of these, the only thing you care about is the scheme, to make
sure that you're dealing with an HTTP URL (which ur11ib2 can handle).

You identify yourself to the HTTP server with the User-Agent passed in by the calling function. If
no User-Agent was specified, you use adefault one defined earlier inthe openanything . py module.
You never use the default one defined by url1lib2.

If an ETag hash was given, send it in the If-None-Match header.

If alast-modified date was given, send it in the If-Modified-Since header.
Tell the server you would like compressed data if possible.

Build aURL opener that uses both of the custom URL handlers: SmartRedirectHandler for handling
301 and 302 redirects, and Defaul tErrorHandler for handling 304, 404, and other error conditions
gracefully.

That'sit! Open the URL and return afile-like object to the caller.

208

Chapter 11

Example 11.18. The fetch function

Thisfunction is defined in openanything.py.

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):

|

O OoOdo

''"'Fetch data and metadata from a URL, file, stream, or string'''
result = {}
f = openAnything(source, etag, last_modified, agent) []
result['data'] = f.read() [l
if hasattr(f, 'headers'):

save ETag, if the server sent one

result['etag'] = f.headers.get('ETag') []
save Last-Modified header, if the server sent one

result['lastmodified'] = f.headers.get('Last-Modified") []
if f.headers.get('content-encoding', '') == 'gzip': O

data came back gzip-compressed, decompress it
result['data'] = gzip.GzipFile(fileobj=StringIO(result['data']])).read()
if hasattr(f, 'url'): Il
result['url'] = f.url
result['status'] = 200

if hasattr(f, 'status'):]
result['status'] = f.status
f.close()

return result

First, you call the openAnything function with a URL, ETag hash, Last-Modified date, and
User-Agent.

Read the actual data returned from the server. This may be compressed; if so, you'll decompress it
|ater.

Save the ETag hash returned from the server, so the calling application can pass it back to you next
time, and you can passit on to openAnything, which can stick it in the If-None-Match header and
send it to the remote server.

Save the Last-Modified date too.

If the server saysthat it sent compressed data, decompressit.

If you got a URL back from the server, save it, and assume that the status code is 200 until you find
out otherwise.
If one of the custom URL handlers captured a status code, then save that too.

209

Chapter 11

Example 11.19. Using openanything. py

>>>
>>>
>>>
>>>
>>>
{'u
'la
‘et
'st
'da
<fe
<
>>>

>>>
>>>
{'u
'la
‘et
'st
'da
O

O

O

Summ

import openanything

useragent = 'MyHTTPWebServicesApp/1.0'

url = "http://diveintopython.org/redir/example301.xml’

params = openanything.fetch(url, agent=useragent) O
params O
rl': 'http://diveintomark.org/xml/atom.xml"',

stmodified': 'Thu, 15 Apr 2004 19:45:21 GMT',

ag': '"e842a-3e53-55d97640""',

atus': 301,

ta': '<?xml version="1.0" encoding="iso-8859-1"7>

ed version="0.3"

rest of data omitted for brevity -->'}

if params['status'] == 301: O
url = params['url']

newparams = openanything.fetch(
url, params['etag'], params['lastmodified'], useragent) O
newparams

rl': 'http://diveintomark.org/xml/atom.xml"',

stmodified': None,

ag': '"e842a-3e53-55d97640""',

atus': 304,

ta': ''} O

The very first time you fetch a resource, you don't have an ETag hash or Last-Modified date, so
you'll leave those out. (They're optional parameters.)

What you get back is a dictionary of several useful headers, the HTTP status code, and the actual
datareturned from the server. openanything handlesthe gzip compression internally; you don't care
about that at thislevel.

If you ever get a 301 status code, that's a permanent redirect, and you need to update your URL to
the new address.

The second time you fetch the sameresource, you have all sorts of information to passback: a(possibly
updated) URL, the ETag from thelast time, the Last-Modi fied date from thelast time, and of course
your User-Agent.

What you get back is again adictionary, but the data hasn't changed, so all you got was a 304 status
code and no data.

ary

The openanything. py and its functions should now make perfect sense.

There are 5 important features of HT TP web services that every client should support:

Identifying your application by setting a proper User-Agent.

Handling permanent redirects properly.

Supporting Last-Modified date checking to avoid re-downloading data that hasn't changed.
Supporting ETag hashesto avoid re-downloading data that hasn't changed.

Supporting gzip compression to reduce bandwidth even when data has changed.

210

Chapter 12. SOAP Web Services

Abstract

Chapter 11 focused on document-oriented web services over HTTP. The “input parameter” was the URL,
and the “return value” was an actual XML document which it was your responsibility to parse.

This chapter will focus on SOAP web services, which take amore structured approach. Rather than dealing
with HTTP requests and XML documents directly, SOAP alows you to simulate calling functions that
return native data types. As you will see, theillusion is almost perfect; you can “call” afunction through
aSOAP library, with the standard Python calling syntax, and the function appears to return Python objects
and values. But under the covers, the SOAP library has actually performed acomplex transaction involving
multiple XML documents and a remote server.

SOAPisacomplex specification, and it issomewhat misleading to say that SOAPisall about calling remote
functions. Some peoplewould pipe up to add that SOAP allowsfor one-way asynchronous message passing,
and document-oriented web services. And those people would be correct; SOAP can be used that way, and
in many different ways. But this chapter will focus on so-called “RPC-style’” SOAP -- calling a remote
function and getting results back.

Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could programmatically
access Google search results? Now you can. Here is a program to search Google from Python.

Example 12.1. search.py
from SOAPpy import WSDL

you'll need to configure these two values;

see http://www.google.com/apis/

WSDLFILE = '/path/to/copy/of/GoogleSearch.wsdl'
APIKEY = 'YOUR_GOOGLE_API_KEY'

_server = WSDL.Proxy(WSDLFILE)
def search(q):
"""Search Google and return list of {title, link, description}
results = _server.doGoogleSearch(
APIKEY, g, O, 10, False, "", False, "", "utf-8", "utf-8")
return [{"title": r.title.encode("utf-8"),
"link": r.URL.encode("utf-8"),
"description": r.snippet.encode("utf-8")}
for r in results.resultElements]

[IRTR1]

if __name__ == '_main__':
import sys
for r in search(sys.argv[1])[:5]:
print r['title']
print r['link']
print r['description']
print

211

Chapter 12

You can import this as a module and use it from a larger program, or you can run the script from the
command line. On the command line, you give the search query as a command-line argument, and it prints
out the URL, title, and description of the top five Google search results.

Hereisthe sample output for a search for the word “python”.

Example 12.2. Sample Usage of search.py

C:\diveintopython\common\py> python search.py "python"

Python Programming Language

http://www.python.org/

Home page for Python, an interpreted, interactive, object-oriented,
extensible
 programming language. ... Python

is OSI Certified Open Source: OSI Certified.

Python Documentation Index
http://www.python.org/doc/
... New-style classes (aka descrintro). Regular expressions. Database
API. Email Us.
 docs@python.org. (c) 2004. Python
Software Foundation. Python Documentation. ...

Download Python Software

http://www.python.org/download/

Download Standard Python Software. Python 2.3.3 is the
current production
 version of Python. ...
Python is OSI Certified Open Source:

Pythonline
http://www.pythonline.com/

Dive Into Python

http://diveintopython.org/

Dive Into Python. Python from novice to pro. Find:
... It is also available in multiple
 languages. Read

Dive Into Python. This book is still being written. ...

Further Reading on SOAP

e http://www.xmethods.net/ is a repository of public access SOAP web services.

» The SOAP specification [http://www.w3.org/TR/soap/] is surprisingly readable, if you like that sort
of thing.

Installing the SOAP Libraries

Unlikethe other codein thisbook, this chapter relieson librariesthat do not come pre-installed with Python.

Before you can dive into SOAP web services, you'll need to install three libraries: PyXML, fpconst, and
SOAPpy.

212

http://www.xmethods.net/
http://www.w3.org/TR/soap/

Chapter 12

Installing PyXML

The first library you need is PyXML, an advanced set of XML libraries that provide more functionality
than the built-in XML libraries we studied in Chapter 9.

Procedure 12.1.
Here isthe procedure for installing PyXML.:

1. Goto http://pyxml.sourceforge.net/, click Downloads, and download the latest version for your oper-
ating system.

2. If you are using Windows, there are several choices. Make sure to download the version of PyXML
that matches the version of Python you are using.

3. Double-click theinstaler. If you download PyXML 0.8.3 for Windows and Python 2.3, the installer
program will be PyXML-0.8.3.win32-py2.3.exe.

4. Step through theinstaller program.

5. Aftertheinstallation iscomplete, closetheinstaller. Therewill not be any visible indication of success
(no programs installed on the Start Menu or shortcuts installed on the desktop). PyXML issimply a
collection of XML libraries used by other programs.

To verify that you installed PyXML correctly, run your Python IDE and check the version of the XML
libraries you have installed, as shown here.

Example 12.3. Verifying PyXML Installation

>>> import xml
>>> xml.__version__
'0.8.3"

This version number should match the version number of the PyXML installer program you downloaded
and ran.

Installing fpconst

The second library you need isfpconst, a set of constants and functionsfor working with [EEE754 double-
precision special values. This provides support for the special values Not-a-Number (NaN), Positive Infinity
(Inf), and Negative Infinity (-Inf), which are part of the SOAP datatype specification.

Procedure 12.2.
Here is the procedure for installing fpconst:

1. Download thelatest version of fpconst from http://www.anal yti cs.washington.edu/statcomp/projects/-
rzope/fpconst/.

2. Therearetwo downloads available, onein . tar.gz format, the other in . zip format. If you are using
Windows, download the . zip file; otherwise, download the . tar.gz file.

213

http://pyxml.sourceforge.net/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/
http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/

Chapter 12

3. Decompressthe downloaded file. On Windows X P, you can right-click on the file and choose Extract
All; on earlier versions of Windows, you will need a third-party program such as WinZip. On Mac
OS X, you can double-click the compressed file to decompress it with Stuffit Expander.

4. Open acommand prompt and navigate to the directory where you decompressed the fpconst files.
5. Typepython setup.py install to runtheinstallation program.

To verify that you installed fpconst correctly, run your Python IDE and check the version number.

Example 12.4. Verifying fpconst I nstallation

>>> import fpconst
>>> fpconst.__version__
'0.6.0'

Thisversion number should match the version number of the fpconst archive you downloaded and installed.

Installing SOAPpy

Thethird and final requirement isthe SOAP library itself: SOAPpy.

Procedure 12.3.
Hereisthe procedure for installing SOAPpy:
1. Goto http://pywebsvcs.sourceforge.net/ and select Latest Official Release under the SOAPpy section.

2. There are two downloads available. If you are using Windows, download the .zip file; otherwise,
download the .tar.gz file.

3. Decompress the downloaded file, just as you did with fpconst.
4. Open acommand prompt and navigate to the directory where you decompressed the SOAPpy files.
5. Typepython setup.py install to run theinstallation program.

To verify that you installed SOAPpy correctly, run your Python IDE and check the version number.

Example 12.5. Verifying SOAPpy Installation

>>> import SOAPpy
>>> SOAPpy.__version__
'0.11.4"

Thisversion number should match the version number of the SOAPpy archive you downloaded and installed.

First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access SOAP
servers that provide simple functions for demonstration purposes.

214

http://pywebsvcs.sourceforge.net/

Chapter 12

The most popular public access SOAP server is http://www.xmethods.net/. This example uses ademonstra-
tion function that takes a United States zip code and returns the current temperature in that region.

Example 12.6. Getting the Current Temperature

>>> from SOAPpy import SOAPProxy [l

>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter’
>>> namespace = 'urn:xmethods-Temperature' []

>>> server = SOAPProxy(url, namespace) [l

>>> server.getTemp('27502"') H

80.0

[] You access the remote SOAP server through a proxy class, SOAPProxy. The proxy handles all the
internals of SOAP for you, including creating the XML request document out of the function name
and argument list, sending the request over HTTP to the remote SOAP server, parsing the XML re-
sponse document, and creating native Python valuesto return. You'll see what these XML documents
look like in the next section.

[] Every SOAPservicehasaURL whichhandlesall therequests. The same URL isused for al function
calls. This particular service only has a single function, but later in this chapter you'll see examples
of the Google API, which has severa functions. The service URL is shared by all functions.

Each SOAP service also has anamespace, which is defined by the server and is completely arbitrary.
It's simply part of the configuration required to call SOAP methods. It alows the server to share a
single service URL and route requests between several unrelated services. It's like dividing Python
modules into packages.

[] You're creating the SOAPProxy with the service URL and the service namespace. This doesn't make
any connection to the SOAP server; it ssimply creates alocal Python object.

[1 Now with everything configured properly, you can actually call remote SOAP methods as if they
were local functions. You pass arguments just like a normal function, and you get a return value just
like anormal function. But under the covers, there's a heck of alot going on.

Let's peek under those covers.

Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.

Turning on debugging is a simple matter of setting two flags in the SOAPProxy's configuration.

215

http://www.xmethods.net/

Chapter 12

Example 12.7. Debugging SOAP Web Services

>>>
>>>
>>>
>>>
>>>
>>>
>>>

** Qutgoing SOAP *** %* wdek

from SOAPpy import SOAPProxy

url = "http://services.xmethods.net:80/soap/servlet/rpcrouter’
n = 'urn:xmethods-Temperature'

server = SOAPProxy(url, namespace=n) U]
server.config.dumpSOAPQut = 1 O
server.config.dumpSOAPIn = 1

temperature = server.getTemp('27502') U]

<?xml version="1.0" encoding="UTF-8"7>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTemp xmlns:nsl="urn:xmethods-Temperature" SOAP-ENC:root="1">

<vl xsi:type="xsd:string">27502</v1>

</nsl:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Incoming SOAP

<?xml version='1.0"' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTempResponse xmlns:nsl="urn:xmethods-Temperature"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">80.0</return>

</nsl:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

FTekhd

>>>

80.0

O
H

O

R o o o o o U T S L e e i S o e e e T S S S e e S S o e L T S S i S S S S e T T e i o S R R R

temperature

First, create the SOAPProxy like normal, with the service URL and the namespace.

Second, turn on debugging by setting server.config.dumpSOAPIn and
server.config.dumpSOAPOut

Third, call the remote SOAP method as usual. The SOAP library will print out both the outgoing

XML request document, and the incoming XML response document. Thisis all the hard work that
SOAPProxy isdoing for you. Intimidating, isn't it? Let's break it down.

Most of the XML request document that gets sent to the server isjust boilerplate. Ignore all the namespace
declarations; they're going to be the same (or similar) for all SOAP calls. The heart of the “function call”
isthis fragment within the <Body> element:

216

Chapter 12

<nsl:getTemp
xmlns:nsl="urn:xmethods-Temperature"
SOAP-ENC:root="1">

<vl xsi:type="xsd:string">27502</v1> O

</nsl:getTemp>

Ood

[] Theelement nameisthe function name, getTemp. SOAPProxy Uses getattr asadispatcher. Instead
of calling separate local methods based on the method name, it actually uses the method name to
construct the XML reguest document.

[1 Thefunction's XML element is contained in a specific namespace, which is the namespace you spe-
cified when you created the SOAPProxy object. Don't worry about the SOAP-ENC : root; that's boilerplate
too.

[] Thearguments of the function also got translated into XML. SOAPProxy introspects each argument
to determine its datatype (in this case it's a string). The argument datatype goes into the xsi:type
attribute, followed by the actual string value.

The XML return document is equally easy to understand, once you know what to ignore. Focus on this
fragment within the <Body>:

<nsl:getTempResponse O
xmlns:nsl="urn:xmethods-Temperature" O
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">80.0</return>

</nsl:getTempResponse>

[1 The server wraps the function return value within a <getTempResponse> element. By convention,
thiswrapper element isthe name of the function, plusResponse. But it could really be almost anything;
the important thing that SOAPProxy noticesis not the element name, but the namespace.

[] Theserver returns the response in the same namespace we used in the request, the same namespace
we specified when wefirst create the SOAPProxy. Later in this chapter we'll see what happensif you
forget to specify the namespace when creating the SOAPProxy.

[] Thereturnvalueisspecified, along with itsdatatype (it'safloat). SOAPProxy usesthisexplicit datatype
to create a Python object of the correct native datatype and return it.

Introducing WSDL

The SOAPProxy class proxies local method calls and transparently turns then into invocations of remote
SOAP methods. As you've seen, thisis alot of work, and SOAPProxy does it quickly and transparently.
What it doesn't do is provide any means of method introspection.

Consider this: the previous two sections showed an example of calling asimple remote SOAP method with
one argument and one return value, both of simple data types. This required knowing, and keeping track
of, the service URL, the service namespace, the function name, the number of arguments, and the datatype
of each argument. If any of theseis missing or wrong, the whole thing falls apart.

That shouldn't come as a big surprise. If | wanted to call alocal function, I would need to know what
package or module it was in (the equivalent of service URL and namespace). | would need to know the
correct function name and the correct number of arguments. Python deftly handles datatyping without ex-
plicit types, but | would still need to know how many argument to pass, and how many return values to
expect.

217

Chapter 12

The big difference is introspection. As you saw in Chapter 4, Python excels at letting you discover things
about modules and functions at runtime. You can list the available functions within a module, and with a
little work, drill down to individual function declarations and arguments.

WSDL letsyou do that with SOAP web services. WSDL standsfor “Web Services Description Language” .
Although designed to be flexible enough to describe many types of web services, it is most often used to
describe SOAP web services.

A WSDL fileisjust that: afile. More specifically, it'san XML file. It usualy lives on the same server you
use to access the SOAP web services it describes, although there's nothing special about it. Later in this
chapter, we'll download the WSDL file for the Google APl and use it locally. That doesn't mean we're
calling Google locally; the WSDL file still describes the remote functions sitting on Googl€'s server.

A WSDL file contains a description of everything involved in calling a SOAP web service:
» The service URL and namespace

* The type of web service (probably function calls using SOAP, athough as | mentioned, WSDL is
flexible enough to describe awide variety of web services)

* Thelist of available functions

* Theargumentsfor each function

» The datatype of each argument

e Thereturn values of each function, and the datatype of each return value

In other words, aWSDL filetells you everything you need to know to be ableto call a SOAP web service.

Introspecting SOAP Web Services with WSDL

Like many thingsin the web services arena, WSDL has along and checkered history, full of political strife
and intrigue. | will skip over this history entirely, since it bores me to tears. There were other standards
that tried to do similar things, but WSDL won, so let's learn how to useiit.

The most fundamental thing that WSDL allows you to do is discover the available methods offered by a
SOAP server.

218

Chapter 12

Example 12.8. Discovering The Available M ethods

>>> from SOAPpy import WSDL O

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl')
>>> server = WSDL.Proxy(wsdlFile) U

>>> server.methods.keys() O

[u'getTemp']

[1 SOAPpy includes aWSDL parser. At the time of this writing, it was labeled as being in the early
stages of development, but | had no problem parsing any of the WSDL files| tried.

[] TouseaWSDL file, you again use a proxy class, WSDL. Proxy, which takes a single argument: the
WSDL file. Note that in this case you are passing in the URL of aWSDL file stored on the remote
server, but the proxy classworks just as well with alocal copy of theWSDL file. The act of creating
the WSDL proxy will download the WSDL file and parse it, so it there are any errors in the WSDL
file (or it can't be fetched due to networking problems), you'll know about it immediately.

[TheWSDL proxy class exposes the available functions as a Python dictionary, server.methods.
So getting the list of available methods is as simple as calling the dictionary method keys ().

Okay, so you know that this SOAP server offers a single method: getTemp. But how do you call it? The
WSDL proxy object can tell you that too.

Example 12.9. Discovering A Method's Arguments

>>> callInfo = server.methods['getTemp'] [

>>> callInfo.inparams O
[<SOAPpy.wstools.WSDLTools.ParameterInfo instance at O0x00CF3ADO>]
>>> callInfo.inparams[0].name O

u'zipcode'

>>> callInfo.inparams[0].type O

(u'http://www.w3.0rg/2001/XMLSchema', u'string')

[] The server.methods dictionary is filled with a SOAPpy-specific structure called CallInfo. A
CallInfo object containsinformation about one specific function, including the function arguments.

[] Thefunction argumentsare storedin callInfo.inparams, whichisaPythonlist of ParameterInfo
objects that hold information about each parameter.

[] EachParameterInfo object contains aname attribute, which isthe argument name. You are not re-
quired to know the argument nameto call the function through SOAP, but SOAP does support calling
functions with named arguments (just like Python), and WSDL . Proxy will correctly handle mapping
named arguments to the remote function if you choose to use them.

[] Each parameter is also explicitly typed, using datatypes defined in XML Schema. You saw thisin
the wire trace in the previous section; the XML Schema namespace was part of the “boilerplate” |
told you to ignore. For our purposes here, you may continue to ignore it. The zipcode parameter is
astring, and if you passin aPython string to the WSDL . Proxy object, it will map it correctly and send
it to the server.

WSDL also lets you introspect into a function's return values.

219

Chapter 12

Example 12.10. Discovering A Method's Return Values

>>> callInfo.outparams O
[<SOAPpy.wstools.WSDLTools.ParameterInfo instance at OxO0CF3AF8>]
>>> callInfo.outparams[0].name O

u'return’'

>>> callInfo.outparams[0].type
(u'http://www.w3.0rg/2001/XMLSchema’', u'float')

[] TheadjuncttocallInfo.inparams for functionargumentsiscallInfo.outparanms for returnvalue.
It isalso alist, because functions called through SOAP can return multiple values, just like Python
functions.

[] Each ParameterInfo object contains name and type. This function returns a single value, named
return, whichisafloat.

Let'sput it al together, and call a SOAP web service through aWSDL proxy.

220

Chapter 12

Example 12.11. Calling A Web Service Through A WSDL Proxy

>>> from SOAPpy import WSDL
>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl')
>>> server = WSDL.Proxy(wsdlFile)

>>> server.getTemp('90210') L]
66.0
>>> server.soapproxy.config.dumpSOAPOut = 1 [l

>>> server.soapproxy.config.dumpSOAPIn = 1
>>> temperature = server.getTemp('90210')
ehk Outgoing SOAP whdeddehdefdhdehdeddhdededhddeddhdedhdhdeddhdedhdhde ik

<?xml version="1.0" encoding="UTF-8"7>

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTemp xmlns:nsl="urn:xmethods-Temperature" SOAP-ENC:root="1">

<vl xsi:type="xsd:string">90210</v1>

</nsl:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Tehdhddddfhhhddddddk

** Incoming SOAP *%*%

<?xml version='1.0"' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTempResponse xmlns:nsl="urn:xmethods-Temperature"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">66.0</return>

</nsl:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

R o o S S U T S S o e e e e S o e e e S Sl i S o e e T S S o e L L e o Sk S S o S S e U T S S S SR

>>> temperature
66.0

[] The configuration is simpler than calling the SOAP service directly, since the WSDL file contains
the both service URL and namespace you need to call the service. Creating the WSDL . Proxy object
downloadsthe WSDL file, parsesit, and configures a SOAPProxy object that it usesto call the actual
SOAP web service.

[] OncetheWsDL.Proxy object iscreated, you can call afunction aseasily asyou did with the SOAPProxy
object. This is not surprising; the WSDL. Proxy is just a wrapper around the SOAPProxy with some
introspection methods added, so the syntax for calling functionsis the same.

[] You can access the WSDL.Proxy's SOAPProxy with server.soapproxy. Thisis useful to turning on
debugging, so that when you can call functions through the WSDL proxy, its SOAPProxy will dump
the outgoing and incoming XML documents that are going over the wire.

221

Chapter 12

Searching Google

Let'sfinally turn to the sample code that you saw that the beginning of this chapter, which does something
more useful and exciting than get the current temperature.

Google provides a SOAP API for programmatically accessing Google search results. To use it, you will
need to sign up for Google Web Services.

Procedure 12.4. Signing Up for Google Web Services

1. Goto http://www.google.com/apis/ and create a Google account. Thisrequiresonly an email address.
After you sign up you will receive your Google API license key by email. You will need this key to
pass as a parameter whenever you call Google's search functions.

2. Also on http://www.google.com/apis/, download the Google Web APIs devel oper kit. This includes
some sample codein several programming languages (but not Python), and moreimportantly, it includes
the WSDL file.

3. Decompress the developer kit file and find GoogleSearch.wsdl. Copy this file to some permanent
location on your local drive. You will need it later in this chapter.

Once you have your developer key and your Google WSDL file in a known place, you can start poking
around with Google Web Services.

222

http://www.google.com/apis/
http://www.google.com/apis/

Chapter 12

Example 12.12. I ntrospecting Google Web Services

>>>
>>>
>>>
[u'
>>>
>>>

key
a
sta
max
fil
res
saf
1r
ie
oe

O

from SOAPpy import WSDL
server = WSDL.Proxy('/path/to/your/GoogleSearch.wsdl') UJ
server.methods .keys() []
doGoogleSearch', u'doGetCachedPage', u'doSpellingSuggestion']
callInfo = server.methods['doGoogleSearch']
for arg in calllInfo.inparams: U
print arg.name.ljust(15), arg.type

(u'http://www.w3.0rg/2001/XMLSchema', u'string')
(u'http://www.w3.0rg/2001/XMLSchema', u'string')
rt (u'http://www.w3.0rg/2001/XMLSchema', u'int"')
Results (u'http://www.w3.0rg/2001/XMLSchema', u'int"')
ter (u'http://www.w3.0rg/2001/XMLSchema', u'boolean')
trict (u'http://www.w3.0rg/2001/XMLSchema', u'string')
eSearch (u'http://www.w3.0rg/2001/XMLSchema', u'boolean')

(u'http://www.w3.0rg/2001/XMLSchema', u'string')
(u'http://www.w3.0rg/2001/XMLSchema', u'string')
(u'http://www.w3.0rg/2001/XMLSchema', u'string')

Getting started with Google web servicesiseasy: just creste awSDL . Proxy object and point it at your
local copy of Google'sWSDL file.

According to the WSDL file, Google offers three functions: doGoogleSearch, doGetCachedPage,
and doSpellingSuggestion. These do exactly what they sound like: perform a Google search and
return the results programmatically, get access to the cached version of a page from the last time
Google saw it, and offer spelling suggestions for commonly misspelled search words.

The doGoogleSearch function takes a number of parameters of various types. Note that while the
WSDL file can tell you what the arguments are called and what datatype they are, it can't tell you
what they mean or how to use them. It could theoretically tell you the acceptable range of values for
each parameter, if only specific values were allowed, but Google's WSDL file is not that detailed.
WSDL. Proxy can't work magic; it can only give you the information provided in the WSDL file.

Hereisabrief synopsis of al the parameters to the doGoogleSearch function:

key - Your Google API key, which you received when you signed up for Google web services.

q - The search word or phrase you're looking for. The syntax is exactly the same as Google'sweb form,
so if you know any advanced search syntax or tricks, they all work here aswell.

start - The index of the result to start on. Like the interactive web version of Google, this function
returns 10 results at atime. If you wanted to get the second “page” of results, you would set start to
10.

maxResults - The number of resultsto return. Currently capped at 10, although you can specify fewer
if you are only interested in afew results and want to save alittle bandwidth.

filter - If True, Google will filter out duplicate pages from the results.

restrict - Set thisto country plus a country code to get results only from a particular country. Ex-
ample: countryUK to search pages in the United Kingdom. You can also specify 1inux, mac, or bsd
to search a Google-defined set of technical sites, or unclesam to search sites about the United States
government.

safeSearch - If True, Google will filter out porn sites.

223

Chapter 12

1r (“language restrict”) - Set thisto alanguage code to get results only in a particular language.

ie and oe (“input encoding” and “output encoding”) - Deprecated, both must be utf-8.

Example 12.13. Searching Google

>>>
>>>
>>>
>>>
>>>
10

>>>

from SOAPpy import WSDL
server = WSDL.Proxy('/path/to/your/GoogleSearch.wsdl')
key = 'YOUR_GOOGLE_API_KEY'

results = server.doGoogleSearch(key, 'mark', 0, 10, False, "",
False, "", "utf-8", "utf-8") O

len(results.resultElements)]

results.resultElements[0].URL]

'http://diveintomark.org/"'

>>>

results.resultElements[0].title

'dive into mark'

O

After setting up theWSDL. Proxy object, you can call server . doGoogleSearch with all ten parameters.
Remember to use your own Google API key that you received when you signed up for Google web
Services.

There'salot of information returned, but let'slook at the actual search resultsfirst. They're stored in
results.resultElements, and you can access them just like anormal Python list.

Each element in the resultElements is an object that hasa URL, title, snippet, and other useful
attributes. At this point you can use norma Python introspection techniques like
dir(results.resultElements[0]) to see the available attributes. Or you can introspect through
the WSDL proxy object and look through the function's outparams. Each technique will give you
the same information.

The results object contains more than the actual search results. It also contains information about the
searchitself, such ashow long it took and how many resultswerefound (even though only 10 werereturned).
The Google web interface shows this information, and you can access it programmatically too.

224

Chapter 12

Example 12.14. Accessing Secondary I nformation From Google

>>> results.searchTime 0
0.224919
>>> results.estimatedTotalResultsCount U
29800000
>>> results.directoryCategories 0

[<SOAPpy.Types.structType item at 14367400>:

{'fullviewableName':
'Top/Arts/Literature/World_Literature/American/19th_Century/Twain,_Mark"',
'specialEncoding': ''}]

>>> results.directoryCategories[0].fullViewableName
'Top/Arts/Literature/World_Literature/American/19th_Century/Twain,_Mark'

[] Thissearchtook 0.224919 seconds. That does not include the time spent sending and receiving the
actual SOAP XML documents. It's just the time that Google spent processing your reguest once it
received it.

[] [Intotal, there were approximately 30 million results. You can access them 10 at atime by changing
the start parameter and calling server. doGoogleSearch again.

[] For some queries, Google also returns a list of related categories in the Google Directory [http://-
directory.google.com/]. You can append these URLSs to http://directory.google.com/ to construct the
link to the directory category page.

Troubleshooting SOAP Web Services

Of course, the world of SOAP web servicesis not all happiness and light. Sometimes things go wrong.

Asyou've seen throughout this chapter, SOAP involves several layers. There'sthe HTTP layer, since SOAP
issending XML documentsto, and receiving XML documentsfrom, an HTTP server. So all the debugging
techniques you learned in Chapter 11, HTTP Web Services comeinto play here. You can import httplib
and then set httplib.HTTPConnection.debuglevel = 1 to seethe underlying HTTP traffic.

Beyond the underlying HTTP layer, there are a number of things that can go wrong. SOAPpy does an ad-
mirable job hiding the SOAP syntax from you, but that also means it can be difficult to determine where
the prablem is when things don't work.

Here are afew examples of common mistakes that 1've made in using SOAP web services, and the errors
they generated.

225

http://directory.google.com/
http://directory.google.com/

Chapter 12

Example 12.15. Calling a Method With an Incorrectly Configured Proxy

>>> from SOAPpy import SOAPProxy
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter’
>>> server = SOAPProxy(url) U
>>> server.getTemp('27502"') U
<Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element namespaced?>
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 453, in __call__
return self.__r call(*args, **kw)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 389, in __call
raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element namespaced?>

[] Didyou spot the mistake?You're creating a SOAPProxy manually, and you've correctly specified the
service URL, but you haven't specified the namespace. Since multiple servicesmay be routed through
the same service URL, the namespace is essential to determine which service you'retrying to talk to,
and therefore which method you're realy calling.

[] Theserver responds by sending a SOAP Fault, which SOAPpy turnsinto a Python exception of type
SOAPpy . Types. faultType. All errors returned from any SOAP server will always be SOAP Faullts,
S0 you can easily catch this exception. In this case, the human-readable part of the SOAP Fault gives
aclueto the problem: the method element is not namespaced, because the original SOAPProxy object
was not configured with a service namespace.

Misconfiguring the basic elements of the SOAP service is one of the problems that WSDL aimsto solve.
The WSDL file contains the service URL and namespace, so you can't get it wrong. Of course, there are
till other things you can get wrong.

226

Chapter 12

Example 12.16. Calling a Method With the Wrong Arguments

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl'
>>> server = WSDL.Proxy(wsdlFile)

>>> temperature = server.getTemp(27502) U
<Fault SOAP-ENV:Server: Exception while handling service request:
services.temperature.TempService.getTemp(int) -- no signature match> O

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 453, in __call__
return self.__r call(*args, **kw)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 389, in __call

raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception while handling service
request:
services.temperature.TempService.getTemp(int) -- no signature match>

[] Didyou spot the mistake? It's a subtle one: you're calling server. getTemp with an integer instead
of astring. As you saw from introspecting the WSDL file, the getTemp () SOAP function takes a
single argument, zipcode, which must be a string. WSDL. Proxy will not coerce datatypes for you;
you need to pass the exact datatypes that the server expects.

[] Again, the server returns a SOAP Fault, and the human-readable part of the error gives a clue asto
the problem: you're calling agetTemp function with an integer value, but thereis no function defined
with that name that takes an integer. In theory, SOAP allows you to overload functions, so you could
have two functionsin the same SOA P service with the same name and the same number of arguments,
but the argumentswere of different datatypes. Thisiswhy it'simportant to match the datatypes exactly,
and why WSDL . Proxy doesn't coerce datatypesfor you. If it did, you could end up calling acompletely
different function! Good luck debugging that one. It's much easier to be picky about datatypes and
fail as quickly as possible if you get them wrong.

It's also possible to write Python code that expects a different number of return values than the remote
function actually returns.

Example 12.17. Calling a M ethod and Expecting the Wrong Number of Return
Values

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl’
>>> server = WSDL.Proxy(wsdlFile)
>>> (city, temperature) = server.getTemp(27502) O
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: unpack non-sequence

[] Didyou spot the mistake? server.getTemp only returns one value, afloat, but you've written code
that assumes you're getting two values and trying to assign them to two different variables. Note that
this does not fail with a SOAP fault. As far as the remote server is concerned, nothing went wrong
at al. The error only occurred after the SOAP transaction was complete, WSDL. Proxy returned a
float, and your local Python interpreter tried to accomodate your request to split it into two different
variables. Since the function only returned one value, you get a Python exception trying to split it,
not a SOAP Faullt.

227

Chapter 12

What about Google's web service? The most common problem I've had with it is that | forget to set the
application key properly.

228

Chapter 12

Example 12.18. Calling a Method With An Application-Specific Error

>>> from SOAPpy import WSDL
>>> server = WSDL.Proxy(r'/path/to/local/GoogleSearch.wsdl')

>>> results = server.doGoogleSearch('foo', 'mark', 0, 10, False, "", O
False, "", "utf-8", "utf-8")
<Fault SOAP-ENV:Server: O

Exception from service object: Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{'stackTrace':
'com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:220)
at com.google.soap.search.QueryLimits.validateKey(QuerylLimits.java:127)
at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(
GoogleSearchService.java:825)
at com.google.soap.search.GoogleSearchService.doGoogleSearch(
GoogleSearchService.java:121)
at sun.reflect.GeneratedMethodAccessorl3.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.soap.server.RPCRouter.invoke(RPCRouter. java:146)
at org.apache.soap.providers.RPCJavaProvider.invoke(
RPCJavaProvider. java:129)
at org.apache.soap.server.http.RPCRouterServlet.doPost(
RPCRouterServlet.java:288)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
at com.google.gse.HttpConnection.run(HttpConnection. java:195)
at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)
Caused by: com.google.soap.search.UserKeyInvalidException: Key was of wrong size.
at com.google.soap.search.UserKey.<init>(UserKey.java:59)
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:217)
. 14 more
">
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 453, in __call__
return self.__r call(*args, **kw)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site-packages\SOAPpy\Client.py", line 389, in __call
raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception from service object:
Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{'stackTrace':
'com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:220)

229

Chapter 12

at
at

at

at
at
at
at
at

at

at
at
at
at
at

com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
com.google.soap.search.GoogleSearchService.doPublicMethodChecks(

GoogleSearchService. java:825)

com.google.soap.search.GoogleSearchService.doGoogleSearch(

GoogleSearchService. java:121)

sun.reflect.GeneratedMethodAccessorl3.invoke (Unknown Source)
sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
java.lang.reflect.Method.invoke(Unknown Source)
org.apache.soap.server.RPCRouter.invoke (RPCRouter. java:146)
org.apache.soap.providers.RPCJavaProvider.invoke(

RPCJavaProvider. java:129)

org.apache.soap.server.http.RPCRouterServlet.doPost(

RPCRouterServlet.java:288)

javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
com.google.gse.HttpConnection.runServlet (HttpConnection. java:237)
com.google.gse.HttpConnection.run(HttpConnection. java:195)
com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue. java:201)

Caused by: com.google.soap.search.UserKeyInvalidException: Key was of wrong size.

at
at

|}>

com.google.soap.search.UserKey.<init>(UserKey. java:59)
com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe (

QueryLimits.java:217)
. 14 more

[] Canyou spot the mistake? There's nothing wrong with the calling syntax, or the number of arguments,
or the datatypes. The problem is application-specific: the first argument is supposed to be my applic-
ation key, but foo isnot avalid Google key.

[1 TheGoogleserver respondswith a SOAP Fault and anincredibly long error message, whichincludes
acomplete Java stack trace. Remember that all SOAP errors are signified by SOAP Faults: errorsin
configuration, errorsin function arguments, and application-specific errors like this. Buried in there
somewhere isthe crucia piece of information: Invalid authorization key: foo.

Further Reading on Troubleshooting SOAP

 New developments for SOAPpy [http://www-106.ibm.com/devel operworks/webservicedlibrary/-
ws-pythl7.html] steps through trying to connect to another SOAP service that doesn't quite work as
advertised.

Summary

SOAP web services are very complicated. The specification is very ambitious and tries to cover many
different use cases for web services. This chapter has touched on some of the simpler use cases.

Before diving into the next chapter, make sure you're comfortable doing al of these things:

» Connecting to a SOAP server and calling remote methods

» Loading aWSDL file and introspecting remote methods

» Debugging SOAP calls with wire traces

* Troubleshooting common SOAP-related errors

230

http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html

Chapter 13. Unit Testing

Introduction to Roman numerals

In previous chapters, you “dived in” by immediately looking at code and trying to understand it as quickly
as possible. Now that you have some Python under your belt, you're going to step back and look at the
steps that happen before the code gets written.

In the next few chapters, you're going to write, debug, and optimize a set of utility functions to convert to
and from Roman numerals. You saw the mechanics of constructing and validating Roman numeralsin the
section called “ Case Study: Roman Numerals’, but now let's step back and consider what it would take to
expand that into atwo-way utility.

The rules for Roman numerals lead to a number of interesting observations:

1

2.

5.

6.

Thereisonly one correct way to represent a particular number as Roman numerals.

The converse is also true: if a string of characters is a valid Roman numeral, it represents only one
number (i.e. it can only be read one way).

Thereisalimited range of numbersthat can be expressed as Roman numerals, specifically 1 through
3999. (The Romans did have several ways of expressing larger numbers, for instance by having abar
over anumeral to represent that its normal value should be multiplied by 1000, but you're not going
to deal with that. For the purposes of this chapter, let's stipulate that Roman numerals go from 1 to
3999.)

There is no way to represent 0 in Roman numerals. (Amazingly, the ancient Romans had no concept
of 0 as a number. Numbers were for counting things you had; how can you count what you don't
have?)

There is no way to represent negative numbers in Roman numerals.

There is no way to represent fractions or non-integer numbersin Roman numerals.

Given all of this, what would you expect out of aset of functionsto convert to and from Roman numerals?

roman.py requirements

1

2.

toRoman should return the Roman numeral representation for all integers 1 to 3999.
toRoman should fail when given an integer outside the range 1 to 3999.

toRoman should fail when given a non-integer number.

fromRoman should take a valid Roman numeral and return the number that it represents.
fromRoman should fail when given an invalid Roman numeral.

If you take a number, convert it to Roman numerals, then convert that back to a number, you should
end up with the number you started with. So fromRoman(toRoman(n)) == nforalnini1..3999.

toRoman should always return a Roman numeral using uppercase letters.

231

Chapter 13

8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase
input).

Further reading

» Thissite [http://www.wilkiecollins.demon.co.uk/roman/front.htm] has more on Roman numerals, in-
cluding afascinating history [http://www.wilkiecollins.demon.co.uk/roman/intro.htm] of how Romans
and other civilizations really used them (short answer: haphazardly and inconsistently).

Diving in

Now that you've completely defined the behavior you expect from your conversion functions, you're going
to do something alittle unexpected: you're going to write atest suite that puts these functions through their
paces and makes sure that they behave the way you want them to. You read that right: you're going to write
code that tests code that you haven't written yet.

Thisis caled unit testing, since the set of two conversion functions can be written and tested as a unit,
separate from any larger program they may become part of later. Python has a framework for unit testing,
the appropriately-named unittest module.

Do you have unittest?

unittest is included with Python 2.1 and later. Python 2.0 users can download it from
pyunit.sourceforge.net [http://pyunit.sourceforge.net/].

Unit testing is an important part of an overall testing-centric development strategy. If you write unit tests,
it isimportant to write them early (preferably before writing the code that they test), and to keep them up-
dated as code and requirements change. Unit testing is not a replacement for higher-level functional or
system testing, but it isimportant in all phases of development:

» Beforewriting code, it forces you to detail your requirementsin auseful fashion.
* Whilewriting code, it keepsyou from over-coding. When all the test cases pass, thefunction iscomplete.
» When refactoring code, it assures you that the new version behaves the same way as the old version.

* When maintaining code, it helps you cover your ass when someone comes screaming that your latest
change broke their old code. (“But sir, all the unit tests passed when | checked itin...”)

* When writing code in ateam, it increases confidence that the code you're about to commit isn't going
to break other peoples' code, because you can run their unittests first. (I've seen this sort of thing in
code sprints. A team breaks up the assignment, everybody takes the specs for their task, writes unit
testsfor it, then shares their unit tests with the rest of the team. That way, nobody goes off too far into
developing code that won't play well with others.)

Introducing romantest.py

This is the complete test suite for your Roman numeral conversion functions, which are yet to be written
but will eventually be in roman.py. It is not immediately obvious how it al fits together; none of these
classes or methods reference any of the others. There are good reasons for this, asyou'll see shortly.

232

http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm
http://pyunit.sourceforge.net/

Chapter 13

Example 13.1. romantest . py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

"""Unit test for roman.py

import roman
import unittest

class KnownValues(unittest.TestCase):
knownValues = ((1, 'I'"),

(2, 'I1"),
(3, 'III"),
4, 'IV"),
(5, 'V,
(6, 'VI'),
(7, 'VII"),
(8, 'VIII'),
(9, 'IX"),
(10, 'X"),
(50, 'L"),
(100, 'C"),
(500, 'D"),
(1000, 'M'),
(31, 'XXXI'),

(148, 'CXLVIII'),
(294, 'CCXCIV'"),
(312, 'CCCXII'),
(421, 'CDXXI"),

(528, 'DXXVIII'),
(621, 'DCXXI'),

(782, 'DCCLXXXII'),
(870, 'DCCCLXX'),
(941, 'CMXLI"),
(1043, 'MXLIII'),
(1110, 'MCX'),

(1226, 'MCCXXVI'),
(1301, 'MCCCI'),
(1485, 'MCDLXXXV'),
(1509, 'MDIX'),
(1607, 'MDCVII'),
(1754, 'MDCCLIV'),
(1832, 'MDCCCXXXII'),
(1993, 'MCMXCIII'),
(2074, 'MMLXXIV'),
(2152, 'MMCLII'),
(2212, 'MMCCXII'),
(2343, 'MMCCCXLIII'),
(2499, 'MMCDXCIX'),
(2574, 'MMDLXXIV'),
(2646, 'MMDCXLVI'),
(2723, 'MMDCCXXIII'),

233

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 13

(2892, 'MMDCCCXCII'),
(2975, 'MMCMLXXV'),
(3051, 'MMMLI'"),
(3185, 'MMMCLXXXV'),
(3250, 'MMMCCL'),
(3313, 'MMMCCCXIII'),
(3408, 'MMMCDVIII'),
(3501, 'MMMDI'),
(3610, 'MMMDCX'),
(3743, 'MMMDCCXLIII'),
(3844, 'MMMDCCCXLIV'),
(3888, 'MMMDCCCLXXXVIII'),
(3940, 'MMMCMXL'),
(3999, 'MMMCMXCIX'))

def testToRomanKnownValues(self):
"""toRoman should give known result with known input
for integer, numeral in self.knownValues:
result = roman.toRoman(integer)
self.assertEqual (numeral, result)

nun

def testFromRomanKnownValues(self):
"""fromRoman should give known result with known input
for integer, numeral in self.knownValues:
result = roman.fromRoman(numeral)
self.assertEqual (integer, result)

class ToRomanBadInput(unittest.TestCase):
def testToolLarge(self):
"""toRoman should fail with large input
self.assertRaises(roman.QutOfRangeError, roman.toRoman, 4000)

def testZero(self):
"""toRoman should fail with O input
self.assertRaises(roman.QutOfRangeError, roman.toRoman, 0)

o

def testNegative(self):
"""toRoman should fail with negative input
self.assertRaises(roman.QutOfRangeError, roman.toRoman, -1)

def testNonInteger(self):
"""toRoman should fail with non-integer input
self.assertRaises(roman.NotIntegerError, roman.toRoman, 0.5)

class FromRomanBadInput(unittest.TestCase):
def testTooManyRepeatedNumerals(self):
"""fromRoman should fail with too many repeated numerals
for s in ('MMMM', 'DD', 'CCCC', 'LL', 'XXXX', 'vv', 'IIII'):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman,

def testRepeatedPairs(self):
"""fromRoman should fail with repeated pairs of numerals
for s in ('CMCM', 'CDCD', 'XCXC', 'XLXL', 'IXIX', 'IVIV'):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman,

s)

s)

234

Chapter 13

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents
for s in ('IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
'MCMC', 'XCX', 'IVi', 'LM', 'LD', 'LC"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

e

class SanityCheck(unittest.TestCase):

def testSanity(self):
"""fromRoman(toRoman(n))==n for all n
for integer in range(1l, 4000):
numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual (integer, result)

nnn

class CaseCheck(unittest.TestCase):

def testToRomanCase(self):
"""toRoman should always return uppercase
for integer in range(1l, 4000):
numeral = roman.toRoman(integer)
self.assertEqual (numeral, numeral.upper())

def testFromRomanCase(self):
"""fromRoman should only accept uppercase input
for integer in range(1l, 4000):
numeral = roman.toRoman(integer)
roman . fromRoman (numeral . upper())
self.assertRaises(roman.InvalidRomanNumeralError,
roman.fromRoman, numeral.lower())

o

if __name__ == "_main__":

unittest.main()

Further reading

The PyUnit home page [http://pyunit.sourceforge.net/] has an in-depth discussion of usingtheunittest
framework [http://pyunit.sourceforge.net/pyunit.html], including advanced features not covered in this
chapter.

The PyUnit FAQ [http://pyunit.sourceforge.net/pyunit.ntml] explainswhy test cases are stored separately
[http://pyunit.sourceforge.net/pyunit.html#WHERE] from the code they test.

Python Library Reference [http://www.python.org/doc/current/lib/] summarizestheunittest [http://-
www.python.org/doc/current/lib/modul e-unittest.html] module.

ExtremeProgramming.org [http://www.extremeprogramming.org/] discusses why you should write
unit tests [http://www.extremeprogramming.org/rules/unittests.html].

The Portland Pattern Repository [http://www.c2.com/cgi/wiki] has an ongoing discussion of unit tests
[http:/iwww.c2.com/cgi/wiki?UnitTests], including a standard definition [http://www.c2.com/cgi/-
wiki?StandardDefinitionOfUnitTest], why you should code unit tests first [http://www.c2.com/cgi/-
wiki?CodeUnitTestFirst], and severd in-depth case studies [http://www.c2.com/cgi/wiki 2UnitTestTrial].

235

http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial

Chapter 13

Testing for success

The most fundamental part of unit testing is constructing individual test cases. A test case answersasingle
question about the code it is testing.

A test case should be able to...
e ...run completely by itself, without any human input. Unit testing is about automation.

» ..determineby itself whether thefunction it istesting has passed or failed, without ahuman interpreting
the results.

* ..runinisolation, separate from any other test cases (even if they test the same functions). Each test
caseisan island.

Given that, let's build the first test case. You have the following requirement:

1. toRoman should return the Roman numeral representation for all integers 1 to 3999.

236

Chapter 13

Example 13.2. testToRomanKnownValues

class KnownValues(unittest.TestCase):

knownValues

(1,

'),
(2, '"I1"),
(3, '1II1Y),
(4, 'IV"),
(5, 'V,
(6, 'Vi'),
(7, 'ViI'),
(8, 'VIII"),
9, '"IX"),
(10, 'X"),
(50, 'L"),
(100, 'CY),
(500, 'D"),
(1000, 'M"),
(31, 'XXXI"),
(148, 'CXLVIII'),
(294, 'CCXCIV"),
(312, 'CCCXII"),
(421, 'CDXXI"),
(528, 'DXXVIII'),
(621, 'DCXXI"),
(782, 'DCCLXXXII'),
(870, 'DCCCLXX'),
(941, 'CMXLI"),
(1043, 'MXLIII'),
(1110, 'MCX"),
(1226, "MCCXXVI'"),
(1301, '™MccCI"),
(1485, 'MCDLXXXV'),
(1509, 'MDIX"),
(1607, 'MDCVII'),
(1754, 'MDCCLIV"),
(1832, 'MDCCCXXXII'),
(1993, 'MCMXCIII'),
(2074, 'MMLXXIV'),
(2152, 'MMCLII'),
(2212, 'MMCCXII"),
(2343, 'MMCCCXLIII'),
(2499, 'MMCDXCIX'),
(2574, 'MMDLXXIV'),
(2646, 'MMDCXLVI'),
(2723, 'MMDCCXXIII'),
(2892, 'MMDCCCXCII'),
(2975, 'MMCMLXXV'),
(3051, 'MMMLI'"),
(3185, 'MMMCLXXXV'),
(3250, "MMMCCL'),
(3313, 'MMMCCCXIII'),
(3408, 'MMMCDVIII'),

237

Chapter 13

(3501, 'MMMDI'),
(3610, 'MMMDCX'),

(3743, 'MMMDCCXLIII'),

(3844, 'MMMDCCCXLIV'),

(3888, 'MMMDCCCLXXXVIII'),

(3940, 'MMMCMXL'),

(3999, 'MMMCMXCIX')) O

def testToRomanKnownValues(self):]
"""toRoman should give known result with known input
for integer, numeral in self.knownValues:
result = roman.toRoman(integer) N
self.assertEqual (numeral, result)]

nun

[] Towriteatest case, first subclass the TestCase class of the unittest module. This class provides
many useful methods which you can use in your test case to test specific conditions.

[] Thisisalistof integer/numeral pairsthat | verified manually. It includes the lowest ten numbers, the
highest number, every number that translates to a single-character Roman numeral, and a random
sampling of other valid numbers. The point of a unit test is not to test every possible input, but to test
arepresentative sample.

[] Everyindividual test isits own method, which must take no parameters and return no value. If the
method exits normally without raising an exception, the test is considered passed; if the method raises
an exception, the test is considered failed.

[] Hereyou cal the actual toRoman function. (Well, the function hasn't be written yet, but once it is,
thisisthe line that will call it.) Notice that you have now defined the API for the toRoman function:
it must take an integer (the number to convert) and return astring (the Roman numeral representation).
If the APl isdifferent than that, thistest is considered failed.

[] Also notice that you are not trapping any exceptions when you call toRoman. This is intentional.
toRoman shouldn't raise an exception when you call it with valid input, and these input values are all
valid. If toRoman raises an exception, thistest is considered failed.

[] Assuming the toRoman function was defined correctly, called correctly, completed successfully, and
returned a value, the last step is to check whether it returned the right value. This is a common
guestion, and the TestCase class provides amethod, assertEqual, to check whether two values are
equal. If the result returned from toRoman (result) does not match the known value you were ex-
pecting (numeral), assertEqual will raise an exception and the test will fail. If the two values are
equal, assertEqual will do nothing. If every value returned from toRoman matches the known value
you expect, assertEqual never raises an exception, so testToRomanKnownValues eventually exits
normally, which means toRoman has passed this test.

Testing for failure

It isnot enough to test that functions succeed when given good input; you must also test that they fail when
given bad input. And not just any sort of failure; they must fail in the way you expect.

Remember the other requirements for toRoman:
2. toRoman should fail when given an integer outside the range 1 to 3999.
3. toRoman should fail when given a non-integer number.

In Python, functions indicate failure by raising exceptions, and the unittest module provides methods
for testing whether a function raises a particular exception when given bad input.

238

Chapter 13

Example 13.3. Testing bad input to toRoman

class ToRomanBadInput(unittest.TestCase):
def testTooLarge(self):
"""toRoman should fail with large input
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000) O

o

def testZero(self):
"""toRoman should fail with 0 input
self.assertRaises(roman.OutOfRangeError, roman.toRoman, O0) O

[IRTRI

def testNegative(self):
"""toRoman should fail with negative input
self.assertRaises(roman.OutOfRangeError, roman.toRoman, -1)

nnn

def testNonInteger(self):
"""toRoman should fail with non-integer input
self.assertRaises(roman.NotIntegerError, roman.toRoman, 0.5) O

nnn

[] TheTestCase classof theunittest providesthe assertRaises method, which takesthefollowing
arguments: the exception you're expecting, the function you're testing, and the arguments you're
passing that function. (If the function you're testing takes more than one argument, pass them all to
assertRaises, in order, and it will pass them right along to the function you're testing.) Pay close
attention to what you're doing here: instead of calling toRoman directly and manually checking that
it raises a particular exception (by wrappingitinatry. . .except block), assertRaises has encap-
sulated all of that for us. All you do is give it the exception (roman.OutOf RangeError), the function
(toRoman), and toRoman's arguments (4000), and assertRaises takes care of calling toRoman and
checking to make sure that it raises roman.OutOfRangeError. (Also note that you're passing the
toRoman function itself as an argument; you're not calling it, and you're not passing the name of it as
astring. Have | mentioned recently how handy it isthat everything in Python is an object, including
functions and exceptions?)

[] Alongwithtesting numbersthat aretoo large, you need to test numbersthat aretoo small. Remember,
Roman numerals cannot express 0 or negative numbers, so you have a test case for each of those
(testZero and testNegative). IntestZero, you aretesting that toRoman raises aroman.OutOf Ran-
geError exception when called with 0; if it does not raise aroman.OutOf RangeError (either because
it returns an actual value, or because it raises some other exception), thistest is considered failed.

[] Requirement #3 specifiesthat toRoman cannot accept a non-integer number, so here you test to make
sure that toRoman raises aroman.NotlntegerError exception when called with 0. 5. If toRoman does
not raise aroman.NotlntegerError, thistest is considered failed.

The next two requirements are similar to thefirst three, except they apply to fromRoman instead of toRoman:
4. fromRoman should take a valid Roman numeral and return the number that it represents.
5. fromRoman should fail when given an invalid Roman numeral.

Requirement #4 is handled in the same way as requirement #1, iterating through a sampling of known
values and testing each in turn. Requirement #5 is handled in the same way as requirements#2 and #3, by
testing a series of bad inputs and making sure fromRoman raises the appropriate exception.

239

Chapter 13

Example 13.4. Testing bad input to fromRoman

class FromRomanBadInput(unittest.TestCase):
def testTooManyRepeatedNumerals(self):
"""fromRoman should fail with too many repeated numerals
for s in ('MMMM', 'DD', 'CCCC', 'LL', 'XXXX', 'VV', 'IIII'):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s) O

nn

def testRepeatedPairs(self):
"""fromRoman should fail with repeated pairs of numerals"""
for s in ('CMCM', 'CDCD', 'XCXC', 'XLXL', 'IXIX', 'IVIV'):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents
for s in ('IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
'MCMC', 'XCX', 'IvIi', 'LM', 'LD', 'LC'):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

[IRTRIT

[1 Notmuch new to say about these; the pattern is exactly the same as the one you used to test bad input
to toRoman. | will briefly note that you have another exception: roman.lnvalidRomanNumeral Error.
That makes atotal of three custom exceptions that will need to be defined in roman. py (along with
roman.OutOf RangeError and roman.NotIntegerError). You'll see how to define these custom exceptions
when you actually start writing roman. py, later in this chapter.

Testing for sanity

Often, you will find that aunit of code contains aset of reciprocal functions, usually in the form of conver-
sion functions where one convertsA to B and the other converts B to A. In these cases, it isuseful to create
a“sanity check” to make surethat you can convert A to B and back to A without losing precision, incurring
rounding errors, or triggering any other sort of bug.

Consider this requirement:

6. If you take a number, convert it to Roman numerals, then convert that back to a number, you should
end up with the number you started with. So fromRoman(toRoman(n)) == nforalnini1..3999.

240

Chapter 13

Example 13.5. Testing toRoman against fromRoman

class SanityCheck(unittest.TestCase):
def testSanity(self):
"""fromRoman(toRoman(n))==n for all n
for integer in range(1l, 4000): OO
numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual (integer, result) O

nnn

[] You'veseenthe range function before, but hereit is called with two arguments, which returns alist
of integers starting at the first argument (1) and counting consecutively up to but not including the
second argument (4000). Thus, 1. . 3999, whichisthevalid range for converting to Roman numerals.

[] |justwantedto mentionin passing that integer is not akeyword in Python; hereit'sjust avariable
name like any other.

[] Theactual testing logic hereis straightforward: take a number (integer), convert it to a Roman nu-
meral (numeral), then convert it back to anumber (result) and make sure you end up with the same
number you started with. If not, assertEqual will raise an exception and the test will immediately
be considered failed. If al the numbers match, assertEqual will always return silently, the entire
testSanity method will eventually return silently, and the test will be considered passed.

The last two requirements are different from the others because they seem both arbitrary and trivial:
7. toRoman should always return a Roman numeral using uppercase | etters.

8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase
input).

In fact, they are somewhat arbitrary. You could, for instance, have stipulated that fromRoman accept
lowercase and mixed case input. But they are not completely arbitrary; if toRoman is aways returning
uppercase output, then fromRoman must at least accept uppercaseinput, or the “ sanity check” (requirement
#6) would fail. The fact that it only accepts uppercase input is arbitrary, but as any systems integrator will
tell you, case always matters, so it's worth specifying the behavior up front. And if it's worth specifying,
it's worth testing.

241

Chapter 13

Example 13.6. Testing for case

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):
"""toRoman should always return uppercase
for integer in range(1l, 4000):
numeral = roman.toRoman(integer)
self.assertEqual (numeral, numeral.upper()) U

nnn

def testFromRomanCase(self):
"""fromRoman should only accept uppercase input
for integer in range(1l, 4000):
numeral = roman.toRoman(integer)
roman . fromRoman (numeral .upper()) U d
self.assertRaises(roman.InvalidRomanNumeralError,
roman.fromRoman, numeral.lower()) UJ

o

[] Themost interesting thing about this test caseis all the things it doesn't test. It doesn't test that the
value returned from toRoman is right or even consistent; those questions are answered by separate
test cases. You have awholetest casejust to test for uppercase-ness. You might be tempted to combine
this with the sanity check, since both run through the entire range of values and call toRoman.® But
that would violate one of the fundamental rules: each test case should answer only a single question.
Imagine that you combined this case check with the sanity check, and then that test case failed. You
would need to do further analysis to figure out which part of the test case failed to determine what
the problem was. If you need to analyze the results of your unit testing just to figure out what they
mean, it's a sure sign that you've mis-designed your test cases.

[] There'sasimilar lesson to be learned here: even though “you know” that toRoman always returns
uppercase, you are explicitly converting its return value to uppercase here to test that fromRoman
accepts uppercase input. Why? Because the fact that toRoman always returns uppercase is an inde-
pendent requirement. If you changed that requirement so that, for instance, it always returned
lowercase, the testToRomanCase test case would need to change, but thistest case would still work.
Thiswas another of the fundamental rules: each test case must be able to work in isolation from any
of the others. Every test caseisanidand.

[] Notethat you'renot assigning thereturn value of fromRoman to anything. Thisislegal syntax in Python;
if afunction returns avalue but nobody's listening, Python just throws away the return value. In this
case, that's what you want. Thistest case doesn't test anything about the return value; it just tests that
fromRoman accepts the uppercase input without raising an exception.

[] Thisis a complicated line, but it's very similar to what you did in the ToRomanBadInput and
FromRomanBadInput tests. You are testing to make sure that calling a particular function
(roman. fromRoman) with a particular value (numeral . lower (), the lowercase version of the current
Roman numeral in the loop) raises a particular exception (roman. InvalidRomanNumeralError). If
it does (each time through the loop), the test passes; if even one time it does something else (like
raises a different exception, or returning a value without raising an exception at al), the test fails.

In the next chapter, you'll see how to write code that passes these tests.

6] can resist everything except temptation.” --Oscar Wilde

242

Chapter 14. Test-First Programming

roman.py, stage 1

Now that the unit tests are complete, it's time to start writing the code that the test cases are attempting to
test. You're going to do this in stages, so you can see all the unit tests fail, then watch them pass one by
one asyou fill inthe gapsin roman. py.

Example 14.1. romanl.py

Thisfileisavailablein py/roman/stagel/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

"""Convert to and from Roman numerals

nnn

#Define exceptions

class RomanError(Exception): pass O
class OutOfRangeError (RomanError): pass O
class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError (RomanError): pass [

def

def

U
U

toRoman(n) :
"""convert integer to Roman numeral"""
pass L]

fromRoman(s):
"""convert Roman numeral to integer
pass

o

Thisishow you define your own custom exceptionsin Python. Exceptions are classes, and you create
your own by subclassing existing exceptions. It is strongly recommended (but not required) that you
subclass Exception, which isthe base classthat all built-in exceptionsinherit from. Herel am defining
RomanError (inherited from Exception) to act as the base class for all my other custom exceptions
to follow. This is a matter of style; | could just as easily have inherited each individual exception
from the Exception class directly.

The OutOfRangeError and NotIntegerError exceptions will eventually be used by toRoman to flag
various forms of invalid input, as specified in ToRomanBadInput.

The InvalidRomanNumeral Error exception will eventually be used by fromRoman to flag invalid input,
as specified in FromRomanBadInput.

At this stage, you want to define the API of each of your functions, but you don't want to code them
yet, so you stub them out using the Python reserved word pass.

Now for the big moment (drum roll please): you're finaly going to run the unit test against this stubby
little module. At this point, every test case should fail. In fact, if any test case passesin stage 1, you should
go back to romantest . py and re-evaluate why you coded atest so useless that it passes with do-nothing
functions.

Run romantest1.py with the -v command-line option, which will give more verbose output so you can
see exactly what's going on as each test case runs. With any luck, your output should look like this:

243

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 14

Example 14.2. Output of romantestl.py against romanl.py

fromRoman should only accept uppercase input ... ERROR

toRoman should always return uppercase ... ERROR

fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... FAIL
fromRoman(toRoman(n))==n for all n ... FAIL

toRoman should fail with non-integer input ... FAIL

toRoman should fail with negative input ... FAIL

toRoman should fail with large input ... FAIL

toRoman should fail with 0 input ... FAIL

ERROR: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 154, in testFromRomanCase

romanl.fromRoman(numeral.upper())
AttributeError: 'None' object has no attribute 'upper'

ERROR: toRoman should always return uppercase
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 148, in testToRomanCase
self.assertEqual (numeral, numeral.upper())
AttributeError: 'None' object has no attribute 'upper'

FAIL: fromRoman should fail with malformed antecedents
Traceback (most recent call last):
File "C:\docbook\dip\pv\roman\stagel\romantestl.py", line 133, in
testMalformedAntecedent
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 127, in testRepeatedPairs

self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

244

Chapter 14

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 122, in
testTooManyRepeatedNumerals
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 99, in
testFromRomanKnownValues
self.assertEqual (integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

FAIL: toRoman should give known result with known input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 93, in
testToRomanKnownValues
self.assertEqual (numeral, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: I != None

FAIL: fromRoman(toRoman(n))==n for all n
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 141, in testSanity
self.assertEqual (integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

FAIL: toRoman should fail with non-integer input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 116, in testNonInteger
self.assertRaises(romanl.NotIntegerError, romanl.toRoman, 0.5)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: NotIntegerError

FAIL: toRoman should fail with negative input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 112, in testNegative
self.assertRaises(romanl.OutOfRangeError, romanl.toRoman, -1)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

245

Chapter 14

FAIL: toRoman should fail with large input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 104, in testTooLarge
self.assertRaises(romanl.OutOfRangeError, romanl.toRoman, 4000)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with O input O
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 108, in testZero
self.assertRaises(romanl.OQutOfRangeError, romanl.toRoman, 0)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError O

Ran 12 tests in 0.040s O

FAILED (failures=10, errors=2) O

[] Running the script runsunittest.main(), which runs each test case, which isto say each method
defined in each class within romantest . py. For each test case, it prints out the doc string of the
method and whether that test passed or failed. As expected, none of the test cases passed.

[] Foreachfailed test case, unittest displays the trace information showing exactly what happened.
Inthiscase, thecall to assertRaises (also called failUnlessRaises) raised an AssertionError be-
cause it was expecting toRoman to raise an OutOfRangeError and it didn't.

[] After the detail, unittest displays asummary of how many tests were performed and how long it
took.

[] Overall, the unit test failed because at |east one test case did not pass. When atest case doesn't pass,

unittest distinguishes between failures and errors. A failureisacall to an assertxYZ method, like
assertEqual or assertRaises, that fails because the asserted condition is not true or the expected
exception was not raised. An error is any other sort of exception raised in the code you're testing or
the unit test caseitself. For instance, the testFromRomanCase method (“ fromRoman should only accept
uppercase input”) was an error, because the call to numeral . upper () raised an AttributeError excep-
tion, because toRoman was supposed to return a string but didn't. But testZero (*toRoman should
fail with Oinput”) was afailure, becausethe call to fromRoman did not raise the InvalidRomanNumeral
exception that assertRaises was|ooking for.

roman.py, stage 2

Now that you have the framework of the roman module laid out, it's time to start writing code and passing
test cases.

246

Chapter 14

Example 14.3. roman2 . py
Thisfileisavailablein py/roman/stage2/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

nnn

"""Convert to and from Roman numerals

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError (RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000), UJ

('cd', 900),
('D', 500),
('cp', 400),
('c', 100),
('xc', 90),
('L, 50),
('XL', 40),
('x', 10,
('IX', 9),
¢vh,o5),
('1v', 4),
aIs, 1»

def toRoman(n):
"""convert integer to Roman numeral"""

result = ""
for numeral, integer in romanNumeralMap:
while n >= integer: O
result += numeral
n -= integer

return result

def fromRoman(s):
"""convert Roman numeral to integer
pass

o

[] romanNumeralMap isatuple of tupleswhich defines three things:

1. The character representations of the most basic Roman numerals. Note that thisis not just the
single-character Roman numerals; you're al so defining two-character pairslike CM (“one hundred
less than one thousand”); this will make the toRoman code simpler later.

2. Theorder of the Roman numerals. They are listed in descending value order, from M all the way
downtoI.

3. Thevalue of each Roman numeral. Each inner tupleisapair of (numeral, value).

247

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 14

[] Hereswhereyour rich datastructure pays off, because you don't need any special logic to handle the
subtraction rule. To convert to Roman numerals, you simply iterate through romanNumeralMap
looking for the largest integer value less than or equal to the input. Once found, you add the Roman
numeral representation to the end of the output, subtract the corresponding integer value from the
input, lather, rinse, repeat.

Example 14.4. How toRoman wor ks

If you're not clear how toRoman works, add aprint statement to the end of the while loop:

while n >= integer:
result += numeral
n -= integer
print 'subtracting', integer, 'from input, adding', numeral, 'to output'

>>> import roman2

>>> roman2.toRoman(1424)

subtracting 1000 from input, adding M to output
subtracting 400 from input, adding CD to output
subtracting 10 from input, adding X to output
subtracting 10 from input, adding X to output
subtracting 4 from input, adding IV to output
'MCDXXIV'

SO toRoman appears to work, at least in this manual spot check. But will it pass the unit testing? Well no,
not entirely.

248

Chapter 14

Example 14.5. Output of romantest2.py against roman2.py
Remember to run romantest2.py with the -v command-line flag to enable verbose mode.

fromRoman should only accept uppercase input ... FAIL

toRoman should always return uppercase ... ok O
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... ok O
fromRoman(toRoman(n))==n for all n ... FAIL

toRoman should fail with non-integer input ... FAIL O
toRoman should fail with negative input ... FAIL

toRoman should fail with large input ... FAIL

toRoman should fail with O input ... FAIL

[] toRoman does, in fact, always return uppercase, because romanNumeralMap defines the Roman nu-
meral representations as uppercase. So this test passes already.

[] Heresthebig news: this version of the toRoman function passes the known values test. Remember,
it's not comprehensive, but it does put the function through its paces with a variety of good inputs,
including inputsthat produce every single-character Roman numeral, thelargest possibleinput (3999),
and the input that produces the longest possible Roman numeral (3888). At this point, you can be
reasonably confident that the function works for any good input value you could throw at it.

[] However, thefunction doesnot “work” for bad values; it fails every single bad input test. That makes
sense, because you didn't include any checksfor bad input. Those test cases|ook for specific exceptions
to beraised (viaassertRaises), and you're never raising them. You'll do that in the next stage.

Here'sthe rest of the output of the unit test, listing the details of all the failures. You're down to 10.

FAIL: fromRoman should only accept uppercase input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 156, in testFromRomanCase

roman2.fromRoman, numeral.lower())
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with malformed antecedents
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 133, in
testMalformedAntecedent
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

249

Chapter 14

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 127, in testRepeatedPairs

self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 122, in
testTooManyRepeatedNumerals
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 99, in
testFromRomanKnownValues
self.assertEqual (integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

FAIL: fromRoman(toRoman(n))==n for all n
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 141, in testSanity
self.assertEqual (integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

FAIL: toRoman should fail with non-integer input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 116, in testNonInteger
self.assertRaises(roman2.NotIntegerError, roman2.toRoman, 0.5)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: NotIntegerError

FAIL: toRoman should fail with negative input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 112, in testNegative
self.assertRaises(roman2.0utOfRangeError, roman2.toRoman, -1)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

250

Chapter 14

FAIL: toRoman should fail with large input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 104, in testTooLarge
self.assertRaises(roman2.0utOfRangeError, roman2.toRoman, 4000)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with O input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 108, in testZero
self.assertRaises(roman2.0utOfRangeError, roman2.toRoman, 0)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

Ran 12 tests in 0.320s

FATILED (failures=10)

roman.py, stage 3

Now that toRoman behaves correctly with good input (integers from 1 to 3999), it'stime to make it behave
correctly with bad input (everything else).

251

Chapter 14

Example 14.6. roman3.py
Thisfileisavailablein py/roman/stage3/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

nnn

"""Convert to and from Roman numerals

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError (RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000),

('cd', 900),
('D', 500),
('cp', 400),
('c', 100),
('xc', 90),
('L, 50),
('XL', 40),
('x', 10,
('IX', 9),
¢vh,o5),
('1v', 4),
aIs, 1»

def toRoman(n):
"""convert integer to Roman numeral"""

if not (0 < n < 4000): UJ
raise OutOfRangeError, "number out of range (must be 1..3999)" [
if int(n) <> n: 0

raise NotIntegerError, '"non-integers can not be converted"

result = "" U
for numeral, integer in romanNumeralMap:
while n >= integer:
result += numeral
n -= integer
return result

def fromRoman(s):
"""convert Roman numeral to integer
pass

o

[] Thisisanice Pythonic shortcut: multiple comparisons at once. Thisis equivalent to if not ((0 <
n) and (n < 4000)), but it'smuch easier to read. Thisisthe range check, and it should catch inputs
that are too large, negative, or zero.

[] Youraiseexceptionsyourself with theraise statement. You can raise any of the built-in exceptions,
or you can raise any of your custom exceptions that you've defined. The second parameter, the error

252

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 14

message, is optional; if given, it is displayed in the traceback that is printed if the exception is never
handled.
[] Thisisthe non-integer check. Non-integers can not be converted to Roman numerals.

[] Therest of the function is unchanged.

Example 14.7. Watching toRoman handle bad input

>>> import roman3
>>> roman3.toRoman(4000)
Traceback (most recent call last):
File "<interactive input>", line 1, in ?
File "roman3.py", line 27, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)
>>> roman3.toRoman(1.5)
Traceback (most recent call last):
File "<interactive input>", line 1, in ?
File "roman3.py", line 29, in toRoman
raise NotIntegerError, '"non-integers can not be converted"
NotIntegerError: non-integers can not be converted

253

Chapter 14

Example 14.8. Output of romantest3.py against roman3.py

fromRoman should only accept uppercase input ... FAIL

toRoman should always return uppercase ... ok

fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... ok O
fromRoman(toRoman(n))==n for all n ... FAIL

toRoman should fail with non-integer input ... ok O
toRoman should fail with negative input ... ok O
toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

[] toRoman still passesthe known values test, which is comforting. All the tests that passed in stage 2
still pass, so the latest code hasn't broken anything.

[] Moreexciting isthe fact that all of the bad input tests now pass. Thistest, testNonInteger, passes
because of the int(n) <> n check. When a non-integer is passed to toRoman, the int(n) <> n
check noticesit and raises the NotIntegerError exception, which iswhat testNonInteger islooking
for.

[1 This test, testNegative, passes because of the not (0 < n < 4000) check, which raises an
OutOfRangeError exception, which iswhat testNegative islooking for.

FAIL: fromRoman should only accept uppercase input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 156, in testFromRomanCase

roman3.fromRoman, numeral.lower())
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with malformed antecedents
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 133, in
testMalformedAntecedent
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 127, in testRepeatedPairs

self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

254

Chapter 14

AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 122, in
testTooManyRepeatedNumerals
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 99, in
testFromRomanKnownValues
self.assertEqual (integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

FAIL: fromRoman(toRoman(n))==n for all n
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 141, in testSanity
self.assertEqual (integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

Ran 12 tests in 0.401s

FAILED (failures=6) [

[] Youredownto®6failures, andal of theminvolve fromRoman: the known valuestest, the three separate
bad input tests, the case check, and the sanity check. That meansthat toRoman has passed all the tests
it can pass by itself. (It'sinvolved in the sanity check, but that a so requiresthat fromRoman be written,
whichitisn't yet.) Which meansthat you must stop coding toRoman now. No tweaking, no twiddling,
no extra checks “just in case”. Stop. Now. Back away from the keyboard.

Know when to stop coding
The most important thing that comprehensive unit testing can tell you is when to stop coding.

When all the unit tests for afunction pass, stop coding the function. When all the unit testsfor an
entire module pass, stop coding the module.

roman.py, stage 4

Now that toRoman isdone, it'stimeto start coding fromRoman. Thanks to the rich data structure that maps
individual Roman numeralsto integer values, thisis no more difficult than the toRoman function.

255

Chapter 14

Example 14.9. roman4 . py
Thisfileisavailablein py/roman/stage4/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

nnn

"""Convert to and from Roman numerals

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError (RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000),

('cd', 900),
('D', 500),
('cp', 400),
('c', 100),
('xc', 90),
('L, 50),
('XL', 40),
('x', 10,
('IX', 9),
¢vh,o5),
('1v', 4),
aIs, 1»

toRoman function omitted for clarity (it hasn't changed)

def fromRoman(s):
"""convert Roman numeral to integer
result = 0
index = 0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral: [J
result += integer
index += len(numeral)
return result

o

[] The pattern hereisthe same as toRoman. You iterate through your Roman numeral data structure (a
tuple of tuples), and instead of matching the highest integer values as often as possible, you match
the “highest” Roman numeral character strings as often as possible.

256

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 14

Example 14.10. How fromRoman wor ks

If you're not clear how fromRoman works, add aprint statement to the end of the while loop:

while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)

print 'found', numeral,

>>> import roman4
>>> roman4.fromRoman('MCMLXXII')

found M , of length 1, adding 1000
found CM , of length 2, adding 900

found L ,
found X ,
found X ,
found I ,
found I ,
1972

of length 1,
of length 1,
of length 1,
of length 1,
of length 1,

adding 50
adding 10
adding 10
adding 1
adding 1

'of length', len(numeral),

, adding', integer

257

Chapter 14

Example 14.11. Output of romantest4.py against roman4.py

fromRoman should only accept uppercase input ... FAIL

toRoman should always return uppercase ... ok

fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... ok 0
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok O
toRoman should fail with non-integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

[] Two pieces of exciting news here. The first is that fromRoman works for good input, at least for all

the known values you test.

[] Thesecond isthat the sanity check also passed. Combined with the known values tests, you can be
reasonably sure that both toRoman and fromRoman work properly for all possible good values. (This
isnot guaranteed; it istheoretically possible that toRoman has a bug that produces the wrong Roman
numeral for some particular set of inputs, and that fromRoman has areciprocal bug that producesthe
samewrong integer valuesfor exactly that set of Roman numeralsthat toRoman generated incorrectly.
Depending on your application and your requirements, this possibility may bother you; if so, write

more comprehensive test cases until it doesn't bother you.)

FAIL: fromRoman should only accept uppercase input

Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 156, in testFromRomanCase

roman4.fromRoman, numeral.lower())

File '

‘c:\python21\lib\unittest.py", line 266, in failUnlessRaises

raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with malformed antecedents

Traceback (most recent call last):

File "C:\docbook\dip\pv\roman\stage4\romantest4.py", line 133, in

testMalformedAntecedent

self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises

raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 127, in testRepeatedPairs

self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises

258

Chapter 14

raise self.failureException, excName

AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

Traceback (most recent call last):

File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 122, in

testTooManyRepeatedNumerals

self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)

File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises

raise self.failureException, excName

AssertionError: InvalidRomanNumeralError

Ran 12 tests in 1.222s

FATILED (failures=4)

roman.py, stage 5

Now that fromRoman works properly with good input, it'stimeto fit in the last piece of the puzzle: making
it work properly with bad input. That means finding away to look at a string and determine if it'savalid
Roman numeral. Thisisinherently more difficult than validating numeric input in toRoman, but you have
apowerful tool at your disposal: regular expressions.

If you're not familiar with regular expressions and didn't read Chapter 7, Regular Expressions, now would
be agood time.

Asyou saw in the section called “ Case Study: Roman Numerals’, there are several simple rules for con-
structing a Roman numeral, using the lettersM, D, C, L, X, V, and I. Let'sreview the rules:

1.

Characters are additive. T is1, ITis2,and IIT is3. VI is6 (literaly, “5and 1”), VIT is7, and VIII
is8.

The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from
the next highest fives character. You can't represent 4 as II11; instead, it isrepresented as IV (“1 less
than 5”). 40 is written as XL (“10 less than 50"), 41 as XLI, 42 as XLII, 43 asXLIII, and then 44 as
XLIV (“10 lessthan 50, then 1 lessthan 5”).

Similarly, at 9, you need to subtract from the next highest tens character: 8 isVIII, but 9 isIX (“1
lessthan 10”), not VIIII (sincethe I character can not be repeated four times). 90 isXC, 900 is CM.

The fives characters can not be repeated. 10 is always represented as X, never asvv. 100 is always C,
never LL.

Roman numerals are always written highest to lowest, and read left to right, so order of characters
matters very much. DC is 600; CD is a completely different number (400, “100 less than 500”). CI is
101; IC isnot even avalid Roman numeral (because you can't subtract 1 directly from 100; you would
need to write it as XCIX, “10 lessthan 100, then 1 less than 10”).

259

Chapter 14

Example 14.12. roman5. py
Thisfileisavailablein py/roman/stage5/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

nnn

"""Convert to and from Roman numerals
import re

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError (RomanError): pass

#Define digit mapping
romanNumeralMap = (('M', 1000),

('cd', 900),
('D', 500),
('cp', 400),
('c', 100),
('xc', 90),
('L, 50),
('XL', 40),
('x', 10,
('IX', 9),
¢vh,o5),
('1v', 4),
aIs, 1»

def toRoman(n):
"""convert integer to Roman numeral"""
if not (0 < n < 4000):
raise OutOfRangeError, "number out of range (must be 1..3999)
if int(n) <> n:
raise NotIntegerError, '"non-integers can not be converted"

result =
for numeral, integer in romanNumeralMap:
while n >= integer:
result += numeral
n -= integer
return result

#Define pattern to detect valid Roman numerals
romanNumeralPattern = 'AM?M?M?(CM|CD|D?C?C?C?) (XC|XL|L?X?X?X?) (IX|IV|V?I?I1?1?)$" [

def fromRoman(s):
"""convert Roman numeral to integer
if not re.search(romanNumeralPattern, s): U]
raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

o

260

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 14

result = 0
index = 0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
return result

Thisis just a continuation of the pattern you discussed in the section called “ Case Study: Roman
Numeras’. The tens placesis either XC (90), XL (40), or an optional L followed by 0 to 3 optional X
characters. The ones place is either IX (9), IV (4), or an optional Vv followed by 0 to 3 optional T
characters.

Having encoded all that logic into aregular expression, the codeto check for invalid Roman numerals
becomes trivial. If re.search returns an object, then the regular expression matched and the input
isvalid; otherwise, the input isinvalid.

At this point, you are allowed to be skeptical that that big ugly regular expression could possibly catch all
the types of invalid Roman numerals. But don't take my word for it, look at the results:

Example 14.13. Output of romantest5.py against romans. py

fromRoman should only accept uppercase input ... ok O

toRoman should always return uppercase ... ok

fromRoman should fail with malformed antecedents ... ok O

fromRoman should fail with repeated pairs of numerals ... ok [J

fromRoman should fail with too many repeated numerals ... ok

fromRoman should give known result with known input ... ok

toRoman should give known result with known input ... ok

fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non-integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

Ran 12 tests in 2.864s

0K W

[] Onethingl didn't mention about regular expressionsisthat, by default, they are case-sensitive. Since
theregular expression romanNumeralPattern was expressed in uppercase characters, there. search
check will reject any input that isn't completely uppercase. So the uppercase input test passes.

[] Moreimportantly, the bad input tests pass. For instance, the malformed antecedents test checks cases
like MCMC. As you've seen, this does not match the regular expression, so fromRoman raises an In-
validRomanNumeral Error exception, which is what the malformed antecedents test case is looking
for, so the test passes.

[] Infact, all the bad input tests pass. This regular expression catches everything you could think of
when you made your test cases.

[] And the anticlimax award of the year goes to the word “0K”, which is printed by the unittest

module when al the tests pass.

261

Chapter 14

What to do when all of your tests pass

When al of your tests pass, stop coding.

262

Chapter 15. Refactoring
Handling bugs

Despite your best efforts to write comprehensive unit tests, bugs happen. What do | mean by “bug”? A
bug is atest case you haven't written yet.

Example 15.1. The bug

>>> import roman5
>>> roman5.fromRoman("") [
0

[] Remember inthe previous sectionwhen you kept seeing that an empty string would match the regular
expression you were using to check for valid Roman numerals? Well, it turns out that thisis still true
for the final version of the regular expression. And that's a bug; you want an empty string to raise an
InvalidRomanNumeral Error exception just like any other sequence of charactersthat don't represent
avalid Roman numeral.

After reproducing the bug, and before fixing it, you should write atest case that fails, thusillustrating the
bug.

Example 15.2. Testing for the bug (romantest61.py)

class FromRomanBadInput(unittest.TestCase):
previous test cases omitted for clarity (they haven't changed)

def testBlank(self):
"""fromRoman should fail with blank string"""
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, "") [J

[] Pretty simple stuff here. Call fromRoman with an empty string and make sure it raises an InvalidRo-
manNumeral Error exception. The hard part was finding the bug; now that you know about it, testing
for it isthe easy part.

Since your code has a bug, and you now have atest case that tests this bug, the test case will fail:

263

Chapter 15

Example 15.3. Output of romantest61.py against roman61l.py

fromRoman should only accept uppercase input ... ok

toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... FAIL

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non-integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

FAIL: fromRoman should fail with blank string
Traceback (most recent call last):
File "C:\docbook\dip\pyv\roman\stage6\romantest6l.py", line 137, in testBlank
self.assertRaises(roman6l.InvalidRomanNumeralError, roman6l.fromRoman, "'")
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

Ran 13 tests in 2.864s

FAILED (failures=1)

Now you can fix the bug.

Example 15.4. Fixing the bug (roman62 . py)

Thisfileisavailablein py/roman/stage6/ in the examples directory.

def fromRoman(s):
"""convert Roman numeral to integer
if not s: [
raise InvalidRomanNumeralError, 'Input can not be blank'
if not re.search(romanNumeralPattern, s):
raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

i

result = 0
index = 0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral:

result += integer
index += len(numeral)
return result

[] Only two lines of code are required: an explicit check for an empty string, and araise statement.

264

Chapter 15

Example 15.5. Output of romantest62.py against roman62 .py

fromRoman should only accept uppercase input ... ok

toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... ok [

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non-integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

Ran 13 tests in 2.834s

ok [

[] Theblank string test case now passes, so the bug is fixed.
[1 Alltheother test casesstill pass, which meansthat this bug fix didn't break anything else. Stop coding.

Coding thisway does not make fixing bugs any easier. Simple bugs (like thisone) require simpletest cases,
complex bugs will require complex test cases. In a testing-centric environment, it may seem like it takes
longer to fix abug, since you need to articulate in code exactly what the bug is (to write the test case), then
fix the bug itself. Then if the test case doesn't pass right away, you need to figure out whether the fix was
wrong, or whether the test caseitself hasabug init. However, in thelong run, this back-and-forth between
test code and code tested pays for itself, because it makes it more likely that bugs are fixed correctly the
first time. Also, since you can easily re-run all the test cases along with your new one, you are much less
likely to break old code when fixing new code. Today's unit test is tomorrow's regression test.

Handling changing requirements

Despite your best efforts to pin your customers to the ground and extract exact requirements from them
on pain of horrible nasty thingsinvolving scissors and hot wax, requirements will change. Most customers
don't know what they want until they seeit, and even if they do, they aren't that good at articulating what
they want precisely enough to be useful. And even if they do, they'll want more in the next rel ease anyway.
So be prepared to update your test cases as requirements change.

Suppose, for instance, that you wanted to expand the range of the Roman numeral conversion functions.
Remember the rule that said that no character could be repeated more than three times? Well, the Romans
were willing to make an exception to that rule by having 4 M charactersin arow to represent 4000. If you
make this change, you'll be able to expand the range of convertible numbers from 1..3999 to 1. .4999.
But first, you need to make some changes to the test cases.

265

Chapter 15

Example 15.6. M odifying test cases for new requirements (romantest71.py)
Thisfileisavailablein py/roman/stage7/ in the examples directory.
If you have not already done so, you can download this and other examples [http://diveintopython.org/-

downl oad/diveintopython-examples-5.4.zip] used in this book.

import roman71
import unittest

class KnownValues(unittest.TestCase):
knownValues = ((1, 'I'),

(2, '1I1"),
(3, '"II1"),
(4, 'IV"),
(5, 'V"),
(6, 'VI'),
(7, 'VII"),
(8, 'VIII'),
(9, '"IX"),
(10, 'X"),
(50, 'L"),
(100, 'ChH,
(500, 'D"),
(1000, 'M"),
(31, 'XXXI"),

(148, 'CXLVIII"),
(294, 'CCXCIv'),
(312, 'Cccxir'y,
(421, 'CDXXI'),

(528, 'DXXVIII'),
(621, 'DCXXI'),

(782, 'DCCLXXXII'),
(870, 'DCCCLXX"),
(941, 'CMXLI'"),
(1043, 'MXLIII'"),
(1110, 'MCX"),

(1226, 'MCCXXVI'),
(1301, 'Mmcccr'y,
(1485, 'MCDLXXXV'),
(1509, 'MDIX"),
(1607, 'MDCVII'),
(1754, 'MDCCLIV'),
(1832, 'MDCCCXXXII'),
(1993, 'MCMXCIII'),
(2074, 'MMLXXIV'),
(2152, 'MMCLII"),
(2212, 'MMCCXII'),
(2343, 'MMCCCXLIII'),
(2499, 'MMCDXCIX'),
(2574, 'MMDLXXIV'),
(2646, 'MMDCXLVI'),
(2723, 'MMDCCXXIII'),

266

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 15

(2892, 'MMDCCCXCII'),
(2975, 'MMCMLXXV'),

(3051, 'MMMLI'),

(3185, 'MMMCLXXXV'),

(3250, 'MMMCCL'),

(3313, 'MMMCCCXIII'),

(3408, 'MMMCDVIII'),

(3501, 'MMMDI'),

(3610, 'MMMDCX'),

(3743, 'MMMDCCXLIII'),

(3844, 'MMMDCCCXLIV'),

(3888, 'MMMDCCCLXXXVIII'),

(3940, 'MMMCMXL'),

(3999, 'MMMCMXCIX'),

(4000, 'MMMM'), O
(4500, 'MMMMD'),

(4888, 'MMMMDCCCLXXXVIII'),

(4999, 'MMMMCMXCIX'))

def testToRomanKnownValues(self):
"""toRoman should give known result with known input
for integer, numeral in self.knownValues:
result = roman71.toRoman(integer)
self.assertEqual (numeral, result)

nun

def testFromRomanKnownValues(self):
"""fromRoman should give known result with known input
for integer, numeral in self.knownValues:
result = roman7l.fromRoman(numeral)
self.assertEqual (integer, result)

class ToRomanBadInput(unittest.TestCase):
def testToolLarge(self):
"""toRoman should fail with large input
self.assertRaises(roman71.0utOfRangeError, roman7l1.toRoman, 5000) O

def testZero(self):
"""toRoman should fail with O input
self.assertRaises(roman71.0utOfRangeError, roman7l1.toRoman, 0)

o

def testNegative(self):
"""toRoman should fail with negative input
self.assertRaises(roman71.0utOfRangeError, roman7l1.toRoman, -1)

def testNonInteger(self):
"""toRoman should fail with non-integer input
self.assertRaises(roman71.NotIntegerError, roman7l1.toRoman, 0.5)

class FromRomanBadInput(unittest.TestCase):
def testTooManyRepeatedNumerals(self):
"""fromRoman should fail with too many repeated numerals
for s in ('MMMMM', 'DD', 'CCCC', 'LL', 'XXXX', 'vv', 'IIII'): O
self.assertRaises(roman7l.InvalidRomanNumeralError, roman7l.fromRoman, s)

267

Chapter 15

def testRepeatedPairs(self):
"""fromRoman should fail with repeated pairs of numerals
for s in ('CMCM', 'CDCD', 'XCXC', 'XLXL', 'IXIX', 'IVIV'):
self.assertRaises(roman7l.InvalidRomanNumeralError, roman7l.fromRoman, s)

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents
for s in ('IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
'MCMC', 'XCX', 'IVi', 'LM', 'LD', 'LC"):
self.assertRaises(roman7l.InvalidRomanNumeralError, roman7l.fromRoman, s)

e

def testBlank(self):
"""fromRoman should fail with blank string
self.assertRaises(roman7l.InvalidRomanNumeralError, roman7l.fromRoman, "")

class SanityCheck(unittest.TestCase):
def testSanity(self):
"""fromRoman(toRoman(n))==n for all n
for integer in range(1l, 5000): O
numeral = roman7l1.toRoman(integer)
result = roman7l.fromRoman(numeral)
self.assertEqual (integer, result)

nnn

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):
"""toRoman should always return uppercase
for integer in range(1l, 5000):
numeral = roman71.toRoman(integer)
self.assertEqual (numeral, numeral.upper())

def testFromRomanCase(self):
"""fromRoman should only accept uppercase input
for integer in range(1l, 5000):
numeral = roman7l1.toRoman(integer)
roman71.fromRoman(numeral .upper())
self.assertRaises(roman7l.InvalidRomanNumeralError,
roman71.fromRoman, numeral.lower())

o

if __name__ == "_main__":
unittest.main()

[] Theexisting known values don't change (they're all till reasonable values to test), but you need to
add afew morein the 4000 range. Here I've included 4000 (the shortest), 4500 (the second shortest),
4888 (the longest), and 4999 (the largest).

[] Thedefinition of “large input” has changed. Thistest used to call toRoman with 4000 and expect an
error; now that 4000-4999 are good values, you need to bump this up to 5000.

[] Thedefinition of “too many repeated numerals’ has also changed. This test used to call fromRoman
with '"MMMM' and expect an error; now that MMMM is considered a valid Roman numeral, you need to
bump thisup to 'MMMMM '

[] Thesanity check and case checks loop through every number in the range, from 1 to 3999. Since the
range has now expanded, these for loops need to be updated as well to go up to 4999.

268

Chapter 15

Now your test cases are up to date with the new requirements, but your code is not, so you expect several
of the test casesto fail.

269

Chapter 15

Example 15.7. Output of romantest71.py against roman71.py

fromRoman should only accept uppercase input ... ERROR O
toRoman should always return uppercase ... ERROR

fromRoman should fail with blank string ... ok

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ERROR 0
toRoman should give known result with known input ... ERROR O
fromRoman(toRoman(n))==n for all n ... ERROR O
toRoman should fail with non-integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

[] Our casechecksnow fail becausethey loop from 1 to 4999, but toRoman only accepts numbers from
1t0 3999, so it will fail as soon the test case hits 4000.

[] ThefromRoman known values test will fail as soon asit hits 'MMMM', because fromRoman till thinks
thisis an invalid Roman numeral.

[] The toRoman known values test will fail as soon as it hits 4000, because toRoman still thinksthisis
out of range.

[] Thesanity check will alsofail assoon asit hits 4000, because toRoman still thinksthisis out of range.

ERROR: fromRoman should only accept uppercase input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71l.py", line 161, in testFromRomanCase

numeral = roman7l1.toRoman(integer)
File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

ERROR: toRoman should always return uppercase
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 155, in testToRomanCase
numeral = roman7l1.toRoman(integer)
File "roman7l.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

ERROR: fromRoman should give known result with known input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 102, in
testFromRomanKnownValues
result = roman71.fromRoman(numeral)
File "roman7l.py", line 47, in fromRoman

270

Chapter 15

raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s
InvalidRomanNumeralError: Invalid Roman numeral: MMMM

ERROR: toRoman should give known result with known input
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71l.py", line 96, in
testToRomanKnownValues
result = roman71.toRoman(integer)
File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

ERROR: fromRoman(toRoman(n))==n for all n
Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 147, in testSanity
numeral = roman7l1.toRoman(integer)
File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

Ran 13 tests in 2.213s

FAILED (errors=5)

Now that you have test cases that fail due to the new requirements, you can think about fixing the code to
bring it in line with the test cases. (One thing that takes some getting used to when you first start coding
unit tests is that the code being tested is never “ahead” of the test cases. While it's behind, you still have
some work to do, and as soon as it catches up to the test cases, you stop coding.)

271

Chapter 15

Example 15.8. Coding the new requirements (roman72. py)

Thisfileisavailablein py/roman/stage7/ in the examples directory.

import re

#Define exceptions

Convert to and from Roman numerals

class RomanError (Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError (RomanError): pass
#Define digit mapping
romanNumeralMap = (('M', 1000),
(rem', 900),
('D', 500),
('eo', 400),
(e, 100),
('xc', 90),
('L, 50),
('XL', 40),
('x', 10),
('1IX', 9),
v, 5),
('v', 4),
¢, 1»n
def toRoman(n):
"""convert integer to Roman numeral"""
if not (0 < n < 5000): i

raise OutOfRangeError, "number out of range (must be 1..4999)"
if int(n) <> n:
raise NotIntegerError, "non-integers can not be converted"
result = ""
for numeral, integer in romanNumeralMap:
while n >= integer:
result += numeral
n -= integer
return result

#Define pattern to detect valid Roman numerals
romanNumeralPattern = 'AM?M?M?M? (CM|CD|D?C?C?C?) (XC|XL|L?X?X?X?) (IX|IV|V?I?I?1I?)$' U

def fromRoman(s):
"""convert Roman numeral to integer
if not s:
raise InvalidRomanNumeralError, 'Input can not be blank'
if not re.search(romanNumeralPattern, s):
raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

272

Chapter 15

result = 0
index = 0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
return result

[] toRoman only needsone small change, in the range check. Where you used to check 0 < n < 4000,
you now check 0 < n < 5000. And you change the error message that you raise to reflect the new
acceptable range (1. .4999 instead of 1. .3999). You don't need to make any changes to the rest of
the function; it handles the new cases already. (It merrily adds 'M"' for each thousand that it finds;
given 4000, it will spit out 'MMMM'. The only reason it didn't do this before is that you explicitly
stopped it with the range check.)

[1 Youdon't needto makeany changesto fromRoman &t all. The only changeisto romanNumeralPattern,
if you look closely, you'll notice that you added another optional M in the first section of the regular
expression. Thiswill alow up to 4 M characters instead of 3, meaning you will allow the Roman nu-
meral equivalents of 4999 instead of 3999. The actual fromRoman function is completely general; it
just looks for repeated Roman numeral characters and adds them up, without caring how many times
they repeat. The only reason it didn't handle 'MMMM' before is that you explicitly stopped it with the
regular expression pattern matching.

You may be skeptical that these two small changes are al that you need. Hey, don't take my word for it;
see for yourself:

Example 15.9. Output of romantest72.py against roman72.py

fromRoman should only accept uppercase input ... ok

toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... ok

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non-integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

Ran 13 tests in 3.685s

ok [

[] Allthetest cases pass. Stop coding.

Comprehensive unit testing means never having to rely on a programmer who says “ Trust me.”

273

Chapter 15

Refactoring

The best thing about comprehensive unit testing is not the feeling you get when all your test cases finally
pass, or even the feeling you get when someone el se blames you for breaking their code and you can actually
provethat you didn't. The best thing about unit testing isthat it gives you the freedom to refactor mercilessly.

Refactoring is the process of taking working code and making it work better. Usually, “better” means
“faster”, although it can also mean “using less memory”, or “using less disk space”, or simply “more eleg-
antly”. Whatever it means to you, to your project, in your environment, refactoring is important to the
long-term health of any program.

Here, “better” means “faster”. Specifically, the fromRoman function is slower than it needs to be, because
of that big nasty regular expression that you use to validate Roman numerals. It's probably not worth trying
to do away with the regular expression altogether (it would be difficult, and it might not end up any faster),
but you can speed up the function by precompiling the regular expression.

Example 15.10. Compiling regular expressions

>>> import re

>>> pattern = 'AM?M?M?$’

>>> re.search(pattern, 'M') O
<SRE_Match object at 01090490>

>>> compiledPattern = re.compile(pattern) O
>>> compiledPattern

<SRE_Pattern object at OOFOGE28>

>>> dir(compiledPattern) O
['findall', 'match', 'scanner', 'search', 'split', 'sub', 'subn']
>>> compiledPattern.search('M')

<SRE_Match object at 01104928>

O

This is the syntax you've seen before: re.search takes a regular expression as a string (pattern)
and astringtomatch against it ('M"). If the pattern matches, the function returns amatch object which
can be queried to find out exactly what matched and how.

Thisisthe new syntax: re. compile takesaregular expression asastring and returns a pattern object.
Notethereisno string to match here. Compiling aregular expression has nothing to do with matching
it against any specific strings (like 'M"); it only involves the regular expression itself.

The compiled pattern object returned from re . compile has several useful-looking functions, including
severd (like search and sub) that are available directly in the re module.

Calling the compiled pattern object's search function with the string 'M' accomplishes the same
thing as calling re. search with both the regular expression and the string 'M'. Only much, much
faster. (Infact, there. search function simply compilesthe regular expression and callstheresulting
pattern object's search method for you.)

Compiling regular expressions

Whenever you are going to use aregular expression more than once, you should compileit to get
a pattern object, then call the methods on the pattern object directly.

274

Chapter 15

Example 15.11. Compiled regular expressionsin roman81.py
Thisfileisavailablein py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

toRoman and rest of module omitted for clarity

romanNumeralPattern = \
re.compile(' AM?M?M?M? (CM| CD|D?C?C?C?) (XC|XL|L?X?X?X?) (IX|IV|V?I?I?I?)$"') U

def fromRoman(s):
"""convert Roman numeral to integer
if not s:
raise InvalidRomanNumeralError, 'Input can not be blank'
if not romanNumeralPattern.search(s): O
raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

o

result = 0
index = 0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
return result

[] Thislooksvery similar, but in fact alot has changed. romanNumeralPattern is no longer a string,
it is a pattern object which was returned from re. compile.

[] That meansthat you can call methods on romanNumeralPattern directly. Thiswill be much, much
faster than calling re.search every time. The regular expression is compiled once and stored in
romanNumeralPattern when the moduleisfirst imported; then, every timeyou call fromRoman, you
canimmediately match theinput string against the regular expression, without any intermediate steps
occurring under the covers.

So how much faster isit to compile regular expressions? See for yourself:

275

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 15

Example 15.12. Output of romantest81.py against roman81.py

Ran 13 tests in 3.385s [

O

O

Just a note in passing here: thistime, | ran the unit test without the -v option, so instead of the full
doc string for each test, you only get a dot for each test that passes. (If atest failed, you'd get an
F, and if it had an error, you'd get an E. You'd till get complete tracebacks for each failure and error,
so you could track down any problems.)

You ran 13 tests in 3.385 seconds, compared to 3.685 seconds without precompiling the regular
expressions. That's an 8% improvement overall, and remember that most of the time spent during the
unit test is spent doing other things. (Separately, | time-tested the regular expressions by themselves,
apart from the rest of the unit tests, and found that compiling this regular expression speeds up the
search by an average of 54%.) Not bad for such asimple fix.

Oh, and in case you were wondering, precompiling the regular expression didn't break anything, and
you just proved it.

Thereis one other performance optimization that | want to try. Given the complexity of regular expression
syntax, it should come as no surprisethat thereisfrequently more than one way to write the same expression.
After some discussion about this module on comp.lang.python [http://groups.google.com/-
groups?group=comp.lang.python], someone suggested that | try using the {m, n} syntax for the optional
repeated characters.

Example 15.13. roman82 . py

Thisfileisavailablein py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

rest of program omitted for clarity

#o0ld version
#romanNumeralPattern = \

#

re.compile('AM?M?M?M? (CM|CD|D?C?C?C?) (XC|XL|L?X?X?X?) (IX|IV|V?I?I?I?)$")

#new version
romanNumeralPattern = \

O

re.compile('AM{0,4}(CM|CD|D?C{0,3}) (XC|XL|L?X{0,3}) (IX|IV|V?I{0,3})$") U

You have replaced M?M?M?M? with M{0, 4}. Both mean the same thing: “match O to 4 M characters’.
Similarly, C?C?C? became C{0,3} (“match 0 to 3 C characters’) and so forth for X and I.

Thisform of the regular expression is alittle shorter (though not any more readable). The big question is,
isit any faster?

276

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 15

Example 15.14. Output of romantest82.py against roman82 . py

Ran 13 tests in 3.315s [J

O

Overall, the unit tests run 2% faster with thisform of regular expression. That doesn't sound exciting,
but remember that the search functionisasmall part of the overall unit test; most of thetimeis spent
doing other things. (Separately, | time-tested just the regular expressions, and found that the search
function is 11% faster with this syntax.) By precompiling the regular expression and rewriting part of
it to use this new syntax, you've improved the regular expression performance by over 60%, and im-
proved the overall performance of the entire unit test by over 10%.

More important than any performance boost is the fact that the module still works perfectly. Thisis
the freedom | was talking about earlier: the freedom to tweak, change, or rewrite any piece of it and
verify that you haven't messed anything up in the process. Thisis not alicense to endlessly tweak
your code just for the sake of tweaking it; you had a very specific objective (“make fromRoman
faster”), and you were able to accomplish that objective without any lingering doubts about whether
you introduced new bugs in the process.

One other tweak | would like to make, and then | promise I'll stop refactoring and put this module to bed.
Asyou've seen repeatedly, regular expressions can get pretty hairy and unreadable pretty quickly. | wouldn't
like to come back to this module in six months and try to maintain it. Sure, the test cases pass, so | know
that it works, but if | can't figure out how it works, it's still going to be difficult to add new features, fix
new bugs, or otherwise maintainit. Asyou saw in the section called “ Verbose Regular Expressions’, Python
provides away to document your logic line-by-line.

277

Chapter 15

Example 15.15. roman83.py
Thisfileisavailablein py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

rest of program omitted for clarity

#o0ld version
#romanNumeralPattern = \
re.compile('~M{0,43}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$")

#new version
romanNumeralPattern = re.compile('"’'
A # beginning of string
M{0,4} # thousands - 0 to 4 M's
(cM|cp|D?c{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
or 500-800 (D, followed by 0 to 3 C's)
(XC|XL|L?x{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
or 50-80 (L, followed by 0 to 3 X's)
ones - 9 (IX), 4 (IV), 0-3 (0 to 3 1I's),
or 5-8 (V, followed by 0 to 3 I's)
end of string

(IX|IV|V?I{0,3})

$
""" re.VERBOSE) [

[] There.compile function can take an optional second argument, which is aset of one or more flags
that control various options about the compiled regular expression. Here you're specifying the
re.VERBOSE flag, which tells Python that there are in-line comments within the regular expression
itself. The comments and all the whitespace around them are not considered part of the regular ex-
pression; the re. compile function simply strips them al out when it compiles the expression. This
new, “verbose” version isidentical to the old version, but it isinfinitely more readable.

Example 15.16. Output of romantest83.py against roman83.py

Ran 13 tests in 3.315s [
OK O

[] Thisnew, “verbose” version runs at exactly the same speed as the old version. In fact, the compiled
pattern objects are the same, since the re. compile function strips out al the stuff you added.

[] Thisnew, “verbose” version passesall the sametests asthe old version. Nothing has changed, except
that the programmer who comes back to this modulein six months stands a fighting chance of under-
standing how the function works.

Postscript

A clever reader read the previous section and took it to the next level . The biggest headache (and performance
drain) in the program as it is currently written is the regular expression, which is required because you
have no other way of breaking down a Roman numeral. But there's only 5000 of them; why don't you just

278

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 15

build alookup table once, then simply read that? This idea gets even better when you realize that you don't
need to use regular expressions at all. As you build the lookup table for converting integers to Roman nu-
merals, you can build the reverse lookup table to convert Roman numerals to integers.

And best of all, he already had a complete set of unit tests. He changed over half the code in the module,
but the unit tests stayed the same, so he could prove that his code worked just as well asthe original.

279

Chapter 15

Example 15.17. roman9. py
Thisfileisavailablein py/roman/stage9/ in the examples directory.

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError (RomanError): pass

#Roman numerals must be less than 5000
MAX_ROMAN_NUMERAL = 4999

#Define digit mapping
romanNumeralMap = (('M', 1000),

('cd', 900),
('D', 500),
('cp', 400),
('c', 100),
('xc', 90),
('L, 50),
('XL', 40),
('x', 10,
('IX', 9),
¢vh,o5),
('1v', 4),
aIs, 1»

#Create tables for fast conversion of roman numerals.

#See fillLookupTables() below.

toRomanTable = [None] # Skip an index since Roman numerals have no zero
fromRomanTable = {}

def toRoman(n):
"""convert integer to Roman numeral"""
if not (0 < n <= MAX_ROMAN_NUMERAL):
raise OutOfRangeError, "number out of range (must be 1..%s)" % MAX_ROMAN_NUMERAL

if int(n) <> n:
raise NotIntegerError, '"non-integers can not be converted"
return toRomanTable[n]

def fromRoman(s):
"""convert Roman numeral to integer
if not s:
raise InvalidRomanNumeralError, "Input can not be blank"
if not fromRomanTable.has_key(s):
raise InvalidRomanNumeralError, "Invalid Roman numeral: %s" % s
return fromRomanTable[s]

o

280

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 15

def toRomanDynamic(n):
"""convert integer to Roman numeral using dynamic programming
result = ""
for numeral, integer in romanNumeralMap:
if n >= integer:
result = numeral
n -= integer
break
if n > O:
result += toRomanTable[n]
return result

def fillLookupTables():
"""compute all the possible roman numerals
#Save the values in two global tables to convert to and from integers.
for integer in range(l, MAX_ROMAN_NUMERAL + 1):
romanNumber = toRomanDynamic(integer)
toRomanTable. append(romanNumber)
fromRomanTable[romanNumber] = integer

fillLookupTables()

So how fast isit?

Example 15.18. Output of romantest9.py against roman9.py

Ran 13 tests in 0.791s

OK

Remember, the best performance you ever got in the original version was 13 tests in 3.315 seconds. Of
course, it's not entirely afair comparison, because this version will take longer to import (when it fillsthe
lookup tables). But since import is only done once, thisis negligible in the long run.

The moral of the story?
» Simplicity isavirtue.
e Especialy when regular expressions are involved.

» And unit tests can give you the confidence to do large-scale refactoring... even if you didn't write the
original code.

Summary

Unit testing is a powerful concept which, if properly implemented, can both reduce maintenance costs and
increase flexibility in any long-term project. It is also important to understand that unit testing is not a
panacea, a Magic Problem Solver, or asilver bullet. Writing good test casesis hard, and keeping them up
to date takes discipline (especially when customers are screaming for critical bug fixes). Unit testing is not

281

Chapter 15

areplacement for other forms of testing, including functional testing, integration testing, and user acceptance
testing. But it isfeasible, and it does work, and once you've seen it work, you'll wonder how you ever got
along without it.

This chapter covered alot of ground, and much of it wasn't even Python-specific. There are unit testing
frameworks for many languages, all of which require you to understand the same basic concepts:

» Designing test cases that are specific, automated, and independent

e Writing test cases before the code they aretesting

» Writing tests that test good input and check for proper results

» Writing tests that test bad input and check for proper failures

e Writing and updating test cases to illustrate bugs or reflect new requirements

» Refactoring mercilessly to improve performance, scalability, readability, maintainability, or whatever
other -ility you're lacking

Additionally, you should be comfortable doing all of the following Python-specific things:

e Subclassing unittest.TestCase and writing methods for individual test cases

» Using assertEqual to check that a function returns a known value

e Using assertRaises to check that afunction raises a known exception

e Cadlingunittest.main() inyour if __name__ clauseto run all your test cases at once

* Running unit tests in verbose or regular mode

Further reading

» XProgramming.com [http://www.xprogramming.com/] haslinks to download unit testing frameworks
[http:/Avww.xprogramming.com/software.htm] for many different languages.

282

http://www.xprogramming.com/
http://www.xprogramming.com/software.htm

Chapter 16. Functional Programming
Diving in

In Chapter 13, Unit Testing, you learned about the philosophy of unit testing. In Chapter 14, Test-First
Programming, you stepped through the implementation of basic unit testsin Python. In Chapter 15, Refact-
oring, you saw how unit testing makes large-scale refactoring easier. This chapter will build on those
sample programs, but here we will focus more on advanced Python-specific techniques, rather than on unit
testing itself.

Thefollowing isacomplete Python program that acts as a cheap and simple regression testing framework.
It takes unit tests that you've written for individual modules, collects them all into one big test suite, and
runs them all at once. | actually use this script as part of the build process for this book; | have unit tests
for several of the example programs (not just the roman . py module featured in Chapter 13, Unit Testing),
and the first thing my automated build script does is run this program to make sure all my examples still
work. If thisregression test fails, the build immediately stops. | don't want to release non-working examples
any more than you want to download them and sit around scratching your head and yelling at your monitor
and wondering why they don't work.

Example 16.1. regression.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

"""Regression testing framework

This module will search for scripts in the same directory named
XYZtest.py. Each such script should be a test suite that tests a
module through PyUnit. (As of Python 2.1, PyUnit is included in

the standard library as "unittest".) This script will aggregate all
found test suites into one big test suite and run them all at once.

nnn

import sys, os, re, unittest

def regressionTest():
path = os.path.abspath(os.path.dirname(sys.argv[0]))
files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = filter(test.search, files)
filenameToModuleName = lambda f: os.path.splitext(f)[0]
moduleNames = map(filenameToModuleName, files)
modules = map(__import__, moduleNames)
load = unittest.defaultTestLoader.loadTestsFromModule
return unittest.TestSuite(map(load, modules))

if __name__ == "__main__":
unittest.main(defaultTest="regressionTest")

Running this script in the same directory as the rest of the example scripts that come with this book will
find al the unit tests, named moduletest . py, run them as asingle test, and pass or fail them all at once.

283

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 16

Example 16.2. Sample output of regression.py

[you@localhost py]$ python regression.py -v

help should fail with no object ... ok O
help should return known result for apihelper ... ok

help should honor collapse argument ... ok

help should honor spacing argument ... ok

buildConnectionString should fail with list input ... ok O
buildConnectionString should fail with string input ... ok
buildConnectionString should fail with tuple input ... ok
buildConnectionString handles empty dictionary ... ok
buildConnectionString returns known result with known input ... ok
fromRoman should only accept uppercase input ... ok O
toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... ok

fromRoman should fail with malformed antecedents ... ok

fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok

toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non-integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

kgp a ref test ... ok

kgp b ref test ... ok

kgp ¢ ref test ... ok

kgp d ref test ... ok

kgp e ref test ... ok

kgp f ref test ... ok

kgp g ref test ... ok

@ Hh O QN

Ran 29 tests in 2.799s

[] Thefirst 5 tests are from apihelpertest.py, which tests the example script from Chapter 4, The
Power Of Introspection.

[1 Thenext5 testsarefrom odbchelpertest.py, which tests the example script from Chapter 2, Your
First Python Program.

[] Therest arefrom romantest.py, which you studied in depth in Chapter 13, Unit Testing.

Finding the path

When running Python scripts from the command line, it is sometimes useful to know where the currently
running script islocated on disk.

Thisis one of those obscure little tricks that is virtually impossible to figure out on your own, but smple
to remember once you seeit. The key to it is sys.argv. As you saw in Chapter 9, XML Processing, this
is alist that holds the list of command-line arguments. However, it also holds the name of the running

284

Chapter 16

script, exactly as it was called from the command line, and this is enough information to determine its
location.

Example 16.3. fullpath.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

import sys, os

print 'sys.argv[0] =', sys.argv[0] O
pathname = os.path.dirname(sys.argv[0]) O
print 'path =', pathname

print 'full path =', os.path.abspath(pathname) [J

[1 Regardlessof how yourunascript, sys.argv[0] will always contain the name of the script, exactly
asit appears on the command line. This may or may not include any path information, as you'll see
shortly.

[] os.path.dirname takesafilename asastring and returns the directory path portion. If the given fi-
lename does not include any path information, os.path.dirname returns an empty string.

[] os.path.abspathisthekey here. It takesapathname, which can be partial or even blank, and returns
afully qualified pathname.

os.path.abspath deserves further explanation. It is very flexible; it can take any kind of pathname.

Example 16.4. Further explanation of os.path.abspath

>>> import os

>>> os.getcwd() L
/home/you
>>> os.path.abspath('"') O
/home/you
>>> os.path.abspath('.ssh') O

/home/you/.ssh

>>> os.path.abspath('/home/you/.ssh') O
/home/you/.ssh

>>> os.path.abspath('.ssh/../foo/"') [l
/home/you/foo

os.getcwd() returnsthe current working directory.

Calling os.path.abspath with an empty string returns the current working directory, same as
os.getcwd().

Calling os.path.abspath with a partial pathname constructs a fully qualified pathname out of it,
based on the current working directory.

Calling os.path.abspath with afull pathname simply returnsiit.

os.path.abspath also normalizes the pathname it returns. Note that this example worked even
though | don't actually have a 'foo' directory. os.path.abspath never checks your actua disk; this
isall just string manipulation.

OO O Ood

285

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 16

os.path.abspath does not validate pathnames

The pathnames and filenames you pass to os.path. abspath do not need to exist.

Normalizing pathnames

os.path.abspath not only constructs full path names, it also normalizes them. That means that
if you are in the /usr/ directory, os.path.abspath('bin/../local/bin') will return
/usr/local/bin. It normalizes the path by making it as simple as possible. If you just want to
normalize a pathname like this without turning it into a full pathname, use os.path.normpath
instead.

Example 16.5. Sample output from fullpath.py

[you@localhost pyl$ python /home/you/diveintopython/common/py/fullpath.py [
sys.argv[0] = /home/you/diveintopython/common/py/fullpath.py

path = /home/you/diveintopython/common/py

full path = /home/you/diveintopython/common/py

[vou@localhost diveintopython]$ python common/py/fullpath.py O
sys.argv[0] = common/py/fullpath.py

path = common/py

full path = /home/you/diveintopython/common/py

[you@localhost diveintopython]$ cd common/py

[you@localhost py]$ python fullpath.py O
sys.argv[0] = fullpath.py
path =

full path = /home/you/diveintopython/common/py

[] In the first case, sys.argv[0] includes the full path of the script. You can then use the
os.path.dirname function to strip off the script name and return the full directory name, and
os.path.abspath simply returns what you give it.

[] If thescriptisrun by using apartial pathname, sys.argv[0] will still contain exactly what appears
onthecommandline. os.path.dirname will then giveyou apartia pathname (relativeto the current
directory), and os.path.abspath will construct afull pathname from the partial pathname.

[] If thescriptisrunfrom the current directory without giving any path, os.path.dirname will simply
return an empty string. Given an empty string, os . path. abspath returnsthe current directory, which
iswhat you want, since the script was run from the current directory.

os.path.abspath is cross-platform

Like the other functions in the os and os.path modules, os.path.abspath is cross-platform.
Your results will look dlightly different than my examplesif you're running on Windows (which
uses backslash as a path separator) or Mac OS (which uses colons), but they'll still work. That's
the whole point of the os module.

Addendum. Onereader was dissatisfied with this solution, and wanted to be ableto run all the unit tests
inthe current directory, not the directory whereregression. py islocated. He suggeststhis approach instead:

286

Chapter 16

Example 16.6. Running scriptsin the current directory
import sys, os, re, unittest

def regressionTest():
path = os.getcwd() UJ
sys.path.append(path) [l
files = os.listdir(path) [

[] [Instead of setting path to the directory where the currently running script islocated, you set it to the
current working directory instead. This will be whatever directory you were in before you ran the
script, which is not necessarily the same as the directory the script isin. (Read that sentence a few
times until you get it.)

[] Append this directory to the Python library search path, so that when you dynamically import the
unit test modules later, Python can find them. You didn't need to do thiswhen path was the directory
of the currently running script, because Python always looks in that directory.

[] Therest of the function isthe same.

Thistechnique will allow you to re-use thisregression. py script on multiple projects. Just put the script
in a common directory, then change to the project's directory before running it. All of that project's unit
tests will be found and tested, instead of the unit tests in the common directory where regression.py is
located.

Filtering lists revisited

You're aready familiar with using list comprehensions to filter lists. There is another way to accomplish
this same thing, which some people feel is more expressive.

Python has abuilt-in £ilter function which takes two arguments, afunction and alist, and returns alist.’
Thefunction passed asthe first argument to filter must itself take one argument, and thelist that filter
returnswill contain al the elementsfrom thelist passed to filter for which thefunction passedto filter
returns true.

Got all that? It's not as difficult as it sounds.

"Technically, the second argument to £ilter can be any sequence, including lists, tuples, and custom classes that act like lists by
defining the __getitem__ special method. If possible, filter will return the same datatype as you give it, so filtering alist returns
alist, but filtering atuple returns a tuple.

287

Chapter 16

Example 16.7. Introducing filter

>>>

>>>
>>>
(1,
>>>
>>>
>>>

>>>
(1,

def odd(n): 0
return n % 2
1li = [1, 2, 3, 5, 9, 10, 256, -3]

filter(odd, 1i) O
3, 5, 9, -3]
[e for e in 1li if odd(e)] [

filteredList = []

for n in 1i: O
if odd(n):
filteredList.append(n)
filteredList
3, 5, 9, -3]
odd uses the built-in mod function “%” to return True if n isodd and False if n iseven.

filter takes two arguments, afunction (odd) and alist (1i). It loops through the list and calls odd
with each element. If odd returns atrue value (remember, any non-zero value istrue in Python), then
the element isincluded in the returned list, otherwise it isfiltered out. The result isalist of only the
odd numbers from the original list, in the same order as they appeared in the original.

You could accomplish the same thing using list comprehensions, as you saw in the section called
“Filtering Lists”.

You could also accomplish the same thing with a for loop. Depending on your programming back-
ground, this may seem more “ straightforward” , but functionslike filter are much more expressive.
Not only isit easier to write, it's easier to read, too. Reading the for loop is like standing too close
to apainting; you see all the details, but it may take afew secondsto be able to step back and see the
bigger picture: “Oh, you're just filtering the list!”

Example 16.8. filter in regression.py

files = os.listdir(path) 0
test = re.compile("test\.py$", re.IGNORECASE) []
files = filter(test.search, files) []

Asyou saw in the section called “Finding the path”, path may contain the full or partial pathname
of the directory of the currently running script, or it may contain an empty string if the script is being
run from the current directory. Either way, files will end up with the names of thefilesin the same
directory asthis script you're running.

Thisisacompiled regular expression. Asyou saw in the section called “ Refactoring”, if you're going
to use the same regular expression over and over, you should compileit for faster performance. The
compiled object has a search method which takes a single argument, the string to search. If the reg-
ular expression matches the string, the search method returnsaMat ch object containing information
about the regular expression match; otherwise it returns None, the Python null value.

For each element in the files list, you're going to call the search method of the compiled regular
expression object, test. If the regular expression matches, the method will return a Match object,
which Python considers to be true, so the element will beincluded in the list returned by filter. If
the regular expression does not match, the search method will return None, which Python considers
to be false, so the element will not be included.

288

Chapter 16

Historical note. Versionsof Python prior to 2.0 did not have list comprehensions, so you couldn't filter
using list comprehensions; the filter function wasthe only game in town. Even with the introduction of
list comprehensionsin 2.0, some people still prefer the old-style filter (and its companion function, map,
which you'll see later in this chapter). Both techniques work at the moment, so which one you use is a
matter of style. Thereisdiscussion that map and filter might be deprecated in afuture version of Python,
but no decision has been made.

Example 16.9. Filtering using list comprehensionsinstead

files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = [f for f in files if test.search(f)] [

[] Thiswill accomplish exactly the same result as using the filter function. Which way is more ex-
pressive? That's up to you.

Mapping lists revisited

You're aready familiar with using list comprehensions to map one list into another. There is another way
to accomplish the same thing, using the built-in map function. It works much the same way asthe filter
function.

Example 16.10. I ntroducing map

>>> def double(n):
return n*2

>>1i = [1, 2, 3, 5, 9, 10, 256, -3]

>>> map(double, 1i) O
[2, 4, 6, 10, 18, 20, 512, -6]
>>> [double(n) for n in 1i] O

[2, 4, 6, 10, 18, 20, 512, -6]

>>> newlist = []

>>> for n in 1i: O
newlist.append(double(n))

>>> newlist
[2, 4, 6, 10, 18, 20, 512, -6]

[] map takes afunction and alist® and returns a new list by calling the function with each element of
thelist in order. In this case, the function simply multiplies each element by 2.

[] You could accomplish the same thing with alist comprehension. List comprehensions were first in-
troduced in Python 2.0; map has been around forever.

[] Youcould, if youinsist on thinking like aVisual Basic programmer, use a for loop to accomplish
the same thing.

8Aga\i n, | should point out that map can take alist, atuple, or any object that acts like a sequence. See previous footnote about filter.

289

Chapter 16

Example 16.11. map with lists of mixed datatypes

>>> 1i = [5, 'a', (2, 'b")]
>>> map(double, 1i) O
[10, 'aa', (2, 'b', 2, 'b")]

[] Asasidenote, I'd liketo point out that map works just as well with lists of mixed datatypes, as long
as the function you're using correctly handles each type. In this case, the double function simply
multiplies the given argument by 2, and Python Does The Right Thing depending on the datatype of
the argument. For integers, thismeans actually multiplying it by 2; for strings, it means concatenating
the string with itself; for tuples, it means making a new tuple that has all of the elements of the ori-
ginal, then all of the elements of the original again.

All right, enough play time. Let'slook at some real code.

Example 16.12. map in regression.py

filenameToModuleName = lambda f: os.path.splitext(f)[0] [l
moduleNames = map(filenameToModuleName, files)]

[] Asyousaw inthe section called “Using lambda Functions’, 1ambda defines an inline function. And
asyou saw in Example 6.17, “ Splitting Pathnames”, os . path. splitext takesafilenameand returns
atuple (name, extension). SO filenameToModuleName is a function which will take a filename
and strip off the file extension, and return just the name.

[] Caling map takes each filename listed in files, passesit to the function filenameToModuleName,
and returnsalist of the return values of each of those function calls. In other words, you strip thefile
extension off of each filename, and store the list of all those stripped filenamesin moduleNames.

Asyou'll seeintherest of the chapter, you can extend this type of data-centric thinking all the way to the
final goal, which isto define and execute asingle test suite that containsthe testsfrom all of those individual
test suites.

Data-centric programming

By now you're probably scratching your head wondering why thisis better than using for loopsand straight
function calls. And that's a perfectly valid question. Mostly, it's a matter of perspective. Using map and
filter forcesyou to center your thinking around your data.

In this case, you started with no data at all; the first thing you did was get the directory path of the current
script, and got alist of filesin that directory. That was the bootstrap, and it gave you real data to work
with: alist of filenames.

However, you knew you didn't care about al of those files, only the ones that were actually test suites.
You had too much data, so you needed to filter it. How did you know which data to keep? You needed
atest to decide, so you defined one and passed it to the filter function. In this case you used a regular
expression to decide, but the concept would be the same regardless of how you constructed the test.

Now you had the filenames of each of the test suites (and only the test suites, since everything else had
been filtered out), but you really wanted module names instead. You had the right amount of data, but it
was in the wrong format. So you defined a function that would transform a single filename into a module

290

Chapter 16

name, and you mapped that function onto the entire list. From one filename, you can get a module name;
from alist of filenames, you can get alist of module names.

Instead of filter, you could have used a for loop with an if statement. Instead of map, you could have
used a for loop with afunction call. But using for loops like that is busywork. At best, it simply wastes
time; at worst, it introduces obscure bugs. For instance, you need to figure out how to test for the condition
“isthisfile atest suite?’ anyway; that's the application-specific logic, and no language can write that for
us. But once you've figured that out, do you really want go to all the trouble of defining a new empty list
and writing a for loop and an if statement and manually calling append to add each element to the new
list if it passesthe condition and then keeping track of which variable holdsthe new filtered dataand which
one holdsthe old unfiltered data? Why not just define the test condition, then |let Python do the rest of that
work for us?

Oh sure, you could try to be fancy and delete elements in place without creating a new list. But you've
been burned by that before. Trying to modify a data structure that you're looping through can be tricky.
You delete an element, then loop to the next element, and suddenly you've skipped one. Is Python one of
the languages that works that way? How long would it take you to figure it out? Would you remember for
certain whether it was safe the next time you tried? Programmers spend so much time and make so many
mistakes dealing with purely technical issueslikethis, andit'sall pointless. It doesn't advance your program
at al; it'sjust busywork.

| resisted list comprehensions when | first learned Python, and | resisted filter and map even longer. |
insisted on making my life more difficult, sticking to the familiar way of for loopsand if statements and
step-by-step code-centric programming. And my Python programslooked alot likeVisual Basic programs,
detailing every step of every operation in every function. And they had all the same types of little problems
and obscure bugs. And it was all pointless.

Letit all go. Busywork code is not important. Dataisimportant. And datais not difficult. It's only data. If
you have too much, filter it. If it'snot what you want, map it. Focus on the data; |eave the busywork behind.

Dynamically importing modules

OK, enough philosophizing. Let's talk about dynamically importing modules.

First, let'slook at how you normally import modules. The import module Syntax looksin the search path
for the named module and imports it by name. You can even import multiple modules at once this way,
with a comma-separated list. You did this on the very first line of this chapter's script.

Example 16.13. Importing multiple modules at once

import sys, os, re, unittest]

[1 Thisimportsfour modules at once: sys (for system functions and access to the command line para-
meters), os (for operating system functions like directory listings), re (for regular expressions), and
unittest (for unit testing).

Now let's do the same thing, but with dynamic imports.

291

Chapter 16

Example 16.14. Importing modules dynamically

>>> sys = __import__('sys') O
>>> 0os = __import__('os"')

>>> re = __import__('re')

>>> unittest = __import__('unittest')
>>> sys 0
>>> <module 'sys' (built-in)>

>>> 0S

>>> <module 'os' from '/usr/local/lib/python2.2/0s.pyc'>

[1 Thebuilt-in _import__ function accomplishes the same goal as using the import statement, but
it's an actual function, and it takes a string as an argument.

[] Thevariablesys isnow the sys module, just asif you had said import sys. The variable os is now
the os module, and so forth.

So__import__ importsamodule, but takesastring argument to do it. I n this case the modul e you imported
was just a hard-coded string, but it could just as easily be a variable, or the result of afunction call. And
the variable that you assign the modul e to doesn't need to match the modul e name, either. You could import
a series of modules and assign them to alist.

Example 16.15. Importing a list of modules dynamically

>>> moduleNames = ['sys', 'os', 're', 'unittest'] U
>>> moduleNames

['sys', 'os', 're', 'unittest']

>>> modules = map(__import__, moduleNames) O
>>> modules O

[<module 'sys' (built-in)>,

<module 'os' from 'c:\Python22\1lib\os.pyc'>,

<module 're' from 'c:\Python22\lib\re.pyc'>,

<module 'unittest' from 'c:\Python22\lib\unittest.pyc'>]
>>> modules[0].version O
'2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]'
>>> import sys

>>> sys.version

'2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]'

[] moduleNames isjust alist of strings. Nothing fancy, except that the strings happen to be names of
modules that you could import, if you wanted to.

[] Surprise, you wanted to import them, and you did, by mapping the __import__ function onto the
list. Remember, thistakes each element of thelist (moduleNames) and callsthe function (__import__)
over and over, once with each element of the list, builds a list of the return values, and returns the
result.

[1 Sonow fromalist of strings, you've created alist of actual modules. (Your paths may be different,
depending on your operating system, where you installed Python, the phase of the moon, etc.)

[] Todrive homethe point that these are real modules, let'slook at some module attributes. Remember,
modules[0] is the sys module, so modules[0].version is sys.version. All the other attributes
and methods of these modules are al so available. There's nothing magic about the import statement,
and there's nothing magic about modules. Modules are objects. Everything is an object.

292

Chapter 16

Now you should be able to put this all together and figure out what most of this chapter's code sampleis
doing.

Putting it all together

You've learned enough now to deconstruct the first seven lines of this chapter's code sample: reading a
directory and importing selected modules within it.

Example 16.16. The regressionTest function

def regressionTest():
path = os.path.abspath(os.path.dirname(sys.argv[0]))
files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = filter(test.search, files)
filenameToModuleName = lambda f: os.path.splitext(f)[0]
moduleNames = map(filenameToModuleName, files)
modules = map(__import__, moduleNames)
load = unittest.defaultTestLoader.loadTestsFromModule
return unittest.TestSuite(map(load, modules))

Let'slook at it line by line, interactively. Assume that the current directory is c:\diveintopython\py,
which contains the examples that come with this book, including this chapter's script. As you saw in the
section called “Finding the path”, the script directory will end up in the path variable, so let's start hard-
code that and go from there.

Example 16.17. Step 1. Get all thefiles

>>> import sys, os, re, unittest

>>> path = r'c:\diveintopython\py'

>>> files = os.listdir(path)

>>> files [

['BaseHTMLProcessor.py', 'LICENSE.txt', 'apihelper.py', 'apihelpertest.py',
'argecho.py', 'autosize.py', 'builddialectexamples.py', 'dialect.py',
'fileinfo.py', 'fullpath.py', 'kgptest.py', 'makerealworddoc.py',
'odbchelper.py', 'odbchelpertest.py', 'parsephone.py', 'piglatin.py',
'plural.py', 'pluraltest.py', 'pyfontify.py', 'regression.py', 'roman.py',
'romantest.py',

'uncurly.py', 'unicode2koi8r.py', 'urllister.py', 'kgp', 'plural', 'roman',
'colorize.py']

[] filesisalistof dl the filesand directoriesin the script's directory. (If you've been running some
of the examples already, you may also see some .pyc filesin there aswell.)

293

Chapter 16

Example 16.18. Step 2: Filter tofind the files you care about

>>> test = re.compile("test\.py$", re.IGNORECASE) O
>>> files = filter(test.search, files) O
>>> files H

['apihelpertest.py', 'kgptest.py', 'odbchelpertest.py', 'pluraltest.py', 'romantest.py']

[] Thisregular expression will match any string that ends with test.py. Note that you need to escape
the period, since a period in a regular expression usually means “match any single character”, but
you actually want to match aliteral period instead.

[] Thecompiled regular expression acts like a function, so you can use it to filter the large list of files
and directories, to find the ones that match the regular expression.

[] And youre left with the list of unit testing scripts, because they were the only ones named
SOMETHINGtest.py.

Example 16.19. Step 3: Map filenamesto module names

>>> filenameToModuleName = lambda f: os.path.splitext(£)[0] O
>>> filenameToModuleName('romantest.py')

'romantest'

>>> filenameToModuleName('odchelpertest.py')

'odbchelpertest’

>>> moduleNames = map(filenameToModuleName, files) O
>>> moduleNames O

['apihelpertest', 'kgptest', 'odbchelpertest', 'pluraltest', 'romantest']

[] Asyousaw in the section caled “Using lambda Functions’, 1ambda is a quick-and-dirty way of
creating an inline, one-line function. This one takes a filename with an extension and returns just the
filename part, using the standard library function os.path. splitext that you saw in Example 6.17,
“Splitting Pathnames’.

[] filenameToModuleName isafunction. There's nothing magic about 1ambda functions as opposed to
regular functions that you define with a def statement. You can call the filenameToModuleName
function like any other, and it does just what you wanted it to do: strips the file extension off of its
argument.

[1 Now you can apply thisfunction to each file in the list of unit test files, using map.

[1 Andtheresultisjust what you wanted: alist of modules, as strings.

294

Chapter 16

Example 16.20. Step 4: Mapping module names to modules

>>> modules = map(__import__, moduleNames) O
>>> modules [l
[<module 'apihelpertest' from 'apihelpertest.py'>,

<module 'kgptest' from 'kgptest.py'>,

<module 'odbchelpertest' from 'odbchelpertest.py'>,

<module 'pluraltest' from 'pluraltest.py'>,

<module 'romantest' from 'romantest.py'>]

>>> modules[-1] [l
<module 'romantest' from 'romantest.py'>

[] Asyousaw in the section called “Dynamically importing modules’, you can use a combination of
map and __import__ to map alist of module names (as strings) into actual modules (which you can
call or access like any other module).

[] modulesisnow alist of modules, fully accessible like any other module.

[] Thelast moduleinthelististheromantest module, just asif you had said import romantest.

Example 16.21. Step 5: L oading the modulesinto atest suite

>>> load = unittest.defaultTestLoader.loadTestsFromModule
>>> map(load, modules) O
[<unittest.TestSuite tests=[
<unittest.TestSuite tests=[<apihelpertest.BadInput testMethod=testNoObject>]>,
<unittest.TestSuite tests=[<apihelpertest.KnownValues testMethod=testApiHelper>]>,
<unittest.TestSuite tests=[
<apihelpertest.ParamChecks testMethod=testCollapse>,
<apihelpertest.ParamChecks testMethod=testSpacing>]>,

]
1
>>> unittest.TestSuite(map(load, modules)) O

[] Thesearerea moduleobjects. Not only can you accessthem like any other module, instantiate classes
and call functions, you can also introspect into the modul e to figure out which classes and functions
it hasin thefirst place. That's what the 1oadTestsFromModule method does: it introspects into each
moduleand returnsaunittest.TestSuite object for each module. Each TestSuite object actually
contains alist of TestSuite objects, one for each TestCase classin your module, and each of those
TestSuite objects contains alist of tests, one for each test method in your module.

[] Finaly, youwrap thelist of TestSuite objectsinto one big test suite. The unittest module hasno
problem traversing this tree of nested test suites within test suites; eventually it gets down to an indi-
vidual test method and executesiit, verifies that it passes or fails, and moves on to the next one.

Thisintrospection processiswhat theunittest moduleusually doesfor us. Remember that magic-looking
unittest.main() function that our individua test modules called to kick the whole thing off?
unittest.main() actually createsaninstance of unittest.TestProgram, whichinturn createsaninstance
of aunittest.defaultTestLoader and loadsit up with the modulethat called it. (How doesit get aref-
erence to the module that called it if you don't give it one? By using the equally-magic
__import__('_main__") command, which dynamically imports the currently-running module. | could
write a book on all the tricks and techniques used in the unittest module, but then I'd never finish this
one.)

295

Chapter 16

Example 16.22. Step 6: Telling unittest to use your test suite

if __name__ == "_main__":
unittest.main(defaultTest="regressionTest") 0

[] [Instead of letting theunittest moduledo all itsmagic for us, you've done most of it yourself. You've
created a function (regressionTest) that imports the modules yourself, calls
unittest.defaultTestLoader yourself, and wrapsit al up in atest suite. Now all you need to do
istell unittest that, instead of looking for tests and building atest suite in the usual way, it should
just call the regressionTest function, which returns aready-to-use TestSuite.

Summary

Theregression.py program and its output should now make perfect sense.
You should now feel comfortable doing all of these things:

» Manipulating path information from the command line.

» Filtering listsusing filter instead of list comprehensions.

* Mapping lists using map instead of list comprehensions.

e Dynamically importing modules.

296

Chapter 17. Dynamic functions
Diving in

| want to talk about plural nouns. Also, functionsthat return other functions, advanced regular expressions,
and generators. Generators are new in Python 2.3. But first, let'stalk about how to make plural nouns.

If you haven't read Chapter 7, Regular Expressions, now would be agood time. This chapter assumesyou
understand the basics of regular expressions, and quickly descends into more advanced uses.

English is a schizophrenic language that borrows from alot of other languages, and the rules for making
singular nouns into plural nouns are varied and complex. There are rules, and then there are exceptions to
those rules, and then there are exceptions to the exceptions.

If you grew up in an English-speaking country or learned English in aformal school setting, you're probably
familiar with the basic rules:

1. IfawordendsinsS, X, or Z, add ES. “Bass’ becomes “basses’, “fax” becomes “faxes’, and “waltz”
becomes “waltzes’.

2. If aword endsin anoisy H, add ES; if it endsin asilent H, just add S. What's a noisy H? One that
gets combined with other letters to make a sound that you can hear. So “coach” becomes “coaches’
and “rash” becomes “rashes’, because you can hear the CH and SH sounds when you say them. But
“cheetah” becomes “ cheetahs”, because the H is silent.

3. IfawordendsinY that soundslikel, changetheY toIES; if theY iscombined with avowel to sound
like something else, just add S. So “vacancy” becomes “vacancies’, but “day” becomes “days’.

4. |If al esefails, just add S and hope for the best.

(I know, there arealot of exceptions. “Man” becomes*“men” and “woman” becomes*“women”, but “human”
becomes*“humans’. “Mouse’ becomes“mice” and “louse’ becomes“lice’, but “house” becomes* houses’.
“Knife” becomes*“knives’ and “wife’ becomes*“wives’, but “lowlife’ becomes*lowlifes’. And don't even

(LTS

get me started on words that are their own plural, like “sheep”, “deer”, and “haiku”.)
Other languages are, of course, completely different.

Let's design a module that pluralizes nouns. Start with just English nouns, and just these four rules, but
keep in mind that you'll inevitably need to add more rules, and you may eventually need to add more lan-

guages.
plural.py, stage 1

So you'relooking at words, which at least in English are strings of characters. And you have rules that say
you need to find different combinations of characters, and then do different things to them. This sounds
like ajob for regular expressions.

297

Chapter 17

Example 17.1. plurall.py

import re

def plural(noun):

O

if re.search('[sxz]$', noun): O
return re.sub('$', 'es', noun) O

elif re.search('[*aeioudgkprt]h$', noun):
return re.sub('$', 'es', noun)

elif re.search('[*aeiou]y$', noun):
return re.sub('y$', 'ies', noun)

else:

return noun + 's

OK, thisisaregular expression, but it usesasyntax you didn't seein Chapter 7, Regular Expressions.
The square brackets mean “match exactly one of these characters’. So [sxz] means*s, or x, or z”,
but only one of them. The $ should be familiar; it matches the end of string. So you're checking to
seeif noun endswith s, x, or z.

Thisre. sub function performs regular expression-based string substitutions. Let'slook at it in more
detail.

Example 17.2. Introducing re. sub

>>> import re

>>> re.search('[abc]', 'Mark') O
<_sre.SRE_Match object at Ox001C1FA8>
>>> re.sub('[abc]', 'o', 'Mark') U

'Mork'

>>> re.sub('[abc]', 'o', 'rock') U

'rook'

>>> re.sub('[abc]', 'o', 'caps') O

'oops'

[] DoesthestringMark contain a, b, or c?Yes, it contains a.

OoOd

OK, now find a, b, or ¢, and replace it with o. Mark becomes Mork.
The same function turns rock into rook.

You might think this would turn caps into oaps, but it doesn't. re. sub replaces all of the matches,
not just the first one. So this regular expression turns caps into oops, because both the ¢ and the a
get turned into o.

298

Chapter 17

Example 17.3. Back to plurall.py

import re

def plural(noun):
if re.search('[sxz]$', noun):

return re.sub('$', 'es', noun) O
elif re.search('[*aeioudgkprt]h$', noun): O

return re.sub('$', 'es', noun) O
elif re.search('[*aeiou]y$', noun):

return re.sub('y$', 'ies', noun)
else:

return noun + 's

[] Back to the plural function. What are you doing? You're replacing the end of string with es. In
other words, adding es to the string. You could accomplish the same thing with string concatenation,
for example noun + 'es', but I'm using regular expressions for everything, for consistency, for
reasons that will become clear later in the chapter.

[] Look closely, thisis another new variation. The as the first character inside the square brackets
means something special: negation. [Aabc] means “any single character except a, b, or ¢”. SO
[~aeioudgkprt] meansany character except a, e, i, 0,u, d, g, k, p, r, or t. Then that character needs
to be followed by h, followed by end of string. You're looking for words that end in H where the H
can be heard.

[1 Same pattern here: match words that end in'Y, where the character before theY isnot a, e, i, o, or
u. You're looking for wordsthat end inY that soundslikel.

Example 17.4. More on negation regular expressions

>>> import re

>>> re.search('[*aeiouly$', 'vacancy') U]
<_sre.SRE_Match object at Ox001C1FA8>
>>> re.search('[*aeiouly$', 'boy') U
>>>

>>> re.search('[*aeiouly$', 'day')

>>>

>>> re.search('[*aeioul]y$', 'pita’) [l
>>>

[] vacancy matchesthisregular expression, becauseit endsincy, andcisnot a, e, 1, o, Or u.

[] boy does not match, because it ends in oy, and you specifically said that the character before the v
could not be o. day does not match, because it endsin ay.
[] pitadoesnot match, becauseit doesnot endiny.

299

Chapter 17

Example 17.5. More on re. sub

>>> re.sub('y$', 'ies', 'vacancy')]
'vacancies'

>>> re.sub('y$', 'ies', 'agency')

'agencies'

>>> re.sub('([*aeioul)y$', r'\lies', 'vacancy') O
'vacancies'

[] Thisregular expression turns vacancy into vacancies and agency into agencies, which is what
you wanted. Note that it would also turn boy into boies, but that will never happen in the function
because you did that re. search first to find out whether you should do thisre. sub.

[] Justinpassing, | want to point out that it is possible to combine these two regular expressions (one
tofind out if therule applies, and another to actually apply it) into asingle regular expression. Here's
what that would look like. Most of it should look familiar: you're using a remembered group, which
you learned in the section called “ Case study: Parsing Phone Numbers’, to remember the character
before the y. Then in the substitution string, you use a new syntax, \1, which means “hey, that first
group you remembered? put it here”. In this case, you remember the ¢ before the y, and then when
you do the substitution, you substitute ¢ in place of ¢, and ies in place of y. (If you have more than
one remembered group, you can use \2 and \3 and so on.)

Regular expression substitutions are extremely powerful, and the \1 syntax makes them even more
powerful. But combining the entire operation into one regular expression is also much harder to read, and
it doesn't directly map to the way you first described the pluraizing rules. You originaly laid out rules
like“if theword endsin S, X, or Z, then add ES’. And if you look at this function, you have two lines of
codethat say “if theword endsin S, X, or Z, then add ES’. It doesn't get much more direct than that.

plural.py, stage 2

Now you're going to add alevel of abstraction. You started by defining alist of rules: if this, then do that,
otherwise go to the next rule. Let'stemporarily complicate part of the program so you can simplify another
part.

300

Chapter 17

Example 17.6. plural2.py

import re

def

def

def

def

def

def

def

def

match_sxz(noun):
return re.search('[sxz]$', noun)

apply_sxz(noun):
return re.sub('$', 'es', noun)

match_h(noun):
return re.search('[*aeioudgkprt]h$', noun)

apply_h(noun):
return re.sub('$', 'es', noun)

match_y(noun) :
return re.search('[*aeiou]y$', noun)

apply_y(noun):
return re.sub('y$', 'ies', noun)

match_default(noun):
return 1

apply_default(noun):

return noun + 's

rules = ((match_sxz, apply_sxz),

def

(match_h, apply_h),
(match_y, apply_y),
(match_default, apply_default)

) 0

plural(noun):
for matchesRule, applyRule in rules: O
if matchesRule(noun): O
return applyRule(noun) O

This version looks more complicated (it's certainly longer), but it does exactly the same thing: try to
match four different rules, in order, and apply the appropriate regular expression when a match is
found. The differenceisthat each individual match and apply ruleis defined in its own function, and
the functions are then listed in thisrules variable, which is atuple of tuples.

Using a for loop, you can pull out the match and apply rules two at atime (one match, one apply)
from the rules tuple. On the first iteration of the for loop, matchesRule will get match_sxz, and
applyRule will get apply_sxz. On the second iteration (assuming you get that far), matchesRule
will be assigned match_h, and applyRule will be assigned apply_h.

Remember that everything in Pythonisan object, including functions. rules contains actua functions;
not names of functions, but actual functions. When they get assigned inthe for loop, thenmatchesRule
and applyRule are actual functionsthat you can call. So on the first iteration of the for loop, thisis
equivalent to calling matches_sxz(noun).

On thefirst iteration of the for loop, thisis equivalent to calling apply_sxz(noun), and so forth.

301

Chapter 17

If this additional level of abstraction is confusing, try unrolling the function to see the equivalence. This
for loop is equivalent to the following:

Example 17.7. Unrolling the plural function

def plural(noun):
if match_sxz(noun):
return apply_sxz(noun)
if match_h(noun):
return apply_h(noun)
if match_y(noun):
return apply_y(noun)
if match_default(noun):
return apply_default(noun)

The benefit here is that that plural function is now simplified. It takes alist of rules, defined elsewhere,
and iterates through them in a generic fashion. Get a match rule; does it match? Then call the apply rule.
Therules could be defined anywhere, in any way. The plural function doesn't care.

Now, was adding this level of abstraction worth it? Well, not yet. Let's consider what it would take to add
a new rule to the function. Well, in the previous example, it would require adding an if statement to the
plural function. In this example, it would require adding two functions, match_foo and apply_foo, and

then updating the rules list to specify where in the order the new match and apply functions should be
called relative to the other rules.

Thisisreally just a stepping stone to the next section. Let's move on.
plural.py, stage 3

Defining separate named functions for each match and apply rule isn't really necessary. You never call
them directly; you define them in the rules list and call them through there. Let's streamline the rules
definition by anonymizing those functions.

302

Chapter 17

Example 17.8. plural3.py

import re
rules = \
(
(
lambda word: re.search('[sxz]$', word),
lambda word: re.sub('$', 'es', word)
),
(
lambda word: re.search('[*aeioudgkprt]h$', word),
lambda word: re.sub('$', 'es', word)
),
(
lambda word: re.search('[2aeioul]y$', word),
lambda word: re.sub('y$', 'ies', word)
),
(
lambda word: re.search('$', word),
lambda word: re.sub('$', 's', word)
)
) 0

def plural(noun):
for matchesRule, applyRule in rules: O
if matchesRule(noun):
return applyRule(noun)

[] Thisisthesame set of rules asyou defined in stage 2. The only difference is that instead of defining
named functionslikematch_sxz and apply_sxz, you have“inlined” those function definitionsdirectly
into therules list itself, using lambda functions.

[] Notethat theplural function hasn't changed at all. It iterates through a set of rule functions, checks
thefirst rule, and if it returns atrue value, calls the second rule and returns the value. Same as above,
word for word. The only differenceisthat the rule functions were defined inline, anonymously, using
lambda functions. But the plural function doesn't care how they were defined; it just gets alist of
rules and blindly works through them.

Now to add anew rule, all you need to do is define the functions directly inthe rules list itself; one match
rule, and one apply rule. But defining the rule functions inline like this makes it very clear that you have
some unnecessary duplication here. You have four pairs of functions, and they all follow the same pattern.
The match function isasingle call to re. search, and the apply function isasingle call to re.sub. Let's
factor out these similarities.

plural.py, stage 4

Let's factor out the duplication in the code so that defining new rules can be easier.

303

Chapter 17

Example 17.9. plural4.py

import re

def buildMatchAndApplyFunctions((pattern, search, replace)):

matchFunction = lambda word: re.search(pattern, word) O
applyFunction = lambda word: re.sub(search, replace, word) O
return (matchFunction, applyFunction) O

buildMatchAndApplyFunctions is a function that builds other functions dynamically. It takes
pattern, search and replace (actualy it takes a tuple, but more on that in a minute), and you can
build the match function using the 1ambda syntax to be a function that takes one parameter (word)
and calls re.search with the pattern that was passed to the buildMatchAndApplyFunctions
function, and the word that was passed to the match function you're building. Whoa.

Building the apply function works the same way. The apply function is a function that takes one
parameter, and calls re.sub with the search and replace parameters that were passed to the
buildMatchAndApplyFunctions function, and theword that was passed to the apply function you're
building. Thistechnique of using the values of outside parameterswithin adynamic functioniscalled
closures. You're essentially defining constants within the apply function you're building: it takes one
parameter (word), but it then acts on that plus two other values (search and replace) which were
set when you defined the apply function.

Finally, the buildMatchAndApplyFunctions function returnsatuple of two values: thetwo functions
you just created. The constants you defined within those functions (pattern withinmatchFunction,
and search and replace within applyFunction) stay with those functions, even after you return
from buildMatchAndApplyFunctions. That'sinsanely cool.

If thisisincredibly confusing (and it should be, thisis weird stuff), it may become clearer when you see
how to useit.

Example 17.10. plural4.py continued

patterns = \

('[sxz]$', '$', 'es"),
('[*~aeioudgkprt]h$', '$', 'es'),
('(qu|[*aeioul)y$', 'v$', 'ies'),
s, '$', 'sY)
O

rules = map(buildMatchAndApplyFunctions, patterns) O

O

Our pluralization rules are now defined as a series of strings (not functions). The first string is the
regular expression that you would usein re. search to seeif this rule matches; the second and third
are the search and replace expressions you would use in re. sub to actually apply the rule to turn a
noun into its plural.

Thislineismagic. It takesthelist of stringsin patterns and turnstheminto alist of functions. How?
By mapping the strings to the buildMatchAndApplyFunctions function, which just happensto take
three strings as parameters and return a tuple of two functions. This meansthat rules ends up being
exactly the same as the previous example: a list of tuples, where each tuple is a pair of functions,
where the first function is the match function that calls re.search, and the second function is the
apply function that calls re. sub.

304

Chapter 17

| swear | am not making this up: rules ends up with exactly the same list of functions as the previous ex-
ample. Unroll the rules definition, and you'll get this:

Example 17.11. Unrolling therules definition

rules = \

(
(
lambda word: re.search('[sxz]$', word),
lambda word: re.sub('$', 'es', word)
),
(
lambda word: re.search('[2aeioudgkprt]h$', word),
lambda word: re.sub('$', 'es', word)
),
(
lambda word: re.search('[2aeioul]y$', word),
lambda word: re.sub('y$', 'ies', word)
),
(
lambda word: re.search('$', word),
lambda word: re.sub('$', 's', word)
)

)

Example 17.12. plural4.py, finishing up

def plural(noun):
for matchesRule, applyRule in rules: O
if matchesRule(noun):
return applyRule(noun)

[] Sincetherules lististhesame asthe previousexample, it should come as no surprisethat theplural
function hasn't changed. Remember, it's completely generic; it takesalist of rule functions and calls
them in order. It doesn't care how the rules are defined. In stage 2, they were defined as seperate
named functions. In stage 3, they were defined as anonymous 1ambda functions. Now in stage 4, they
are built dynamically by mapping the buildMatchAndApplyFunctions function onto alist of raw
strings. Doesn't matter; the plural function still works the same way.

Just in case that wasn't mind-blowing enough, I must confess that there was a subtlety in the definition of
buildMatchAndApplyFunctions that | skipped over. Let's go back and take another |ook.

Example 17.13. Another look at buildMatchAndApplyFunctions

def buildMatchAndApplyFunctions((pattern, search, replace)): O

[] Noticethe double parentheses? This function doesn't actually take three parameters; it actually takes
one parameter, atuple of three elements. But the tuple is expanded when the function is called, and
the three elements of thetuple are each assigned to different variables: pattern, search, andreplace.
Confused yet? Let's seeit in action.

305

Chapter 17

Example 17.14. Expanding tuples when calling functions

>>> def foo((a, b, c)):

print c
print b
e print a
>>> parameters = ('apple', 'bear', 'catnap')
>>> foo(parameters) [
catnap
bear
apple

[] Theproper way tocall thefunction foo iswith atuple of three elements. When the functionis called,
the elements are assigned to different local variables within foo.

Now let's go back and see why this auto-tuple-expansion trick was necessary. patterns wasalist of tuples,
and each tuple had three elements. When you called map (buildMatchAndApplyFunctions, patterns),
that means that buildMatchAndApplyFunctions is not getting called with three parameters. Using map
to map asingle list onto a function aways calls the function with a single parameter: each element of the
list. Inthe case of patterns, each element of thelistisatuple, sobuildMatchAndApplyFunctions aways
gets caled with the tuple, and you use the auto-tuple-expansion trick in the definition of
buildMatchAndApplyFunctions to assign the elements of that tupleto named variablesthat you can work
with.

plural.py, stage 5

You've factored out al the duplicate code and added enough abstractions so that the pluralization rules are
defined in alist of strings. The next logical step is to take these strings and put them in a separate file,
where they can be maintained separately from the code that uses them.

First, let's create atext file that contains the rules you want. No fancy data structures, just space- (or tab-
)delimited strings in three columns. You'll call it rules.en; “en” stands for English. These are the rules
for pluralizing English nouns. You could add other rule files for other languages later.

Example 17.15. rules.en

[sxz]1$ $ es
[~aeioudgkprt1h$ $ es
[raeiouly$ v$ ies
$ $ s

Now let's see how you can use this rulesfile.

306

Chapter 17

Example 17.16. plural5.py

import re
import string

def buildRule((pattern, search, replace)):
return lambda word: re.search(pattern, word) and re.sub(search, replace, word) O

def plural(noun, language='en'):
lines = file('rules.%s' % language).readlines()
patterns = map(string.split, lines)
rules = map(buildRule, patterns)
for rule in rules:
result = rule(noun)
if result: return result

[O I B B

[] Youre still using the closures technique here (building a function dynamically that uses variables
defined outside the function), but now you've combined the separate match and apply functions into
one. (Thereason for this change will become clear in the next section.) Thiswill let you accomplish
the same thing as having two functions, but you'll need to call it differently, asyou'll seein aminute.

[] Ourplural function now takes an optional second parameter, language, which defaultsto en.

[] You usethe language parameter to construct a filename, then open the file and read the contents
into alist. If language is en, then you'll open the rules. en file, read the entire thing, break it up by
carriage returns, and return alist. Each line of the file will be one element in thelist.

[] Asyousaw, eachlineinthefilerealy hasthree values, but they're separated by whitespace (tabs or
spaces, it makes no difference). Mapping the string. split function onto thislist will create anew
list where each element isatuple of three strings. So aline like [sxz]$ $ es will be broken up into
thetuple ('[sxz]$', '$', 'es'). This meansthat patterns will end up as alist of tuples, just
like you hard-coded it in stage 4.

[] Ifpatternsisalistof tuples, thenrules will bealist of the functions created dynamically by each
call to buildRule. Calling buildRule(('[sxz]$', '$', 'es')) returns afunction that takes a
single parameter, word. When this returned function iscalled, it will executere.search(' [sxz]$"',
word) and re.sub('$', 'es', word).

[] Becauseyou're now building a combined match-and-apply function, you need to call it differently.
Just call the function, and if it returns something, then that's the plural; if it returns nothing (None),
then the rule didn't match and you need to try another rule.

So the improvement here is that you've completely separated the pluralization rules into an externa file.
Not only can the file be maintained separately from the code, but you've set up a naming scheme where
the same plural function can use different rule files, based on the 1anguage parameter.

Thedownside hereisthat you're reading that file every timeyou call theplural function. | thought | could
get through this entire book without using the phrase “left as an exercise for the reader”, but here you go:
building a caching mechanism for the language-specific rule files that auto-refreshes itself if therule files
change between calsisleft as an exercise for the reader. Have fun.

plural.py, stage 6

Now you're ready to talk about generators.

307

Chapter 17

Example 17.17. plural6.py

import re
def rules(language):
for line in file('rules.%s' % language):
pattern, search, replace = line.split()
yield lambda word: re.search(pattern, word) and re.sub(search, replace, word)
def plural(noun, language='en'):
for applyRule in rules(language):

result = applyRule(noun)
if result: return result

This uses a technique called generators, which I'm not even going to try to explain until you look at a
simpler examplefirst.

308

Chapter 17

Example 17.18. Introducing generator s

>>> def make_counter(x):

print 'entering make_counter'
while 1:
yield x O
print 'incrementing x'
x=x+1

>>> counter = make_counter(2) [

>>> counter U

<generator object at 0x001C9C10>

>>> counter.next() O

entering make_counter

2

>>> counter.next() O

incrementing x

3

>>> counter.next() O

incrementing x

4

[] Thepresence of the yield keyword in make_counter means that thisis not anormal function. It is
a special kind of function which generates values one at atime. You can think of it as a resumable
function. Calling it will return a generator that can be used to generate successive values of x.

[] To create an instance of the make_counter generator, just call it like any other function. Note that
this does not actually execute the function code. You can tell this because the first line of
make_counter iSaprint statement, but nothing has been printed yet.

[] Themake_counter function returns a generator object.

[] The first time you call the next() method on the generator object, it executes the code in
make_counter up to the first yield statement, and then returns the value that was yielded. In this
case, that will be 2, because you originally created the generator by calling make_counter(2).

[1 Repeatedly callingnext () on the generator object resumes where you | eft off and continues until you
hit the next yield statement. The next line of code waiting to be executed is the print statement
that printsincrementing x, and then after that thex = x + 1 statement that actually incrementsit.
Then you loop through the while loop again, and the first thing you do is yield x, which returns
the current value of x (now 3).

[] Thesecondtimeyou call counter.next(), you do all the same things again, but this time x is now

4. And so forth. Sincemake_counter setsup an infinite loop, you could theoretically do thisforever,
and it would just keep incrementing x and spitting out values. But let's look at more productive uses
of generators instead.

309

Chapter 17

Example 17.19. Using generatorsinstead of recursion

def fibonacci(max):

a, b=0, 1 0
while a < max:
yield a O

a, b =b, atb [

The Fibonacci sequence is a sequence of numbers where each number is the sum of the two numbers
before it. It starts with 0 and 1, goes up slowly at first, then more and more rapidly. To start the se-
quence, you need two variables: a startsat 0, and b startsat 1.

a isthe current number in the sequence, so yield it.

b is the next number in the sequence, so assign that to a, but also calculate the next value (a+b) and
assign that to b for later use. Note that this happensin paralel; if ais3 andbis5, thena, b = b,
a+b will set a to 5 (the previous value of b) and b to 8 (the sum of the previous values of a and b).

So you have afunction that spits out successive Fibonacci numbers. Sure, you could do that with recursion,
but thisway is easier to read. Also, it works well with for loops.

Example 17.20. Generatorsin for loops

>>> for n in fibonacci(1000): [J

print n, O

01123581321 34 5589 144 233 377 610 987

O

You can use agenerator like fibonacci in afor loop directly. The for loop will create the generator
object and successively call the next () method to get valuesto assign to the for loop index variable
(n).

Each time through the for loop, n gets anew value from the yield statement in fibonacci, and all
you do is print it out. Once fibonacci runs out of numbers (a gets bigger than max, which in this
case is 1000), then the for loop exits gracefully.

OK, let's go back to the plural function and see how you're using this.

310

Chapter 17

Example 17.21. Generator sthat generate dynamic functions

def rules(language):

for line in file('rules.%s' % language):

O

pattern, search, replace = line.split()
O

yield lambda word: re.search(pattern, word) and re.sub(search, replace, word)
O

def plural(noun, language='en'):
for applyRule in rules(language): [l

result = applyRule(noun)

if result: return result

[] for line in file(...)isacommonidiomfor readinglinesfromafile, onelineat atime. It works
because file actually returns a generator whose next () method returns the next line of the file.
That is so insanely cool, | wet myself just thinking about it.

[1 Nomagic here. Remember that the lines of the rulesfile have three val ues separated by whitespace,
so line.split() returnsatuple of 3 values, and you assign those valuesto 3 local variables.

[] Andthen you yield. What do you yield? A function, built dynamically with 1ambda, that is actually
aclosure (it uses the local variables pattern, search, and replace as constants). In other words,
rules isagenerator that spits out rule functions.

[] Sincerules isagenerator, you can useit directly in afor loop. The first time through the for loop,
youwill call therules function, which will open therulesfile, read thefirst line out of it, dynamically
build afunction that matches and appliesthe first rule defined in the rulesfile, and yields the dynam-
ically built function. The second time through the for loop, you will pick up where you left off in
rules (which was in the middle of the for 1line in file(...) loop), read the second line of the
rulesfile, dynamically build another function that matches and applies the second rule defined in the
rulesfile, and yieldsit. And so forth.

What have you gained over stage 5? In stage 5, you read the entire rulesfile and built alist of al the possible
rules before you even tried the first one. Now with generators, you can do everything lazily: you open the

first and read the first rule and create a function to try it, but if that works you don't ever read the rest of
the file or create any other functions.

Further reading
» PEP 255 [http://www.python.org/peps/pep-0255.html] defines generators.

» Python Cookbook [http://www.activestate.com/A SPN/Python/Cookbook/] has many more examples
of generators [http://www.google.com/search?g=generators+cookbook+site:aspn.activestate.com].

Summary

You talked about severa different advanced techniquesin this chapter. Not al of them are appropriate for
every situation.

You should now be comfortable with all of these techniques:

» Performing string substitution with regular expressions.

311

http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com

Chapter 17

» Treating functions as objects, storing them in lists, assigning them to variables, and calling them through
those variables.

* Building dynamic functions with lambda.
» Building closures, dynamic functions that contain surrounding variables as constants.

» Building generators, resumable functions that perform incremental logic and return different values
each time you call them.

Adding abstractions, building functions dynamically, building closures, and using generators can all make
your code simpler, more readable, and more flexible. But they can also end up making it more difficult to
debug later. It's up to you to find the right balance between simplicity and power.

312

Chapter 18. Performance Tuning

Performance tuning is a many-splendored thing. Just because Python is an interpreted language doesn't
mean you shouldn't worry about code optimization. But don't worry about it too much.

Diving In
There are so many pitfallsinvolved in optimizing your code, it's hard to know where to start.

Let's start here: are you sure you need to do it at all? Is your code really so bad? Is it worth the time to
tune it? Over the lifetime of your application, how much time is going to be spent running that code,
compared to the time spent waiting for aremote database server, or waiting for user input?

Second, are you sure you're done coding? Premature optimization islike spreading frosting on a hal f-baked
cake. You spend hours or days (or more) optimizing your code for performance, only to discover it doesn't
do what you need it to do. That's time down the drain.

Thisis not to say that code optimization is worthless, but you need to look at the whole system and decide
whether it's the best use of your time. Every minute you spend optimizing code is a minute you're not
spending adding new features, or writing documentation, or playing with your kids, or writing unit tests.

Oh yes, unit tests. It should go without saying that you need a complete set of unit tests before you begin
performance tuning. The last thing you need is to introduce new bugs while fiddling with your algorithms.

With these caveatsin place, let'slook at some techniquesfor optimizing Python code. The code in question
is an implementation of the Soundex algorithm. Soundex was a method used in the early 20th century for
categorizing surnames in the United States census. It grouped similar-sounding names together, so even
if aname was misspelled, researchers had a chance of finding it. Soundex is still used today for much the
same reason, although of course we use computerized database servers now. M ost database serversinclude
a Soundex function.

There are several subtle variations of the Soundex algorithm. Thisis the one used in this chapter:
1. Keepthefirst letter of the name as-is.
2. Convert the remaining lettersto digits, according to a specific table:

* B, F B andV become 1.

* C,G,JK,Q,S X, andZ become 2.

 DandT become 3.

* L becomes4.

e M and N becomeb5.

* R becomes6.

« All other letters become 9.

3. Remove consecutive duplicates.

313

Chapter 18

4. Remove al 9s altogether.

5. If theresult isshorter than four characters (thefirst |etter plusthree digits), pad the result with trailing
Zeros.

6. if theresult islonger than four characters, discard everything after the fourth character.

For example, my name, Pilgrim, becomes P942695. That has no consecutive duplicates, so nothing to do
there. Then you removethe 9s, leaving P4265. That's too long, so you discard the excess character, leaving
P426.

Another example: Woo becomes W99, which becomes W9, which becomes W, which gets padded with
zeros to become WO00O.

Here's afirst attempt at a Soundex function:

314

Chapter 18

Example 18.1. soundex/stagel/soundexla.py

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

import string, re

charToSoundex = {"A": "9",

"B": "1",
"ctrot2n,
"D": "3",
"E": "9",
"F':o "1,
"G'r 2",
"H": "9",
"I "9M,
"Jrot2n,
"Ktot2n,
"L": "4",
"M": 5",
"NToM5T,
"o": "9",
"pt: "1,
"Qt: 2",
"R": "6",
"stot2n,
"T": "3",
"yt "9M,
A
"Wt 9T,
"XtoT2n,
"y': "9",
"Z':r 2"}

def soundex(source):
"convert string to Soundex equivalent"

Soundex requirements:

source string must be at least 1 character

and must consist entirely of letters

allChars = string.uppercase + string.lowercase

if not re.search('A[%s]+$' % allChars, source):
return "0000"

Soundex algorithm:
1. make first character uppercase
source = source[0].upper() + source[l:]

2. translate all other characters to Soundex digits
digits = source[0]
for s in source[l:]:

s = s.upper()

digits += charToSoundex[s]

315

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Chapter 18

3. remove consecutive duplicates
digits2 = digits[0]
for d in digits[1:]:
if digits2[-1] != d:
digits2 += d

4. remove all "9"s
digits3 = re.sub('9', '', digits2)

5. pad end with "0"s to 4 characters
while len(digits3) < 4:
digits3 += "0"

6. return first 4 characters
return digits3[:4]

if __name__ == '__main__"':
from timeit import Timer
names = ('Woo', 'Pilgrim', 'Flingjingwaller')
for name in names:
statement = "soundex('%s')" % name

t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

Further Reading on Soundex

» Soundexing and Genealogy [http://www.avotaynu.com/soundex.html] gives a chronology of the evol-
ution of the Soundex and its regional variations.

Using the timeit Module

The most important thing you need to know about optimizing Python codeis that you shouldn't write your
own timing function.

Timing short pieces of code is incredibly complex. How much processor time is your computer devoting
to running this code? Are there things running in the background? Are you sure? Every modern computer
has background processes running, some all the time, some intermittently. Cron jobs fire off at consistent
intervals; background services occasionally “wake up” to do useful thingslike check for new mail, connect
to instant messaging servers, check for application updates, scan for viruses, check whether adisk hasbeen
inserted into your CD drivein thelast 100 nanoseconds, and so on. Before you start your timing tests, turn
everything off and disconnect from the network. Then turn off all the things you forgot to turn off the first
time, then turn off the service that's incessantly checking whether the network has come back yet, then ...

And then there's the matter of the variations introduced by the timing framework itself. Does the Python
interpreter cache method name lookups? Does it cache code block compilations? Regular expressions?
Will your code have side effectsif run more than once? Don't forget that you're dealing with small fractions
of asecond, so small mistakesin your timing framework will irreparably skew your results.

The Python community has a saying: “ Python comeswith batteriesincluded.” Don't write your own timing
framework. Python 2.3 comes with a perfectly good one called timeit.

316

http://www.avotaynu.com/soundex.html

Chapter 18

Example 18.2. Introducing timeit

If you have not already done so, you can download this and other examples [http://diveintopython.org/-
downl oad/diveintopython-examples-5.4.zip] used in this book.

>>> import timeit

>>> t = timeit.Timer("soundex.soundex('Pilgrim')",
.. "import soundex") [

>>> t.timeit() O

8.21683733547

>>> t.repeat(3, 2000000) l

[16.48319309109, 16.46128984923, 16.44203948912]

[] Thetimeit moduledefinesoneclass, Timer, which takestwo arguments. Both arguments are strings.
Thefirst argument isthe statement you wish to time; in this case, you aretiming acall to the Soundex
function within the soundex with an argument of 'Pilgrim'. The second argument to the Timer
classisthe import statement that sets up the environment for the statement. Internally, timeit sets
up an isolated virtual environment, manually executes the setup statement (importing the soundex
module), then manually compiles and executes the timed statement (calling the Soundex function).

[] Onceyou havethe Timer object, the easiest thing to do is call timeit (), which calls your function
1 million times and returns the number of secondsit took to do it.

[] Theother major method of the Timer object isrepeat (), which takes two optional arguments. The
first argument is the number of times to repeat the entire test, and the second argument is the number
of times to call the timed statement within each test. Both arguments are optional, and they default
to 3 and 1000000 respectively. The repeat () method returnsalist of the times each test cycle took,
in seconds.

You can use the timeit module on the command lineto test an existing Python program, without
modifying the code. See http://docs.python.org/lib/node396.html for documentation on the com-
mand-line flags.

Notethat repeat () returnsalist of times. Thetimeswill almost never beidentical, dueto slight variations
in how much processor time the Python interpreter is getting (and those pesky background processes that
you can't get rid of). Your first thought might be to say “Let's take the average and call that The True
Number.”

Infact, that's almost certainly wrong. The tests that took longer didn't take longer because of variationsin
your code or in the Python interpreter; they took longer because of those pesky background processes, or
other factors outside of the Python interpreter that you can't fully eliminate. If the different timing results
differ by more than afew percent, you still have too much variability to trust the results. Otherwise, take
the minimum time and discard the rest.

Python has a handy min function that takes alist and returns the smallest value:
>>> min(t.repeat(3, 1000000))
8.22203948912

The timeit module only works if you already know what piece of code you need to optimize. If
you have alarger Python program and don't know where your performance problems are, check
out the hotshot module. [http://docs.python.org/lib/modul e-hotshot.html]

317

http://diveintopython.org/download/diveintopython-examples-5.4.zip
http://docs.python.org/lib/node396.html
http://docs.python.org/lib/module-hotshot.html

Chapter 18

Optimizing Regular Expressions

The first thing the Soundex function checks is whether the input is a non-empty string of letters. What's
the best way to do this?

If you answered “regular expressions’, go sit in the corner and contemplate your bad instincts. Regular
expressions are amost never the right answer; they should be avoided whenever possible. Not only for
performance reasons, but simply because they're difficult to debug and maintain. Also for performance
reasons.

This code fragment from soundex/stagel/soundexla.py checks whether the function argument source
isaword made entirely of letters, with at least one letter (not the empty string):

allChars = string.uppercase + string.lowercase
if not re.search('A[%s]+$' % allChars, source):
return "0000"

How does soundex1a. py perform? For convenience, the _main__ section of the script containsthis code
that callsthe timeit module, setsup atiming test with three different names, tests each name three times,
and displays the minimum time for each:

if __name__ == '__main__"':
from timeit import Timer
names = ('Woo', 'Pilgrim', 'Flingjingwaller')
for name in names:
statement = "soundex('%s')" % name

t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

So how does soundexla.py perform with this regular expression?

C:\samples\soundex\stagel>python soundexla.py
Woo W000 19.3356647283
Pilgrim P426 24.0772053431
Flingjingwaller F452 35.0463220884

As you might expect, the algorithm takes significantly longer when called with longer names. There will
be afew things we can do to narrow that gap (make the function take less relative time for longer input),
but the nature of the algorithm dictates that it will never run in constant time.

The other thing to keep in mind is that we are testing a representative sample of names. Woo is akind of
trivial case, in that it gets shorted down to asingle letter and then padded with zeros. Pilgrim isanormal
case, of average length and amixture of significant and ignored letters. Flingjingwaller isextraordinarily
long and contains consecutive duplicates. Other tests might also be helpful, but this hits a good range of
different cases.

So what about that regular expression? Well, it's inefficient. Since the expression is testing for ranges of
characters (A-Z in uppercase, and a-z in lowercase), we can use a shorthand regular expression syntax.
Hereis soundex/stagel/soundexlb.py:

318

Chapter 18

if not re.search('A[A-Za-z]+$', source):
return "0000"

timeit saySsoundexlb.py isdightly faster than soundexla.py, but nothing to get terribly excited about:

C:\samples\soundex\stagel>python soundexlb.py
Woo W000 17.1361133887
Pilgrim P426 21.8201693232
Flingjingwaller F452 32.7262294509

We saw in the section called “ Refactoring” that regular expressions can be compiled and reused for faster
results. Since this regular expression never changes across function calls, we can compile it once and use
the compiled version. Here is soundex/stagel/soundexlc.py:

isOnlyChars = re.compile('A[A-Za-z]+$').search
def soundex(source):
if not isOnlyChars(source):
return "0000"

Using a compiled regular expression in soundexlc.py issignificantly faster:

C:\samples\soundex\stagel>python soundexlc.py
Woo WO00 14.5348347346
Pilgrim P426 19.2784703084
Flingjingwaller F452 30.0893873383

But isthisthe wrong path? The logic hereis simple: theinput source needsto be non-empty, and it needs
to be composed entirely of letters. Wouldn't it be faster to write a loop checking each character, and do
away with regular expressions altogether?

Hereis soundex/stagel/soundexld.py:

if not source:
return "0000"
for ¢ in source:
if not ('A' <= c <= 'Z') and not ('a' <= c <= 'z'"):
return "0000"

It turns out that this technique in soundex1d.py is not faster than using a compiled regular expression
(although it is faster than using a non-compiled regular expression):

C:\samples\soundex\stagel>python soundexld.py
Woo W000 15.4065058548
Pilgrim P426 22.2753567842
Flingjingwaller F452 37.5845122774

Why isn't soundex1d. py faster? The answer liesin theinterpreted nature of Python. The regular expression
engine is written in C, and compiled to run natively on your computer. On the other hand, this loop is
written in Python, and runs through the Python interpreter. Even though the loop isrelatively simple, it's

319

Chapter 18

not simple enough to make up for the overhead of being interpreted. Regular expressions are never the
right answer... except when they are.

It turns out that Python offers an obscure string method. You can be excused for not knowing about it,
since it's never been mentioned in this book. The method is called isalpha(), and it checks whether a
string contains only letters.

Thisis soundex/stagel/soundexle.py:

if (not source) and (not source.isalpha()):
return "0000"

How much did we gain by using this specific method in soundexle . py? Quite a bit.

C:\samples\soundex\stagel>python soundexle.py
Woo W000 13.5069504644
Pilgrim P426 18.2199394057
Flingjingwaller F452 28.9975225902

320

Chapter 18

Example 18.3. Best Result So Far: soundex/stagel/soundexle.py

import string, re

charToSoundex = {"A": "9",

"B": "1",
"cteo2t,
"D": "3",
"E": "9",
"F'ooM1,
"G": 2",
"H": "9",
"I "9M,
g2t
"Kto2n,
"L": 4",
"M": "5",
"NToM5Y,
"0": "9",
"pt: M1,
"Q': 2",
"R": "6",
"StoT2n,
"T": 3",
"yt 9",
vt
"Wt "9M,
"Xto2n,
"y": 9",
"Z": 2"}

def soundex(source):
if (not source) and (not source.isalpha()):
return "0000"
source source[0].upper() + source[l:]
digits source[0]
for s in source[1l:]:
s = s.upper()
digits += charToSoundex[s]
digits2 = digits[O0]
for d in digits[1:]:
if digits2[-1] != d:
digits2 += d
digits3 = re.sub('9', '', digits2)
while len(digits3) < 4:
digits3 += "0"
return digits3[:4]

if __name__ == '_main__':
from timeit import Timer
names = ('Woo', 'Pilgrim', 'Flingjingwaller')

for name in names:

321

Chapter 18

statement = "soundex('%s')" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

Optimizing Dictionary Lookups

The second step of the Soundex agorithm is to convert characters to digits in a specific pattern. What's
the best way to do this?

Themost obvious solutionisto define adictionary with individual charactersaskeysand their corresponding
digits as values, and do dictionary lookups on each character. This is what we have in
soundex/stagel/soundexlc.py (the current best result so far):

charToSoundex = {"A": "9",

"B": "1,
"ctrom2,
"D": "3",
"E": "9",
"FUo"1,
"G": "2,
"H": "9",
"I "9,
"Jroom2,
"KTro 2t
"L "4v,
"M": "5,
"N"oMS5Y,
"o": "9,
"pUr o "1v,
"Qr: 2",
"R": "6",
"Stoom2,
"T": "3,
"yt "9,
AR R
"W,
"Xttt
"y "9,
"Z": "2"}

def soundex(source):
... input check omitted for brevity ...
source = source[0].upper() + source[l:]
digits = source[0]
for s in source[l:]:
s = s.upper()
digits += charToSoundex[s]

You timed soundex1c.py aready; thisis how it performs:

C:\samples\soundex\stagel>python soundexlc.py

322

Chapter 18

Woo WO000 14.5341678901
Pilgrim P426 19.2650071448
Flingjingwaller F452 30.1003563302

Thiscodeis straightforward, but isit the best solution? Calling upper () on eachindividual character seems
inefficient; it would probably be better to call upper () once on the entire string.

Then there's the matter of incrementally building the digits string. Incrementally building strings like
thisis horribly inefficient; internally, the Python interpreter needs to create a new string each time through
the loop, then discard the old one.

Python is good at lists, though. It can treat a string as alist of characters automatically. And lists are easy
to combine into strings again, using the string method join().

Hereis soundex/stage2/soundex?a.py, which converts lettersto digitsby using and lambda:

def soundex(source):
...
source = source.upper()
digits = source[0] + "".join(map(lambda c: charToSoundex[c], source[1:]))

Surprisingly, soundex?2a.py is not faster:

C:\samples\soundex\stage2>python soundex2a.py
Woo W000 15.0097526362
Pilgrim P426 19.254806407
Flingjingwaller F452 29.3790847719

The overhead of the anonymous 1ambda function killsany performance you gain by dealing with the string
asalist of characters.

soundex/stage2/soundex2?b.py usesalist comprehension instead of and lambda:

source = source.upper()
digits source[0] + ""

.join([charToSoundex[c] for c¢ in source[1:]])

Using alist comprehension in soundex2b . py isfaster than using and 1ambda in soundex2?a.py, but still
not faster than the original code (incrementally building a string in soundexlc.py):

C:\samples\soundex\stage2>python soundex2b.py
Woo W000 13.4221324219
Pilgrim P426 16.4901234654
Flingjingwaller F452 25.8186157738

It'stimefor aradically different approach. Dictionary lookups are ageneral purpose tool. Dictionary keys
can be any length string (or many other data types), but in this case we are only dealing with single-char-
acter keysand single-character values. It turns out that Python has aspecialized function for handling exactly
this situation; the string.maketrans function.

Thisis soundex/stage2/soundex2c.py:

323

Chapter 18

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
def soundex(source):

...

digits = source[0].upper() + source[l:].translate(charToSoundex)

What the heck is going on here? string.maketrans creates atrang ation matrix between two strings: the
first argument and the second argument. In this case, the first argument is the string
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz, and the second argument is the string
9123912992245591262391929291239129922455912623919292. Seethe pattern? It's the same conversion
pattern we were setting up longhand with adictionary. A mapsto 9, B mapsto 1, C mapsto 2, and so forth.
But it's not a dictionary; it's a specialized data structure that you can access using the string method
translate, which translates each character into the corresponding digit, according to the matrix defined
by string.maketrans.

timeit shows that soundex2c.py is significantly faster than defining a dictionary and looping through
the input and building the output incrementally:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 11.437645008

Pilgrim P426 13.2825062962
Flingjingwaller F452 18.5570110168

You're not going to get much better than that. Python has a specialized function that does exactly what
you want to do; useit and move on.

324

Chapter 18

Example 18.4. Best Result So Far: soundex/stage2/soundex2c. py

import string, re

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile('A[A-Za-z]+$').search

def soundex(source):

if not isOnlyChars(source):

return "0000"
digits = source[0].upper() + source[l:].translate(charToSoundex)
digits2 = digits[O0]
for d in digits[1:]:

if digits2[-1] != d:

digits2 += d

digits3 = re.sub('9', '', digits2)
while len(digits3) < 4:

digits3 += "0"
return digits3[:4]

if __name__ == '_main__':
from timeit import Timer
names = ('Woo', 'Pilgrim', 'Flingjingwaller')
for name in names:
statement = "soundex('%s')" % name

t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

Optimizing List Operations

The third step in the Soundex algorithm is eliminating consecutive duplicate digits. What's the best way
to do this?

Here's the code we have so far, in soundex/stage2/soundex2c.py:

digits2 = digits[0]
for d in digits[1:]:
if digits2[-1] != d:
digits2 += d

Here are the performance results for soundex2c. py:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 12.6070768771
Pilgrim P426 14.4033353401
Flingjingwaller F452 19.7774882003

325

Chapter 18

The first thing to consider is whether it's efficient to check digits[-1] each time through the loop. Are
list indexes expensive? Would we be better off maintaining the last digit in a separate variable, and
checking that instead?

To answer this question, here is soundex/stage3/soundex3a.py:

digits2 =
last_digit =
for d in digits:
if d != last_digit:
digits2 += d
last_digit = d

soundex3a.py does not run any faster than soundex2c . py, and may even be dightly slower (although it's
not enough of a difference to say for sure):

C:\samples\soundex\stage3>python soundex3a.py
Woo W000 11.5346048171
Pilgrim P426 13.3950636184
Flingjingwaller F452 18.6108927252

Why isn't soundex3a.py faster? It turns out that list indexesin Python are extremely efficient. Repeatedly
accessing digits2[-1] isno problem at al. On the other hand, manually maintaining the last seen digit
in a separate variable means we have two variable assignments for each digit we're storing, which wipes
out any small gains we might have gotten from eliminating the list lookup.

Let's try something radically different. If it's possible to treat a string as alist of characters, it should be
possible to use a list comprehension to iterate through the list. The problem is, the code needs access to
the previous character in the list, and that's not easy to do with a straightforward list comprehension.

However, it ispossible to create alist of index numbers using the built-in range () function, and use those
index numbers to progressively search through the list and pull out each character that is different from
the previous character. That will give you alist of characters, and you can use the string method join()
to reconstruct a string from that.

Hereis soundex/stage3/soundex3b.py:

digits2 = .join([digits[i] for i in range(len(digits))

if i == 0 or digits[i-1] != digits[i]l])

Isthis faster? In aword, no.

C:\samples\soundex\stage3>python soundex3b.py
Woo WO000 14.2245271396
Pilgrim P426 17.8337165757
Flingjingwaller F452 25.9954005327

It's possible that the techniques so far as have been “ string-centric”. Python can convert astring into alist
of characters with asingle command: 1ist('abc"') returns['a', 'b', 'c']. Furthermore, lists can be
modified in place very quickly. Instead of incrementally building a new list (or string) out of the source
string, why not move elements around within asingle list?

326

Chapter 18

Here is soundex/stage3/soundex3c.py, which modifies alist in place to remove consecutive duplicate
elements:

digits = list(source[O].upper() + source[l:].translate(charToSoundex))
i=0
for item in digits:
if item==digits[i]: continue
i+=1
digits[i]=item
del digits[i+1:]
digits2 = "".join(digits)

Isthis faster than soundex3a.py oOr soundex3b.py? No, in fact it's the slowest method yet:

C:\samples\soundex\stage3>python soundex3c.py
Woo W000 14.1662554878
Pilgrim P426 16.0397885765
Flingjingwaller F452 22.1789341942

We haven't made any progress here at all, except to try and rule out several “clever” techniques. The fastest
codewe've seen so far wasthe original, most straightforward method (soundex2c . py). Sometimesit doesn't
pay to be clever.

327

Chapter 18

Example 18.5. Best Result So Far: soundex/stage2/soundex2c. py

import string, re

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile('A[A-Za-z]+$').search

def soundex(source):

if not isOnlyChars(source):

return "0000"
digits = source[0].upper() + source[l:].translate(charToSoundex)
digits2 = digits[O0]
for d in digits[1:]:

if digits2[-1] != d:

digits2 += d

digits3 = re.sub('9', '', digits2)
while len(digits3) < 4:

digits3 += "0"
return digits3[:4]

if __name__ == '_main__':
from timeit import Timer
names = ('Woo', 'Pilgrim', 'Flingjingwaller')
for name in names:
statement = "soundex('%s')" % name

t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

Optimizing String Manipulation

The final step of the Soundex algorithm is padding short results with zeros, and truncating long results.
What is the best way to do this?

Thisiswhat we have so far, taken from soundex/stage2/soundex2c.py:

digits3 = re.sub('9', '', digits2)
while len(digits3) < 4:

digits3 += "0"
return digits3[:4]

These are the results for soundex2c. py:

C:\samples\soundex\stage2>python soundex2c.py
Woo W000 12.6070768771
Pilgrim P426 14.4033353401
Flingjingwaller F452 19.7774882003

The first thing to consider is replacing that regular expression with a loop. This code is from
soundex/stage4/soundex4a.py:

328

Chapter 18

digits3 =
for d in digits2:
ifd!="'9":
digits3 +=d

Is soundex4a.py faster?Yesitis:

C:\samples\soundex\stage4>python soundex4a.py
Woo W000 6.62865531792
Pilgrim P426 9.02247576158
Flingjingwaller F452 13.6328416042

But wait aminute. A loop to remove characters from a string? We can use a simple string method for that.
Here's soundex/stage4/soundex4b. py:

digits3 = digits2.replace('9', '")

Is soundex4b . py faster? That's an interesting question. It depends on the input:

C:\samples\soundex\stage4>python soundex4b.py
Woo WO000 6.75477414029
Pilgrim P426 7.56652144337
Flingjingwaller F452 10.8727729362

The string method in soundex4b . py isfaster than the loop for most names, but it's actually sightly slower
than soundex4a.py in the trivial case (of a very short name). Performance optimizations aren't always
uniform; tuning that makes one case faster can sometimes make other cases dlower. In this case, the majority
of caseswill benefit from the change, so let'sleaveit at that, but the principleisan important oneto remem-
ber.

Last but not least, let's examine the final two steps of the algorithm: padding short results with zeros, and
truncating long resultsto four characters. The code you seein soundex4b . py doesjust that, but it's horribly
inefficient. Take alook at soundex/stage4/soundex4c.py to see why:

digits3 += '000'
return digits3[:4]

Why do we need awhile loop to pad out the result? We know in advance that we're going to truncate the
result to four characters, and we know that we already have at least one character (theinitial letter, which
is passed unchanged from the original source variable). That means we can ssimply add three zeros to the
output, then truncate it. Don't get stuck in a rut over the exact wording of the problem; looking at the
problem dlightly differently can lead to a simpler solution.

How much speed do we gain in soundex4c . py by dropping the while loop? It's significant:

C:\samples\soundex\stage4>python soundex4c.py
Woo W000 4.89129791636

Pilgrim P426 7.30642134685
Flingjingwaller F452 10.689832367

329

Chapter 18

Finally, thereis still one more thing you can do to these three lines of code to make them faster: you can
combine them into one line. Take alook at soundex/stage4/soundex4d. py:

return (digits2.replace('9', '') + '000')[:4]

Putting all this code on one line in soundex4d. py is barely faster than soundex4c. py:

C:\samples\soundex\stage4>python soundex4d.py

Woo

WO00 4.93624105857

Pilgrim P426 7.19747593619
Flingjingwaller F452 10.5490700634

It isalso significantly less readable, and for not much performance gain. Isthat worth it? | hope you have
good comments. Performance isn't everything. Your optimization efforts must always be balanced against
threats to your program's readability and maintainability.

Summary

This chapter has illustrated several important aspects of performance tuning in Python, and performance
tuning in general.

If you need to choose between regular expressions and writing aloop, choose regular expressions. The
regular expression engine is compiled in C and runs natively on your computer; your loop is written
in Python and runs through the Python interpreter.

If you need to choose between regular expressions and string methods, choose string methods. Both
are compiled in C, so choose the simpler one.

General-purpose dictionary lookups are fast, but specialtiy functions such as string.maketrans and
string methods such as isalpha() arefaster. If Python has a custom-tailored function for you, use it.

Don't be too clever. Sometimes the most obvious algorithm is also the fastest.

Don't sweat it too much. Performance isn't everything.

| can't emphasize that last point strongly enough. Over the course of this chapter, you made this function
three times faster and saved 20 seconds over 1 million function calls. Great. Now think: over the course
of those million function calls, how many seconds will your surrounding application wait for a database
connection? Or wait for disk 1/0? Or wait for user input? Don't spend too much time over-optimizing one
algorithm, or you'll ignore obvious improvements somewhere else. Develop an instinct for the sort of code
that Python runs well, correct obvious blunders if you find them, and leave the rest alone.

330

Appendix A. Further reading

331

Appendix B. A 5-minute review

332

Appendix C.Tips and tricks

333

Appendix D. List of examples

334

Appendix E. Revision history

335

Appendix F. About the book

This book was written in DocBook XML [http://www.0asis-open.org/docbook/] using Emacs [http://-
www.gnu.org/software/emacs/], and converted to HTML using the SAXON XSLT processor from Michael
Kay [http://saxon.sourceforge.net/] with a customized version of Norman Walsh's XSL stylesheets
[http://www.nwalsh.com/xsl/]. From there, it was converted to PDF using HTMLDoc [http:/-
www.easysw.com/htmldoc/], and to plain text using w3m [http://eiShazha.yz.yamagata-u.ac.jp/~aito/w3m/-
eng/]. Program listings and examples were colorized using an updated version of Just van Rossum's
pyfontify.py, which isincluded in the example scripts.

If you're interested in learning more about DocBook for technical writing, you can download the XML
source [http://diveintopython.org/download/diveintopython-xml-5.4.zip] and the build scripts [http:/-
diveintopython.org/downl oad/diveintopython-common-5.4.zip], which include the customized XSL
stylesheets used to create al the different formats of the book. You should aso read the canonical book,
DocBook: The Definitive Guide [http://www.docbook.org/]. If you're going to do any serious writing in
DocBook, | would recommend subscribing to the DocBook mailing lists [http://lists.0asis-open.org/archives/

].

336

http://www.oasis-open.org/docbook/
http://www.gnu.org/software/emacs/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.nwalsh.com/xsl/
http://www.easysw.com/htmldoc/
http://ei5nazha.yz.yamagata-u.ac.jp/~aito/w3m/eng/
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-xml-5.4.zip
http://diveintopython.org/download/diveintopython-common-5.4.zip
http://www.docbook.org/
http://lists.oasis-open.org/archives/

Appendix G. GNU Free Documentation
License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyoneis permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preservesfor the author and publisher
away to get credit for their work, while not being considered responsi ble for modifications made by others.

ThisLicenseisakind of "copyleft”", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this Licensein order to useit for manualsfor free software, because free software needs
free documentation: afree program should come with manuals providing the same freedomsthat the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The "Document", below, refers to any such
manual or work. Any member of the publicisalicensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or aportion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section” isanamed appendix or afront-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or
to related matters) and contains nothing that could fall directly within that overall subject. (For example,
if the Document isin part atextbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections' are certain Secondary Sections whose titles are designated, as being those of In-
variant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or

337

GNU Free Documentation License

(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic trandation to avariety of formats suitable for input to text formatters. A copy madein an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification
by readersis not Transparent. A copy that is not "Transparent” is called "Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncommercialy,
provided that this License, the copyright notices, and the license notice saying this License appliesto the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute alarge enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

Copying in quantity

If you publish printed copies of the Document numbering more than 100, and the Document'slicense notice
requires Cover Texts, you must enclose the copiesin covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other material on the coversin
addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include amachine-readable Transparent copy along with each Opaque copy, or statein or with each Opaque
copy a publicly-accessible computer-network location containing a complete Transparent copy of the
Document, free of added material, which the general network-using public has accessto download anonym-
ously at no charge using public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opague copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opague copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them achanceto provide you with an updated version of the Document.

338

GNU Free Documentation License

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A.

m o 0

T

Use in the Title Page (and on the covers, if any) atitle distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the sametitle as a previous version if the original publisher of that version
gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it hasless than five).

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve al the copyright notices of the Document.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

Include, immediately after the copyright notices, alicense notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum bel ow.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

Include an unaltered copy of this License.

Preserve the section entitled "History”, and itstitle, and add to it an item stating at |east thetitle, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

Inany section entitled " Acknowledgements' or "Dedications', preservethe section'stitle, and preserve
inthe section all the substance and tone of each of the contributor acknowledgements and/or dedications
given therein.

Preserve dl the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

Delete any section entitled "Endorsements’. Such a section may not be included in the Modified
Version.

Do not retitle any existing section as "Endorsements” or to conflict in title with any Invariant Section.

339

GNU Free Documentation License

If the Modified Version includes new front-matter sections or appendicesthat qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements’, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of thelist of Cover Textsin the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

Combining documents

You may combinethe Document with other documents released under this License, under the termsdefined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this License, and multipleidentical Invariant Sections
may be replaced with asingle copy. If there are multiple Invariant Sectionswith the same name but different
contents, make thetitle of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else aunique number. M ake the same adj ustment
to the section titlesin the list of Invariant Sectionsin the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled " Acknowledgements’, and
any sections entitled "Dedications”. You must delete all sections entitled "Endorsements.”

Collections of documents

You may make a collection consisting of the Document and other documents rel eased under this License,
and replacetheindividual copiesof thisLicensein the various documentswith asingle copy that isincluded
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documentsin all other respects.

You may extract asingle document from such acollection, and distributeit individually under thisLicense,
provided you insert a copy of this Licenseinto the extracted document, and follow thisLicensein al other
respects regarding verbatim copying of that document.

Aggregation with independent works

A compilation of the Document or its derivativeswith other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation

GNU Free Documentation License

iscalled an "aggregate”, and this License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Doc-
ument islessthan one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they must appear on covers around the
whole aggregate.

Translation

Tranglation is considered akind of modification, so you may distribute trand ations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include trandations of some or al Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a transglation of this License provided
that you aso include the original English version of this License. In case of a disagreement between the
trandlation and the origina English version of this License, the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from timeto time. Such new versionswill be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyl eft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" appliesto it, you have the option of fol-
lowing the terms and conditions either of that specified version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as adraft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (¢) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify thisdocument under the terms of the GNU Free Documentation License, Version
1.1 or any later version published by the Free Software Foundation; with the Invariant
Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Textsbeing LIST. A copy of thelicenseisincluded in the section entitled
"GNU Free Documentation License".

341

http://www.gnu.org/copyleft/

GNU Free Documentation License

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which onesarein-
variant. If you have no Front-Cover Texts, write "no Front-Cover Texts' instead of "Front-Cover Texts
being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend rel easing these examples
in parallel under your choice of free software license, such asthe GNU General Public License, to permit
their usein free software.

342

Appendix H. Python license

History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI)
in the Netherlands as a successor of alanguage called ABC. Guido is Python's principa author, athough
it includes many contributions from others. The last version released from CWI was Python 1.2. In 1995,
Guido continued hiswork on Python at the Corporation for National Research Initiatives (CNRI) in Reston,
Virginiawhere hereleased several versions of the software. Python 1.6 wasthelast of the versionsreleased
by CNRI. In 2000, Guido and the Python core development team moved to BeOpen.com to form the
BeOpen PythonL abs team. Python 2.0 was the first and only release from BeOpen.com.

Following the release of Python 1.6, and after Guido van Rossum left CNRI to work with commercial
software developers, it became clear that the ability to use Python with software available under the GNU
Public License (GPL) was very desirable. CNRI and the Free Software Foundation (FSF) interacted to
develop enabling wording changes to the Python license. Python 1.6.1 is essentially the same as Python
1.6, with afew minor bug fixes, and with adifferent license that enableslater versionsto be GPL-compatible.
Python 2.1 is aderivative work of Python 1.6.1, aswell as of Python 2.0.

After Python 2.0 was released by BeOpen.com, Guido van Rossum and the other PythonL abs devel opers
joined Digital Creations. All intellectual property added from this point on, starting with Python 2.1 and
its alphaand betareleases, is owned by the Python Software Foundation (PSF), anon-profit modeled after
the Apache Software Foundation. See http://www.python.org/psf/ for more information about the PSF.

Thanks to the many outside volunteers who have worked under Guido's direction to make these releases
possible.

Terms and conditions for accessing or otherwise
using Python

PSF license agreement

1. ThisLICENSEAGREEMENT isbetween the Python Software Foundation (*PSF"), and the Individual
or Organization ("Licensee") accessing and otherwise using Python 2.1.1 software in source or binary
form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonex-
clusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python 2.1.1 alone or in any derivative version,
provided, however, that PSF's License Agreement and PSF's notice of copyright, i.e., "Copyright (c)
2001 Python Software Foundation; All Rights Reserved" are retained in Python 2.1.1 alone or in any
derivative version prepared by Licensee.

3. Intheevent Licensee prepares a derivative work that is based on or incorporates Python 2.1.1 or any
part thereof, and wants to make the derivative work availableto others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to Python 2.1.1.

4. PSFismaking Python 2.1.1 available to Licensee on an "ASIS' basis. PSF MAKES NO REPRES-
ENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, PSF MAKES NO AND DISCLAIMSANY REPRESENTATION OR WARRANTY

Python license

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON 2.1.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSFSHALL NOT BELIABLETO LICENSEE ORANY OTHER USERSOF PYTHON 2.1.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.1.1, ORANY DERIV-
ATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. ThisLicenseAgreement will automatically terminate upon amaterial breach of itstermsand conditions.

7. Nothing inthis License Agreement shall be deemed to create any relationship of agency, partnership,
or joint venture between PSF and Licensee. This License Agreement does not grant permission to use
PSF trademarks or trade name in a trademark sense to endorse or promote products or services of
Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.1.1, Licensee agreesto be bound by the terms and
conditions of this License Agreement.

BeOpen Python open source license agreement version
1

1. ThisLICENSEAGREEMENT isbetween BeOpen.com ("BeOpen"), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization ("Licensee") accessing and oth-
erwise using this softwarein source or binary form and its associated documentation ("the Software").

2. Subject tothetermsand conditions of this BeOpen Python License Agreement, BeOpen hereby grants
Licensee anon-exclusive, royalty-free, world-widelicenseto reproduce, analyze, test, perform and/or
display publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any
derivative version, provided, however, that the BeOpen Python License is retained in the Software,
alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis. BEOPEN MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION
ORWARRANTY OF MERCHANTABILITY OR FITNESS FORANY PARTICULAR PURPOSE
ORTHAT THE USE OF THE SOFTWAREWILL NOT INFRINGEANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOTBELIABLETOLICENSEEORANY OTHER USERS OF THE SOFTWARE
FORANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGESORLOSSASA RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. ThisLicenseAgreement will automatically terminate upon amaterial breach of itstermsand conditions.

6. ThisLicense Agreement shall be governed by and interpreted in all respects by the law of the State
of California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed
to create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This
License Agreement does not grant permission to use BeOpen trademarks or trade namesin atrademark
sense to endorse or promote products or services of Licensee, or any third party. As an exception, the
"BeOpen Python" logos available at http://www.pythonlabs.com/logos.html may be used according
to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agreesto be bound by the terms and
conditions of this License Agreement.

Python license

CNRI open source GPL-compatible license agreement

1.

This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having
an office at 1895 Preston White Drive, Reston, VA 20191 ("CNRI™), and the Individual or Organization
("Licensee") accessing and otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, anayze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative
version, provided, however, that CNRI's License Agreement and CNRI's notice of copyright, i.e.,
"Copyright (c) 1995-2001 Corporation for National Research Initiatives; All Rights Reserved" are
retained in Python 1.6.1 alone or in any derivative version prepared by Licensee. Alternately, in lieu
of CNRI's License Agreement, Licensee may substitute the following text (omitting the quotes):
"Python 1.6.1 is made available subject to the terms and conditions in CNRI's License Agreement.
ThisAgreement together with Python 1.6.1 may belocated on the Internet using the following unique,
persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be obtained from
aproxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013".

In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT
NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FORANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGEANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1
FORANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGESOR LOSSASA RESULT
OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, ORANY DERIV-
ATIVE THEREOF EVEN IFADVISED OF THE POSSIBILITY THEREOF.

ThisLicenseAgreement will automatically terminate upon amaterial breach of itstermsand conditions.

This License Agreement shall be governed by the federal intellectual property law of the United
States, including without limitation the federal copyright law, and, to the extent such U.S. federal law
does not apply, by the law of the Commonwealth of Virginia, excluding Virginia's conflict of law
provisions. Notwithstanding the foregoing, with regard to derivative works based on Python 1.6.1
that incorporate non-separable material that was previously distributed under the GNU General Public
License (GPL), the law of the Commonwealth of Virginia shall govern this License Agreement only
astoissues arising under or with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing
in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between CNRI and Licensee. This License Agreement does not grant permission to use CNRI
trademarks or trade name in atrademark sense to endorse or promote products or services of Licensee,
or any third party.

By clicking on the "ACCEPT" button where indicated, or by copying, installing or otherwise using
Python 1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

Python license

CWI permissions statement and disclaimer

Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Nether-
lands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in al copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the name of
Stichting Mathematisch Centrum or CWI not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGESORANY DAMAGESWHATSOEVER
RESULTING FROM LOSSOF USE, DATA OR PROFITS, WHETHERINANACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

346

	Dive Into Python
	Table of Contents
	Chapter 1. Installing Python
	Which Python is right for you?
	Python on Windows
	Python on Mac OS X
	Python on Mac OS 9
	Python on RedHat Linux
	Python on Debian GNU/Linux
	Python Installation from Source
	The Interactive Shell
	Summary

	Chapter 2. Your First Python Program
	Diving in
	Declaring Functions
	How Python's Datatypes Compare to Other Programming Languages

	Documenting Functions
	Everything Is an Object
	The Import Search Path
	What's an Object?

	Indenting Code
	Testing Modules

	Chapter 3. Native Datatypes
	Introducing Dictionaries
	Defining Dictionaries
	Modifying Dictionaries
	Deleting Items From Dictionaries

	Introducing Lists
	Defining Lists
	Adding Elements to Lists
	Searching Lists
	Deleting List Elements
	Using List Operators

	Introducing Tuples
	Declaring variables
	Referencing Variables
	Assigning Multiple Values at Once

	Formatting Strings
	Mapping Lists
	Joining Lists and Splitting Strings
	Historical Note on String Methods

	Summary

	Chapter 4. The Power Of Introspection
	Diving In
	Using Optional and Named Arguments
	Using type, str, dir, and Other Built-In Functions
	The type Function
	The str Function
	Built-In Functions

	Getting Object References With getattr
	getattr with Modules
	getattr As a Dispatcher

	Filtering Lists
	The Peculiar Nature of and and or
	Using the and-or Trick

	Using lambda Functions
	Real-World lambda Functions

	Putting It All Together
	Summary

	Chapter 5. Objects and Object-Orientation
	Diving In
	Importing Modules Using from module import
	Defining Classes
	Initializing and Coding Classes
	Knowing When to Use self and __init__

	Instantiating Classes
	Garbage Collection

	Exploring UserDict: A Wrapper Class
	Special Class Methods
	Getting and Setting Items

	Advanced Special Class Methods
	Introducing Class Attributes
	Private Functions
	Summary

	Chapter 6. Exceptions and File Handling
	Handling Exceptions
	Using Exceptions For Other Purposes

	Working with File Objects
	Reading Files
	Closing Files
	Handling I/O Errors
	Writing to Files

	Iterating with for Loops
	Using sys.modules
	Working with Directories
	Putting It All Together
	Summary

	Chapter 7. Regular Expressions
	Diving In
	Case Study: Street Addresses
	Case Study: Roman Numerals
	Checking for Thousands
	Checking for Hundreds

	Using the {n,m} Syntax
	Checking for Tens and Ones

	Verbose Regular Expressions
	Case study: Parsing Phone Numbers
	Summary

	Chapter 8. HTML Processing
	Diving in
	Introducing sgmllib.py
	Extracting data from HTML documents
	Introducing BaseHTMLProcessor.py
	locals and globals
	Dictionary-based string formatting
	Quoting attribute values
	Introducing dialect.py
	Putting it all together
	Summary

	Chapter 9. XML Processing
	Diving in
	Packages
	Parsing XML
	Unicode
	Searching for elements
	Accessing element attributes
	Segue

	Chapter 10. Scripts and Streams
	Abstracting input sources
	Standard input, output, and error
	Caching node lookups
	Finding direct children of a node
	Creating separate handlers by node type
	Handling command-line arguments
	Putting it all together
	Summary

	Chapter 11. HTTP Web Services
	Diving in
	How not to fetch data over HTTP
	Features of HTTP
	User-Agent
	Redirects
	Last-Modified/If-Modified-Since
	ETag/If-None-Match
	Compression

	Debugging HTTP web services
	Setting the User-Agent
	Handling Last-Modified and ETag
	Handling redirects
	Handling compressed data
	Putting it all together
	Summary

	Chapter 12. SOAP Web Services
	Diving In
	Installing the SOAP Libraries
	Installing PyXML
	Installing fpconst
	Installing SOAPpy

	First Steps with SOAP
	Debugging SOAP Web Services
	Introducing WSDL
	Introspecting SOAP Web Services with WSDL
	Searching Google
	Troubleshooting SOAP Web Services
	Summary

	Chapter 13. Unit Testing
	Introduction to Roman numerals
	Diving in
	Introducing romantest.py
	Testing for success
	Testing for failure
	Testing for sanity

	Chapter 14. Test-First Programming
	roman.py, stage 1
	roman.py, stage 2
	roman.py, stage 3
	roman.py, stage 4
	roman.py, stage 5

	Chapter 15. Refactoring
	Handling bugs
	Handling changing requirements
	Refactoring
	Postscript
	Summary

	Chapter 16. Functional Programming
	Diving in
	Finding the path
	Filtering lists revisited
	Mapping lists revisited
	Data-centric programming
	Dynamically importing modules
	Putting it all together
	Summary

	Chapter 17. Dynamic functions
	Diving in
	plural.py, stage 1
	plural.py, stage 2
	plural.py, stage 3
	plural.py, stage 4
	plural.py, stage 5
	plural.py, stage 6
	Summary

	Chapter 18. Performance Tuning
	Diving in
	Using the timeit Module
	Optimizing Regular Expressions
	Optimizing Dictionary Lookups
	Optimizing List Operations
	Optimizing String Manipulation
	Summary

	Appendix A. Further reading
	Appendix B. A 5-minute review
	Appendix C. Tips and tricks
	Appendix D. List of examples
	Appendix E. Revision history
	Appendix F. About the book
	Appendix G. GNU Free Documentation License
	Preamble
	Applicability and definitions
	Verbatim copying
	Copying in quantity
	Modifications
	Combining documents
	Collections of documents
	Aggregation with independent works
	Translation
	Termination
	Future revisions of this license
	How to use this License for your documents

	Appendix H. Python license
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF license agreement
	BeOpen Python open source license agreement version 1
	CNRI open source GPL-compatible license agreement
	CWI permissions statement and disclaimer

